xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
49 #include <asm/syscalls.h>
50 
51 /*
52  * Known problems:
53  *
54  * Interrupt handling is not guaranteed:
55  * - a real x86 will disable all interrupts for one instruction
56  *   after a "mov ss,xx" to make stack handling atomic even without
57  *   the 'lss' instruction. We can't guarantee this in v86 mode,
58  *   as the next instruction might result in a page fault or similar.
59  * - a real x86 will have interrupts disabled for one instruction
60  *   past the 'sti' that enables them. We don't bother with all the
61  *   details yet.
62  *
63  * Let's hope these problems do not actually matter for anything.
64  */
65 
66 
67 #define KVM86	((struct kernel_vm86_struct *)regs)
68 #define VMPI	KVM86->vm86plus
69 
70 
71 /*
72  * 8- and 16-bit register defines..
73  */
74 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
75 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
76 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
77 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
78 
79 /*
80  * virtual flags (16 and 32-bit versions)
81  */
82 #define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
83 #define VEFLAGS	(current->thread.v86flags)
84 
85 #define set_flags(X, new, mask) \
86 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
87 
88 #define SAFE_MASK	(0xDD5)
89 #define RETURN_MASK	(0xDFF)
90 
91 /* convert kernel_vm86_regs to vm86_regs */
92 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
93 				  const struct kernel_vm86_regs *regs)
94 {
95 	int ret = 0;
96 
97 	/*
98 	 * kernel_vm86_regs is missing gs, so copy everything up to
99 	 * (but not including) orig_eax, and then rest including orig_eax.
100 	 */
101 	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
102 	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
103 			    sizeof(struct kernel_vm86_regs) -
104 			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
105 
106 	return ret;
107 }
108 
109 /* convert vm86_regs to kernel_vm86_regs */
110 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
111 				    const struct vm86_regs __user *user,
112 				    unsigned extra)
113 {
114 	int ret = 0;
115 
116 	/* copy ax-fs inclusive */
117 	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
118 	/* copy orig_ax-__gsh+extra */
119 	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
120 			      sizeof(struct kernel_vm86_regs) -
121 			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
122 			      extra);
123 	return ret;
124 }
125 
126 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
127 {
128 	struct tss_struct *tss;
129 	struct pt_regs *ret;
130 	unsigned long tmp;
131 
132 	/*
133 	 * This gets called from entry.S with interrupts disabled, but
134 	 * from process context. Enable interrupts here, before trying
135 	 * to access user space.
136 	 */
137 	local_irq_enable();
138 
139 	if (!current->thread.vm86_info) {
140 		printk("no vm86_info: BAD\n");
141 		do_exit(SIGSEGV);
142 	}
143 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
144 	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
145 	tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
146 	if (tmp) {
147 		printk("vm86: could not access userspace vm86_info\n");
148 		do_exit(SIGSEGV);
149 	}
150 
151 	tss = &per_cpu(init_tss, get_cpu());
152 	current->thread.sp0 = current->thread.saved_sp0;
153 	current->thread.sysenter_cs = __KERNEL_CS;
154 	load_sp0(tss, &current->thread);
155 	current->thread.saved_sp0 = 0;
156 	put_cpu();
157 
158 	ret = KVM86->regs32;
159 
160 	ret->fs = current->thread.saved_fs;
161 	set_user_gs(ret, current->thread.saved_gs);
162 
163 	return ret;
164 }
165 
166 static void mark_screen_rdonly(struct mm_struct *mm)
167 {
168 	pgd_t *pgd;
169 	pud_t *pud;
170 	pmd_t *pmd;
171 	pte_t *pte;
172 	spinlock_t *ptl;
173 	int i;
174 
175 	down_write(&mm->mmap_sem);
176 	pgd = pgd_offset(mm, 0xA0000);
177 	if (pgd_none_or_clear_bad(pgd))
178 		goto out;
179 	pud = pud_offset(pgd, 0xA0000);
180 	if (pud_none_or_clear_bad(pud))
181 		goto out;
182 	pmd = pmd_offset(pud, 0xA0000);
183 	split_huge_page_pmd(mm, pmd);
184 	if (pmd_none_or_clear_bad(pmd))
185 		goto out;
186 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
187 	for (i = 0; i < 32; i++) {
188 		if (pte_present(*pte))
189 			set_pte(pte, pte_wrprotect(*pte));
190 		pte++;
191 	}
192 	pte_unmap_unlock(pte, ptl);
193 out:
194 	up_write(&mm->mmap_sem);
195 	flush_tlb();
196 }
197 
198 
199 
200 static int do_vm86_irq_handling(int subfunction, int irqnumber);
201 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
202 
203 int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
204 {
205 	struct kernel_vm86_struct info; /* declare this _on top_,
206 					 * this avoids wasting of stack space.
207 					 * This remains on the stack until we
208 					 * return to 32 bit user space.
209 					 */
210 	struct task_struct *tsk;
211 	int tmp, ret = -EPERM;
212 
213 	tsk = current;
214 	if (tsk->thread.saved_sp0)
215 		goto out;
216 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
217 				       offsetof(struct kernel_vm86_struct, vm86plus) -
218 				       sizeof(info.regs));
219 	ret = -EFAULT;
220 	if (tmp)
221 		goto out;
222 	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
223 	info.regs32 = regs;
224 	tsk->thread.vm86_info = v86;
225 	do_sys_vm86(&info, tsk);
226 	ret = 0;	/* we never return here */
227 out:
228 	return ret;
229 }
230 
231 
232 int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
233 {
234 	struct kernel_vm86_struct info; /* declare this _on top_,
235 					 * this avoids wasting of stack space.
236 					 * This remains on the stack until we
237 					 * return to 32 bit user space.
238 					 */
239 	struct task_struct *tsk;
240 	int tmp, ret;
241 	struct vm86plus_struct __user *v86;
242 
243 	tsk = current;
244 	switch (cmd) {
245 	case VM86_REQUEST_IRQ:
246 	case VM86_FREE_IRQ:
247 	case VM86_GET_IRQ_BITS:
248 	case VM86_GET_AND_RESET_IRQ:
249 		ret = do_vm86_irq_handling(cmd, (int)arg);
250 		goto out;
251 	case VM86_PLUS_INSTALL_CHECK:
252 		/*
253 		 * NOTE: on old vm86 stuff this will return the error
254 		 *  from access_ok(), because the subfunction is
255 		 *  interpreted as (invalid) address to vm86_struct.
256 		 *  So the installation check works.
257 		 */
258 		ret = 0;
259 		goto out;
260 	}
261 
262 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
263 	ret = -EPERM;
264 	if (tsk->thread.saved_sp0)
265 		goto out;
266 	v86 = (struct vm86plus_struct __user *)arg;
267 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
268 				       offsetof(struct kernel_vm86_struct, regs32) -
269 				       sizeof(info.regs));
270 	ret = -EFAULT;
271 	if (tmp)
272 		goto out;
273 	info.regs32 = regs;
274 	info.vm86plus.is_vm86pus = 1;
275 	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
276 	do_sys_vm86(&info, tsk);
277 	ret = 0;	/* we never return here */
278 out:
279 	return ret;
280 }
281 
282 
283 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
284 {
285 	struct tss_struct *tss;
286 /*
287  * make sure the vm86() system call doesn't try to do anything silly
288  */
289 	info->regs.pt.ds = 0;
290 	info->regs.pt.es = 0;
291 	info->regs.pt.fs = 0;
292 #ifndef CONFIG_X86_32_LAZY_GS
293 	info->regs.pt.gs = 0;
294 #endif
295 
296 /*
297  * The flags register is also special: we cannot trust that the user
298  * has set it up safely, so this makes sure interrupt etc flags are
299  * inherited from protected mode.
300  */
301 	VEFLAGS = info->regs.pt.flags;
302 	info->regs.pt.flags &= SAFE_MASK;
303 	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
304 	info->regs.pt.flags |= X86_VM_MASK;
305 
306 	switch (info->cpu_type) {
307 	case CPU_286:
308 		tsk->thread.v86mask = 0;
309 		break;
310 	case CPU_386:
311 		tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
312 		break;
313 	case CPU_486:
314 		tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
315 		break;
316 	default:
317 		tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
318 		break;
319 	}
320 
321 /*
322  * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
323  */
324 	info->regs32->ax = VM86_SIGNAL;
325 	tsk->thread.saved_sp0 = tsk->thread.sp0;
326 	tsk->thread.saved_fs = info->regs32->fs;
327 	tsk->thread.saved_gs = get_user_gs(info->regs32);
328 
329 	tss = &per_cpu(init_tss, get_cpu());
330 	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
331 	if (cpu_has_sep)
332 		tsk->thread.sysenter_cs = 0;
333 	load_sp0(tss, &tsk->thread);
334 	put_cpu();
335 
336 	tsk->thread.screen_bitmap = info->screen_bitmap;
337 	if (info->flags & VM86_SCREEN_BITMAP)
338 		mark_screen_rdonly(tsk->mm);
339 
340 	/*call __audit_syscall_exit since we do not exit via the normal paths */
341 #ifdef CONFIG_AUDITSYSCALL
342 	if (unlikely(current->audit_context))
343 		__audit_syscall_exit(1, 0);
344 #endif
345 
346 	__asm__ __volatile__(
347 		"movl %0,%%esp\n\t"
348 		"movl %1,%%ebp\n\t"
349 #ifdef CONFIG_X86_32_LAZY_GS
350 		"mov  %2, %%gs\n\t"
351 #endif
352 		"jmp resume_userspace"
353 		: /* no outputs */
354 		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
355 	/* we never return here */
356 }
357 
358 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
359 {
360 	struct pt_regs *regs32;
361 
362 	regs32 = save_v86_state(regs16);
363 	regs32->ax = retval;
364 	__asm__ __volatile__("movl %0,%%esp\n\t"
365 		"movl %1,%%ebp\n\t"
366 		"jmp resume_userspace"
367 		: : "r" (regs32), "r" (current_thread_info()));
368 }
369 
370 static inline void set_IF(struct kernel_vm86_regs *regs)
371 {
372 	VEFLAGS |= X86_EFLAGS_VIF;
373 	if (VEFLAGS & X86_EFLAGS_VIP)
374 		return_to_32bit(regs, VM86_STI);
375 }
376 
377 static inline void clear_IF(struct kernel_vm86_regs *regs)
378 {
379 	VEFLAGS &= ~X86_EFLAGS_VIF;
380 }
381 
382 static inline void clear_TF(struct kernel_vm86_regs *regs)
383 {
384 	regs->pt.flags &= ~X86_EFLAGS_TF;
385 }
386 
387 static inline void clear_AC(struct kernel_vm86_regs *regs)
388 {
389 	regs->pt.flags &= ~X86_EFLAGS_AC;
390 }
391 
392 /*
393  * It is correct to call set_IF(regs) from the set_vflags_*
394  * functions. However someone forgot to call clear_IF(regs)
395  * in the opposite case.
396  * After the command sequence CLI PUSHF STI POPF you should
397  * end up with interrupts disabled, but you ended up with
398  * interrupts enabled.
399  *  ( I was testing my own changes, but the only bug I
400  *    could find was in a function I had not changed. )
401  * [KD]
402  */
403 
404 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
405 {
406 	set_flags(VEFLAGS, flags, current->thread.v86mask);
407 	set_flags(regs->pt.flags, flags, SAFE_MASK);
408 	if (flags & X86_EFLAGS_IF)
409 		set_IF(regs);
410 	else
411 		clear_IF(regs);
412 }
413 
414 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
415 {
416 	set_flags(VFLAGS, flags, current->thread.v86mask);
417 	set_flags(regs->pt.flags, flags, SAFE_MASK);
418 	if (flags & X86_EFLAGS_IF)
419 		set_IF(regs);
420 	else
421 		clear_IF(regs);
422 }
423 
424 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
425 {
426 	unsigned long flags = regs->pt.flags & RETURN_MASK;
427 
428 	if (VEFLAGS & X86_EFLAGS_VIF)
429 		flags |= X86_EFLAGS_IF;
430 	flags |= X86_EFLAGS_IOPL;
431 	return flags | (VEFLAGS & current->thread.v86mask);
432 }
433 
434 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
435 {
436 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
437 		:"=r" (nr)
438 		:"m" (*bitmap), "r" (nr));
439 	return nr;
440 }
441 
442 #define val_byte(val, n) (((__u8 *)&val)[n])
443 
444 #define pushb(base, ptr, val, err_label) \
445 	do { \
446 		__u8 __val = val; \
447 		ptr--; \
448 		if (put_user(__val, base + ptr) < 0) \
449 			goto err_label; \
450 	} while (0)
451 
452 #define pushw(base, ptr, val, err_label) \
453 	do { \
454 		__u16 __val = val; \
455 		ptr--; \
456 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
457 			goto err_label; \
458 		ptr--; \
459 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
460 			goto err_label; \
461 	} while (0)
462 
463 #define pushl(base, ptr, val, err_label) \
464 	do { \
465 		__u32 __val = val; \
466 		ptr--; \
467 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
468 			goto err_label; \
469 		ptr--; \
470 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
471 			goto err_label; \
472 		ptr--; \
473 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
474 			goto err_label; \
475 		ptr--; \
476 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
477 			goto err_label; \
478 	} while (0)
479 
480 #define popb(base, ptr, err_label) \
481 	({ \
482 		__u8 __res; \
483 		if (get_user(__res, base + ptr) < 0) \
484 			goto err_label; \
485 		ptr++; \
486 		__res; \
487 	})
488 
489 #define popw(base, ptr, err_label) \
490 	({ \
491 		__u16 __res; \
492 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
493 			goto err_label; \
494 		ptr++; \
495 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
496 			goto err_label; \
497 		ptr++; \
498 		__res; \
499 	})
500 
501 #define popl(base, ptr, err_label) \
502 	({ \
503 		__u32 __res; \
504 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
505 			goto err_label; \
506 		ptr++; \
507 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
508 			goto err_label; \
509 		ptr++; \
510 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
511 			goto err_label; \
512 		ptr++; \
513 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
514 			goto err_label; \
515 		ptr++; \
516 		__res; \
517 	})
518 
519 /* There are so many possible reasons for this function to return
520  * VM86_INTx, so adding another doesn't bother me. We can expect
521  * userspace programs to be able to handle it. (Getting a problem
522  * in userspace is always better than an Oops anyway.) [KD]
523  */
524 static void do_int(struct kernel_vm86_regs *regs, int i,
525     unsigned char __user *ssp, unsigned short sp)
526 {
527 	unsigned long __user *intr_ptr;
528 	unsigned long segoffs;
529 
530 	if (regs->pt.cs == BIOSSEG)
531 		goto cannot_handle;
532 	if (is_revectored(i, &KVM86->int_revectored))
533 		goto cannot_handle;
534 	if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
535 		goto cannot_handle;
536 	intr_ptr = (unsigned long __user *) (i << 2);
537 	if (get_user(segoffs, intr_ptr))
538 		goto cannot_handle;
539 	if ((segoffs >> 16) == BIOSSEG)
540 		goto cannot_handle;
541 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
542 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
543 	pushw(ssp, sp, IP(regs), cannot_handle);
544 	regs->pt.cs = segoffs >> 16;
545 	SP(regs) -= 6;
546 	IP(regs) = segoffs & 0xffff;
547 	clear_TF(regs);
548 	clear_IF(regs);
549 	clear_AC(regs);
550 	return;
551 
552 cannot_handle:
553 	return_to_32bit(regs, VM86_INTx + (i << 8));
554 }
555 
556 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
557 {
558 	if (VMPI.is_vm86pus) {
559 		if ((trapno == 3) || (trapno == 1)) {
560 			KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
561 			/* setting this flag forces the code in entry_32.S to
562 			   call save_v86_state() and change the stack pointer
563 			   to KVM86->regs32 */
564 			set_thread_flag(TIF_IRET);
565 			return 0;
566 		}
567 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
568 		return 0;
569 	}
570 	if (trapno != 1)
571 		return 1; /* we let this handle by the calling routine */
572 	current->thread.trap_nr = trapno;
573 	current->thread.error_code = error_code;
574 	force_sig(SIGTRAP, current);
575 	return 0;
576 }
577 
578 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
579 {
580 	unsigned char opcode;
581 	unsigned char __user *csp;
582 	unsigned char __user *ssp;
583 	unsigned short ip, sp, orig_flags;
584 	int data32, pref_done;
585 
586 #define CHECK_IF_IN_TRAP \
587 	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
588 		newflags |= X86_EFLAGS_TF
589 #define VM86_FAULT_RETURN do { \
590 	if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
591 		return_to_32bit(regs, VM86_PICRETURN); \
592 	if (orig_flags & X86_EFLAGS_TF) \
593 		handle_vm86_trap(regs, 0, 1); \
594 	return; } while (0)
595 
596 	orig_flags = *(unsigned short *)&regs->pt.flags;
597 
598 	csp = (unsigned char __user *) (regs->pt.cs << 4);
599 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
600 	sp = SP(regs);
601 	ip = IP(regs);
602 
603 	data32 = 0;
604 	pref_done = 0;
605 	do {
606 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
607 		case 0x66:      /* 32-bit data */     data32 = 1; break;
608 		case 0x67:      /* 32-bit address */  break;
609 		case 0x2e:      /* CS */              break;
610 		case 0x3e:      /* DS */              break;
611 		case 0x26:      /* ES */              break;
612 		case 0x36:      /* SS */              break;
613 		case 0x65:      /* GS */              break;
614 		case 0x64:      /* FS */              break;
615 		case 0xf2:      /* repnz */       break;
616 		case 0xf3:      /* rep */             break;
617 		default: pref_done = 1;
618 		}
619 	} while (!pref_done);
620 
621 	switch (opcode) {
622 
623 	/* pushf */
624 	case 0x9c:
625 		if (data32) {
626 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
627 			SP(regs) -= 4;
628 		} else {
629 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
630 			SP(regs) -= 2;
631 		}
632 		IP(regs) = ip;
633 		VM86_FAULT_RETURN;
634 
635 	/* popf */
636 	case 0x9d:
637 		{
638 		unsigned long newflags;
639 		if (data32) {
640 			newflags = popl(ssp, sp, simulate_sigsegv);
641 			SP(regs) += 4;
642 		} else {
643 			newflags = popw(ssp, sp, simulate_sigsegv);
644 			SP(regs) += 2;
645 		}
646 		IP(regs) = ip;
647 		CHECK_IF_IN_TRAP;
648 		if (data32)
649 			set_vflags_long(newflags, regs);
650 		else
651 			set_vflags_short(newflags, regs);
652 
653 		VM86_FAULT_RETURN;
654 		}
655 
656 	/* int xx */
657 	case 0xcd: {
658 		int intno = popb(csp, ip, simulate_sigsegv);
659 		IP(regs) = ip;
660 		if (VMPI.vm86dbg_active) {
661 			if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
662 				return_to_32bit(regs, VM86_INTx + (intno << 8));
663 		}
664 		do_int(regs, intno, ssp, sp);
665 		return;
666 	}
667 
668 	/* iret */
669 	case 0xcf:
670 		{
671 		unsigned long newip;
672 		unsigned long newcs;
673 		unsigned long newflags;
674 		if (data32) {
675 			newip = popl(ssp, sp, simulate_sigsegv);
676 			newcs = popl(ssp, sp, simulate_sigsegv);
677 			newflags = popl(ssp, sp, simulate_sigsegv);
678 			SP(regs) += 12;
679 		} else {
680 			newip = popw(ssp, sp, simulate_sigsegv);
681 			newcs = popw(ssp, sp, simulate_sigsegv);
682 			newflags = popw(ssp, sp, simulate_sigsegv);
683 			SP(regs) += 6;
684 		}
685 		IP(regs) = newip;
686 		regs->pt.cs = newcs;
687 		CHECK_IF_IN_TRAP;
688 		if (data32) {
689 			set_vflags_long(newflags, regs);
690 		} else {
691 			set_vflags_short(newflags, regs);
692 		}
693 		VM86_FAULT_RETURN;
694 		}
695 
696 	/* cli */
697 	case 0xfa:
698 		IP(regs) = ip;
699 		clear_IF(regs);
700 		VM86_FAULT_RETURN;
701 
702 	/* sti */
703 	/*
704 	 * Damn. This is incorrect: the 'sti' instruction should actually
705 	 * enable interrupts after the /next/ instruction. Not good.
706 	 *
707 	 * Probably needs some horsing around with the TF flag. Aiee..
708 	 */
709 	case 0xfb:
710 		IP(regs) = ip;
711 		set_IF(regs);
712 		VM86_FAULT_RETURN;
713 
714 	default:
715 		return_to_32bit(regs, VM86_UNKNOWN);
716 	}
717 
718 	return;
719 
720 simulate_sigsegv:
721 	/* FIXME: After a long discussion with Stas we finally
722 	 *        agreed, that this is wrong. Here we should
723 	 *        really send a SIGSEGV to the user program.
724 	 *        But how do we create the correct context? We
725 	 *        are inside a general protection fault handler
726 	 *        and has just returned from a page fault handler.
727 	 *        The correct context for the signal handler
728 	 *        should be a mixture of the two, but how do we
729 	 *        get the information? [KD]
730 	 */
731 	return_to_32bit(regs, VM86_UNKNOWN);
732 }
733 
734 /* ---------------- vm86 special IRQ passing stuff ----------------- */
735 
736 #define VM86_IRQNAME		"vm86irq"
737 
738 static struct vm86_irqs {
739 	struct task_struct *tsk;
740 	int sig;
741 } vm86_irqs[16];
742 
743 static DEFINE_SPINLOCK(irqbits_lock);
744 static int irqbits;
745 
746 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
747 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
748 	| (1 << SIGUNUSED))
749 
750 static irqreturn_t irq_handler(int intno, void *dev_id)
751 {
752 	int irq_bit;
753 	unsigned long flags;
754 
755 	spin_lock_irqsave(&irqbits_lock, flags);
756 	irq_bit = 1 << intno;
757 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
758 		goto out;
759 	irqbits |= irq_bit;
760 	if (vm86_irqs[intno].sig)
761 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
762 	/*
763 	 * IRQ will be re-enabled when user asks for the irq (whether
764 	 * polling or as a result of the signal)
765 	 */
766 	disable_irq_nosync(intno);
767 	spin_unlock_irqrestore(&irqbits_lock, flags);
768 	return IRQ_HANDLED;
769 
770 out:
771 	spin_unlock_irqrestore(&irqbits_lock, flags);
772 	return IRQ_NONE;
773 }
774 
775 static inline void free_vm86_irq(int irqnumber)
776 {
777 	unsigned long flags;
778 
779 	free_irq(irqnumber, NULL);
780 	vm86_irqs[irqnumber].tsk = NULL;
781 
782 	spin_lock_irqsave(&irqbits_lock, flags);
783 	irqbits &= ~(1 << irqnumber);
784 	spin_unlock_irqrestore(&irqbits_lock, flags);
785 }
786 
787 void release_vm86_irqs(struct task_struct *task)
788 {
789 	int i;
790 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
791 	    if (vm86_irqs[i].tsk == task)
792 		free_vm86_irq(i);
793 }
794 
795 static inline int get_and_reset_irq(int irqnumber)
796 {
797 	int bit;
798 	unsigned long flags;
799 	int ret = 0;
800 
801 	if (invalid_vm86_irq(irqnumber)) return 0;
802 	if (vm86_irqs[irqnumber].tsk != current) return 0;
803 	spin_lock_irqsave(&irqbits_lock, flags);
804 	bit = irqbits & (1 << irqnumber);
805 	irqbits &= ~bit;
806 	if (bit) {
807 		enable_irq(irqnumber);
808 		ret = 1;
809 	}
810 
811 	spin_unlock_irqrestore(&irqbits_lock, flags);
812 	return ret;
813 }
814 
815 
816 static int do_vm86_irq_handling(int subfunction, int irqnumber)
817 {
818 	int ret;
819 	switch (subfunction) {
820 		case VM86_GET_AND_RESET_IRQ: {
821 			return get_and_reset_irq(irqnumber);
822 		}
823 		case VM86_GET_IRQ_BITS: {
824 			return irqbits;
825 		}
826 		case VM86_REQUEST_IRQ: {
827 			int sig = irqnumber >> 8;
828 			int irq = irqnumber & 255;
829 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
830 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
831 			if (invalid_vm86_irq(irq)) return -EPERM;
832 			if (vm86_irqs[irq].tsk) return -EPERM;
833 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
834 			if (ret) return ret;
835 			vm86_irqs[irq].sig = sig;
836 			vm86_irqs[irq].tsk = current;
837 			return irq;
838 		}
839 		case  VM86_FREE_IRQ: {
840 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
841 			if (!vm86_irqs[irqnumber].tsk) return 0;
842 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
843 			free_vm86_irq(irqnumber);
844 			return 0;
845 		}
846 	}
847 	return -EINVAL;
848 }
849 
850