xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision d0b73b48)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/signal.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/smp.h>
42 #include <linux/highmem.h>
43 #include <linux/ptrace.h>
44 #include <linux/audit.h>
45 #include <linux/stddef.h>
46 
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/tlbflush.h>
50 #include <asm/irq.h>
51 #include <asm/syscalls.h>
52 
53 /*
54  * Known problems:
55  *
56  * Interrupt handling is not guaranteed:
57  * - a real x86 will disable all interrupts for one instruction
58  *   after a "mov ss,xx" to make stack handling atomic even without
59  *   the 'lss' instruction. We can't guarantee this in v86 mode,
60  *   as the next instruction might result in a page fault or similar.
61  * - a real x86 will have interrupts disabled for one instruction
62  *   past the 'sti' that enables them. We don't bother with all the
63  *   details yet.
64  *
65  * Let's hope these problems do not actually matter for anything.
66  */
67 
68 
69 #define KVM86	((struct kernel_vm86_struct *)regs)
70 #define VMPI	KVM86->vm86plus
71 
72 
73 /*
74  * 8- and 16-bit register defines..
75  */
76 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
77 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
78 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
79 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
80 
81 /*
82  * virtual flags (16 and 32-bit versions)
83  */
84 #define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
85 #define VEFLAGS	(current->thread.v86flags)
86 
87 #define set_flags(X, new, mask) \
88 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
89 
90 #define SAFE_MASK	(0xDD5)
91 #define RETURN_MASK	(0xDFF)
92 
93 /* convert kernel_vm86_regs to vm86_regs */
94 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
95 				  const struct kernel_vm86_regs *regs)
96 {
97 	int ret = 0;
98 
99 	/*
100 	 * kernel_vm86_regs is missing gs, so copy everything up to
101 	 * (but not including) orig_eax, and then rest including orig_eax.
102 	 */
103 	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
104 	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
105 			    sizeof(struct kernel_vm86_regs) -
106 			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
107 
108 	return ret;
109 }
110 
111 /* convert vm86_regs to kernel_vm86_regs */
112 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
113 				    const struct vm86_regs __user *user,
114 				    unsigned extra)
115 {
116 	int ret = 0;
117 
118 	/* copy ax-fs inclusive */
119 	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
120 	/* copy orig_ax-__gsh+extra */
121 	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
122 			      sizeof(struct kernel_vm86_regs) -
123 			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
124 			      extra);
125 	return ret;
126 }
127 
128 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
129 {
130 	struct tss_struct *tss;
131 	struct pt_regs *ret;
132 	unsigned long tmp;
133 
134 	/*
135 	 * This gets called from entry.S with interrupts disabled, but
136 	 * from process context. Enable interrupts here, before trying
137 	 * to access user space.
138 	 */
139 	local_irq_enable();
140 
141 	if (!current->thread.vm86_info) {
142 		pr_alert("no vm86_info: BAD\n");
143 		do_exit(SIGSEGV);
144 	}
145 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
146 	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
147 	tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
148 	if (tmp) {
149 		pr_alert("could not access userspace vm86_info\n");
150 		do_exit(SIGSEGV);
151 	}
152 
153 	tss = &per_cpu(init_tss, get_cpu());
154 	current->thread.sp0 = current->thread.saved_sp0;
155 	current->thread.sysenter_cs = __KERNEL_CS;
156 	load_sp0(tss, &current->thread);
157 	current->thread.saved_sp0 = 0;
158 	put_cpu();
159 
160 	ret = KVM86->regs32;
161 
162 	ret->fs = current->thread.saved_fs;
163 	set_user_gs(ret, current->thread.saved_gs);
164 
165 	return ret;
166 }
167 
168 static void mark_screen_rdonly(struct mm_struct *mm)
169 {
170 	pgd_t *pgd;
171 	pud_t *pud;
172 	pmd_t *pmd;
173 	pte_t *pte;
174 	spinlock_t *ptl;
175 	int i;
176 
177 	down_write(&mm->mmap_sem);
178 	pgd = pgd_offset(mm, 0xA0000);
179 	if (pgd_none_or_clear_bad(pgd))
180 		goto out;
181 	pud = pud_offset(pgd, 0xA0000);
182 	if (pud_none_or_clear_bad(pud))
183 		goto out;
184 	pmd = pmd_offset(pud, 0xA0000);
185 	split_huge_page_pmd_mm(mm, 0xA0000, pmd);
186 	if (pmd_none_or_clear_bad(pmd))
187 		goto out;
188 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
189 	for (i = 0; i < 32; i++) {
190 		if (pte_present(*pte))
191 			set_pte(pte, pte_wrprotect(*pte));
192 		pte++;
193 	}
194 	pte_unmap_unlock(pte, ptl);
195 out:
196 	up_write(&mm->mmap_sem);
197 	flush_tlb();
198 }
199 
200 
201 
202 static int do_vm86_irq_handling(int subfunction, int irqnumber);
203 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
204 
205 int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
206 {
207 	struct kernel_vm86_struct info; /* declare this _on top_,
208 					 * this avoids wasting of stack space.
209 					 * This remains on the stack until we
210 					 * return to 32 bit user space.
211 					 */
212 	struct task_struct *tsk;
213 	int tmp, ret = -EPERM;
214 
215 	tsk = current;
216 	if (tsk->thread.saved_sp0)
217 		goto out;
218 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
219 				       offsetof(struct kernel_vm86_struct, vm86plus) -
220 				       sizeof(info.regs));
221 	ret = -EFAULT;
222 	if (tmp)
223 		goto out;
224 	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
225 	info.regs32 = regs;
226 	tsk->thread.vm86_info = v86;
227 	do_sys_vm86(&info, tsk);
228 	ret = 0;	/* we never return here */
229 out:
230 	return ret;
231 }
232 
233 
234 int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
235 {
236 	struct kernel_vm86_struct info; /* declare this _on top_,
237 					 * this avoids wasting of stack space.
238 					 * This remains on the stack until we
239 					 * return to 32 bit user space.
240 					 */
241 	struct task_struct *tsk;
242 	int tmp, ret;
243 	struct vm86plus_struct __user *v86;
244 
245 	tsk = current;
246 	switch (cmd) {
247 	case VM86_REQUEST_IRQ:
248 	case VM86_FREE_IRQ:
249 	case VM86_GET_IRQ_BITS:
250 	case VM86_GET_AND_RESET_IRQ:
251 		ret = do_vm86_irq_handling(cmd, (int)arg);
252 		goto out;
253 	case VM86_PLUS_INSTALL_CHECK:
254 		/*
255 		 * NOTE: on old vm86 stuff this will return the error
256 		 *  from access_ok(), because the subfunction is
257 		 *  interpreted as (invalid) address to vm86_struct.
258 		 *  So the installation check works.
259 		 */
260 		ret = 0;
261 		goto out;
262 	}
263 
264 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
265 	ret = -EPERM;
266 	if (tsk->thread.saved_sp0)
267 		goto out;
268 	v86 = (struct vm86plus_struct __user *)arg;
269 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
270 				       offsetof(struct kernel_vm86_struct, regs32) -
271 				       sizeof(info.regs));
272 	ret = -EFAULT;
273 	if (tmp)
274 		goto out;
275 	info.regs32 = regs;
276 	info.vm86plus.is_vm86pus = 1;
277 	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
278 	do_sys_vm86(&info, tsk);
279 	ret = 0;	/* we never return here */
280 out:
281 	return ret;
282 }
283 
284 
285 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
286 {
287 	struct tss_struct *tss;
288 /*
289  * make sure the vm86() system call doesn't try to do anything silly
290  */
291 	info->regs.pt.ds = 0;
292 	info->regs.pt.es = 0;
293 	info->regs.pt.fs = 0;
294 #ifndef CONFIG_X86_32_LAZY_GS
295 	info->regs.pt.gs = 0;
296 #endif
297 
298 /*
299  * The flags register is also special: we cannot trust that the user
300  * has set it up safely, so this makes sure interrupt etc flags are
301  * inherited from protected mode.
302  */
303 	VEFLAGS = info->regs.pt.flags;
304 	info->regs.pt.flags &= SAFE_MASK;
305 	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
306 	info->regs.pt.flags |= X86_VM_MASK;
307 
308 	switch (info->cpu_type) {
309 	case CPU_286:
310 		tsk->thread.v86mask = 0;
311 		break;
312 	case CPU_386:
313 		tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
314 		break;
315 	case CPU_486:
316 		tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
317 		break;
318 	default:
319 		tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
320 		break;
321 	}
322 
323 /*
324  * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
325  */
326 	info->regs32->ax = VM86_SIGNAL;
327 	tsk->thread.saved_sp0 = tsk->thread.sp0;
328 	tsk->thread.saved_fs = info->regs32->fs;
329 	tsk->thread.saved_gs = get_user_gs(info->regs32);
330 
331 	tss = &per_cpu(init_tss, get_cpu());
332 	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
333 	if (cpu_has_sep)
334 		tsk->thread.sysenter_cs = 0;
335 	load_sp0(tss, &tsk->thread);
336 	put_cpu();
337 
338 	tsk->thread.screen_bitmap = info->screen_bitmap;
339 	if (info->flags & VM86_SCREEN_BITMAP)
340 		mark_screen_rdonly(tsk->mm);
341 
342 	/*call __audit_syscall_exit since we do not exit via the normal paths */
343 #ifdef CONFIG_AUDITSYSCALL
344 	if (unlikely(current->audit_context))
345 		__audit_syscall_exit(1, 0);
346 #endif
347 
348 	__asm__ __volatile__(
349 		"movl %0,%%esp\n\t"
350 		"movl %1,%%ebp\n\t"
351 #ifdef CONFIG_X86_32_LAZY_GS
352 		"mov  %2, %%gs\n\t"
353 #endif
354 		"jmp resume_userspace"
355 		: /* no outputs */
356 		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
357 	/* we never return here */
358 }
359 
360 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
361 {
362 	struct pt_regs *regs32;
363 
364 	regs32 = save_v86_state(regs16);
365 	regs32->ax = retval;
366 	__asm__ __volatile__("movl %0,%%esp\n\t"
367 		"movl %1,%%ebp\n\t"
368 		"jmp resume_userspace"
369 		: : "r" (regs32), "r" (current_thread_info()));
370 }
371 
372 static inline void set_IF(struct kernel_vm86_regs *regs)
373 {
374 	VEFLAGS |= X86_EFLAGS_VIF;
375 	if (VEFLAGS & X86_EFLAGS_VIP)
376 		return_to_32bit(regs, VM86_STI);
377 }
378 
379 static inline void clear_IF(struct kernel_vm86_regs *regs)
380 {
381 	VEFLAGS &= ~X86_EFLAGS_VIF;
382 }
383 
384 static inline void clear_TF(struct kernel_vm86_regs *regs)
385 {
386 	regs->pt.flags &= ~X86_EFLAGS_TF;
387 }
388 
389 static inline void clear_AC(struct kernel_vm86_regs *regs)
390 {
391 	regs->pt.flags &= ~X86_EFLAGS_AC;
392 }
393 
394 /*
395  * It is correct to call set_IF(regs) from the set_vflags_*
396  * functions. However someone forgot to call clear_IF(regs)
397  * in the opposite case.
398  * After the command sequence CLI PUSHF STI POPF you should
399  * end up with interrupts disabled, but you ended up with
400  * interrupts enabled.
401  *  ( I was testing my own changes, but the only bug I
402  *    could find was in a function I had not changed. )
403  * [KD]
404  */
405 
406 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
407 {
408 	set_flags(VEFLAGS, flags, current->thread.v86mask);
409 	set_flags(regs->pt.flags, flags, SAFE_MASK);
410 	if (flags & X86_EFLAGS_IF)
411 		set_IF(regs);
412 	else
413 		clear_IF(regs);
414 }
415 
416 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
417 {
418 	set_flags(VFLAGS, flags, current->thread.v86mask);
419 	set_flags(regs->pt.flags, flags, SAFE_MASK);
420 	if (flags & X86_EFLAGS_IF)
421 		set_IF(regs);
422 	else
423 		clear_IF(regs);
424 }
425 
426 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
427 {
428 	unsigned long flags = regs->pt.flags & RETURN_MASK;
429 
430 	if (VEFLAGS & X86_EFLAGS_VIF)
431 		flags |= X86_EFLAGS_IF;
432 	flags |= X86_EFLAGS_IOPL;
433 	return flags | (VEFLAGS & current->thread.v86mask);
434 }
435 
436 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
437 {
438 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
439 		:"=r" (nr)
440 		:"m" (*bitmap), "r" (nr));
441 	return nr;
442 }
443 
444 #define val_byte(val, n) (((__u8 *)&val)[n])
445 
446 #define pushb(base, ptr, val, err_label) \
447 	do { \
448 		__u8 __val = val; \
449 		ptr--; \
450 		if (put_user(__val, base + ptr) < 0) \
451 			goto err_label; \
452 	} while (0)
453 
454 #define pushw(base, ptr, val, err_label) \
455 	do { \
456 		__u16 __val = val; \
457 		ptr--; \
458 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
459 			goto err_label; \
460 		ptr--; \
461 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
462 			goto err_label; \
463 	} while (0)
464 
465 #define pushl(base, ptr, val, err_label) \
466 	do { \
467 		__u32 __val = val; \
468 		ptr--; \
469 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
470 			goto err_label; \
471 		ptr--; \
472 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
473 			goto err_label; \
474 		ptr--; \
475 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
476 			goto err_label; \
477 		ptr--; \
478 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
479 			goto err_label; \
480 	} while (0)
481 
482 #define popb(base, ptr, err_label) \
483 	({ \
484 		__u8 __res; \
485 		if (get_user(__res, base + ptr) < 0) \
486 			goto err_label; \
487 		ptr++; \
488 		__res; \
489 	})
490 
491 #define popw(base, ptr, err_label) \
492 	({ \
493 		__u16 __res; \
494 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
495 			goto err_label; \
496 		ptr++; \
497 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
498 			goto err_label; \
499 		ptr++; \
500 		__res; \
501 	})
502 
503 #define popl(base, ptr, err_label) \
504 	({ \
505 		__u32 __res; \
506 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
507 			goto err_label; \
508 		ptr++; \
509 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
510 			goto err_label; \
511 		ptr++; \
512 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
513 			goto err_label; \
514 		ptr++; \
515 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
516 			goto err_label; \
517 		ptr++; \
518 		__res; \
519 	})
520 
521 /* There are so many possible reasons for this function to return
522  * VM86_INTx, so adding another doesn't bother me. We can expect
523  * userspace programs to be able to handle it. (Getting a problem
524  * in userspace is always better than an Oops anyway.) [KD]
525  */
526 static void do_int(struct kernel_vm86_regs *regs, int i,
527     unsigned char __user *ssp, unsigned short sp)
528 {
529 	unsigned long __user *intr_ptr;
530 	unsigned long segoffs;
531 
532 	if (regs->pt.cs == BIOSSEG)
533 		goto cannot_handle;
534 	if (is_revectored(i, &KVM86->int_revectored))
535 		goto cannot_handle;
536 	if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
537 		goto cannot_handle;
538 	intr_ptr = (unsigned long __user *) (i << 2);
539 	if (get_user(segoffs, intr_ptr))
540 		goto cannot_handle;
541 	if ((segoffs >> 16) == BIOSSEG)
542 		goto cannot_handle;
543 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
544 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
545 	pushw(ssp, sp, IP(regs), cannot_handle);
546 	regs->pt.cs = segoffs >> 16;
547 	SP(regs) -= 6;
548 	IP(regs) = segoffs & 0xffff;
549 	clear_TF(regs);
550 	clear_IF(regs);
551 	clear_AC(regs);
552 	return;
553 
554 cannot_handle:
555 	return_to_32bit(regs, VM86_INTx + (i << 8));
556 }
557 
558 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
559 {
560 	if (VMPI.is_vm86pus) {
561 		if ((trapno == 3) || (trapno == 1)) {
562 			KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
563 			/* setting this flag forces the code in entry_32.S to
564 			   the path where we call save_v86_state() and change
565 			   the stack pointer to KVM86->regs32 */
566 			set_thread_flag(TIF_NOTIFY_RESUME);
567 			return 0;
568 		}
569 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
570 		return 0;
571 	}
572 	if (trapno != 1)
573 		return 1; /* we let this handle by the calling routine */
574 	current->thread.trap_nr = trapno;
575 	current->thread.error_code = error_code;
576 	force_sig(SIGTRAP, current);
577 	return 0;
578 }
579 
580 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
581 {
582 	unsigned char opcode;
583 	unsigned char __user *csp;
584 	unsigned char __user *ssp;
585 	unsigned short ip, sp, orig_flags;
586 	int data32, pref_done;
587 
588 #define CHECK_IF_IN_TRAP \
589 	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
590 		newflags |= X86_EFLAGS_TF
591 #define VM86_FAULT_RETURN do { \
592 	if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
593 		return_to_32bit(regs, VM86_PICRETURN); \
594 	if (orig_flags & X86_EFLAGS_TF) \
595 		handle_vm86_trap(regs, 0, 1); \
596 	return; } while (0)
597 
598 	orig_flags = *(unsigned short *)&regs->pt.flags;
599 
600 	csp = (unsigned char __user *) (regs->pt.cs << 4);
601 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
602 	sp = SP(regs);
603 	ip = IP(regs);
604 
605 	data32 = 0;
606 	pref_done = 0;
607 	do {
608 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
609 		case 0x66:      /* 32-bit data */     data32 = 1; break;
610 		case 0x67:      /* 32-bit address */  break;
611 		case 0x2e:      /* CS */              break;
612 		case 0x3e:      /* DS */              break;
613 		case 0x26:      /* ES */              break;
614 		case 0x36:      /* SS */              break;
615 		case 0x65:      /* GS */              break;
616 		case 0x64:      /* FS */              break;
617 		case 0xf2:      /* repnz */       break;
618 		case 0xf3:      /* rep */             break;
619 		default: pref_done = 1;
620 		}
621 	} while (!pref_done);
622 
623 	switch (opcode) {
624 
625 	/* pushf */
626 	case 0x9c:
627 		if (data32) {
628 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
629 			SP(regs) -= 4;
630 		} else {
631 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
632 			SP(regs) -= 2;
633 		}
634 		IP(regs) = ip;
635 		VM86_FAULT_RETURN;
636 
637 	/* popf */
638 	case 0x9d:
639 		{
640 		unsigned long newflags;
641 		if (data32) {
642 			newflags = popl(ssp, sp, simulate_sigsegv);
643 			SP(regs) += 4;
644 		} else {
645 			newflags = popw(ssp, sp, simulate_sigsegv);
646 			SP(regs) += 2;
647 		}
648 		IP(regs) = ip;
649 		CHECK_IF_IN_TRAP;
650 		if (data32)
651 			set_vflags_long(newflags, regs);
652 		else
653 			set_vflags_short(newflags, regs);
654 
655 		VM86_FAULT_RETURN;
656 		}
657 
658 	/* int xx */
659 	case 0xcd: {
660 		int intno = popb(csp, ip, simulate_sigsegv);
661 		IP(regs) = ip;
662 		if (VMPI.vm86dbg_active) {
663 			if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
664 				return_to_32bit(regs, VM86_INTx + (intno << 8));
665 		}
666 		do_int(regs, intno, ssp, sp);
667 		return;
668 	}
669 
670 	/* iret */
671 	case 0xcf:
672 		{
673 		unsigned long newip;
674 		unsigned long newcs;
675 		unsigned long newflags;
676 		if (data32) {
677 			newip = popl(ssp, sp, simulate_sigsegv);
678 			newcs = popl(ssp, sp, simulate_sigsegv);
679 			newflags = popl(ssp, sp, simulate_sigsegv);
680 			SP(regs) += 12;
681 		} else {
682 			newip = popw(ssp, sp, simulate_sigsegv);
683 			newcs = popw(ssp, sp, simulate_sigsegv);
684 			newflags = popw(ssp, sp, simulate_sigsegv);
685 			SP(regs) += 6;
686 		}
687 		IP(regs) = newip;
688 		regs->pt.cs = newcs;
689 		CHECK_IF_IN_TRAP;
690 		if (data32) {
691 			set_vflags_long(newflags, regs);
692 		} else {
693 			set_vflags_short(newflags, regs);
694 		}
695 		VM86_FAULT_RETURN;
696 		}
697 
698 	/* cli */
699 	case 0xfa:
700 		IP(regs) = ip;
701 		clear_IF(regs);
702 		VM86_FAULT_RETURN;
703 
704 	/* sti */
705 	/*
706 	 * Damn. This is incorrect: the 'sti' instruction should actually
707 	 * enable interrupts after the /next/ instruction. Not good.
708 	 *
709 	 * Probably needs some horsing around with the TF flag. Aiee..
710 	 */
711 	case 0xfb:
712 		IP(regs) = ip;
713 		set_IF(regs);
714 		VM86_FAULT_RETURN;
715 
716 	default:
717 		return_to_32bit(regs, VM86_UNKNOWN);
718 	}
719 
720 	return;
721 
722 simulate_sigsegv:
723 	/* FIXME: After a long discussion with Stas we finally
724 	 *        agreed, that this is wrong. Here we should
725 	 *        really send a SIGSEGV to the user program.
726 	 *        But how do we create the correct context? We
727 	 *        are inside a general protection fault handler
728 	 *        and has just returned from a page fault handler.
729 	 *        The correct context for the signal handler
730 	 *        should be a mixture of the two, but how do we
731 	 *        get the information? [KD]
732 	 */
733 	return_to_32bit(regs, VM86_UNKNOWN);
734 }
735 
736 /* ---------------- vm86 special IRQ passing stuff ----------------- */
737 
738 #define VM86_IRQNAME		"vm86irq"
739 
740 static struct vm86_irqs {
741 	struct task_struct *tsk;
742 	int sig;
743 } vm86_irqs[16];
744 
745 static DEFINE_SPINLOCK(irqbits_lock);
746 static int irqbits;
747 
748 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
749 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
750 	| (1 << SIGUNUSED))
751 
752 static irqreturn_t irq_handler(int intno, void *dev_id)
753 {
754 	int irq_bit;
755 	unsigned long flags;
756 
757 	spin_lock_irqsave(&irqbits_lock, flags);
758 	irq_bit = 1 << intno;
759 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
760 		goto out;
761 	irqbits |= irq_bit;
762 	if (vm86_irqs[intno].sig)
763 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
764 	/*
765 	 * IRQ will be re-enabled when user asks for the irq (whether
766 	 * polling or as a result of the signal)
767 	 */
768 	disable_irq_nosync(intno);
769 	spin_unlock_irqrestore(&irqbits_lock, flags);
770 	return IRQ_HANDLED;
771 
772 out:
773 	spin_unlock_irqrestore(&irqbits_lock, flags);
774 	return IRQ_NONE;
775 }
776 
777 static inline void free_vm86_irq(int irqnumber)
778 {
779 	unsigned long flags;
780 
781 	free_irq(irqnumber, NULL);
782 	vm86_irqs[irqnumber].tsk = NULL;
783 
784 	spin_lock_irqsave(&irqbits_lock, flags);
785 	irqbits &= ~(1 << irqnumber);
786 	spin_unlock_irqrestore(&irqbits_lock, flags);
787 }
788 
789 void release_vm86_irqs(struct task_struct *task)
790 {
791 	int i;
792 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
793 	    if (vm86_irqs[i].tsk == task)
794 		free_vm86_irq(i);
795 }
796 
797 static inline int get_and_reset_irq(int irqnumber)
798 {
799 	int bit;
800 	unsigned long flags;
801 	int ret = 0;
802 
803 	if (invalid_vm86_irq(irqnumber)) return 0;
804 	if (vm86_irqs[irqnumber].tsk != current) return 0;
805 	spin_lock_irqsave(&irqbits_lock, flags);
806 	bit = irqbits & (1 << irqnumber);
807 	irqbits &= ~bit;
808 	if (bit) {
809 		enable_irq(irqnumber);
810 		ret = 1;
811 	}
812 
813 	spin_unlock_irqrestore(&irqbits_lock, flags);
814 	return ret;
815 }
816 
817 
818 static int do_vm86_irq_handling(int subfunction, int irqnumber)
819 {
820 	int ret;
821 	switch (subfunction) {
822 		case VM86_GET_AND_RESET_IRQ: {
823 			return get_and_reset_irq(irqnumber);
824 		}
825 		case VM86_GET_IRQ_BITS: {
826 			return irqbits;
827 		}
828 		case VM86_REQUEST_IRQ: {
829 			int sig = irqnumber >> 8;
830 			int irq = irqnumber & 255;
831 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
832 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
833 			if (invalid_vm86_irq(irq)) return -EPERM;
834 			if (vm86_irqs[irq].tsk) return -EPERM;
835 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
836 			if (ret) return ret;
837 			vm86_irqs[irq].sig = sig;
838 			vm86_irqs[irq].tsk = current;
839 			return irq;
840 		}
841 		case  VM86_FREE_IRQ: {
842 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
843 			if (!vm86_irqs[irqnumber].tsk) return 0;
844 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
845 			free_vm86_irq(irqnumber);
846 			return 0;
847 		}
848 	}
849 	return -EINVAL;
850 }
851 
852