xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6  *                stack - Manfred Spraul <manfred@colorfullife.com>
7  *
8  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9  *                them correctly. Now the emulation will be in a
10  *                consistent state after stackfaults - Kasper Dupont
11  *                <kasperd@daimi.au.dk>
12  *
13  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14  *                <kasperd@daimi.au.dk>
15  *
16  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17  *                caused by Kasper Dupont's changes - Stas Sergeev
18  *
19  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20  *                Kasper Dupont <kasperd@daimi.au.dk>
21  *
22  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23  *                Kasper Dupont <kasperd@daimi.au.dk>
24  *
25  *   9 apr 2002 - Changed stack access macros to jump to a label
26  *                instead of returning to userspace. This simplifies
27  *                do_int, and is needed by handle_vm6_fault. Kasper
28  *                Dupont <kasperd@daimi.au.dk>
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/tlbflush.h>
55 #include <asm/irq.h>
56 #include <asm/traps.h>
57 #include <asm/vm86.h>
58 #include <asm/switch_to.h>
59 
60 /*
61  * Known problems:
62  *
63  * Interrupt handling is not guaranteed:
64  * - a real x86 will disable all interrupts for one instruction
65  *   after a "mov ss,xx" to make stack handling atomic even without
66  *   the 'lss' instruction. We can't guarantee this in v86 mode,
67  *   as the next instruction might result in a page fault or similar.
68  * - a real x86 will have interrupts disabled for one instruction
69  *   past the 'sti' that enables them. We don't bother with all the
70  *   details yet.
71  *
72  * Let's hope these problems do not actually matter for anything.
73  */
74 
75 
76 /*
77  * 8- and 16-bit register defines..
78  */
79 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
80 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
81 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
82 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
83 
84 /*
85  * virtual flags (16 and 32-bit versions)
86  */
87 #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
88 #define VEFLAGS	(current->thread.vm86->veflags)
89 
90 #define set_flags(X, new, mask) \
91 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
92 
93 #define SAFE_MASK	(0xDD5)
94 #define RETURN_MASK	(0xDFF)
95 
96 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
97 {
98 	struct task_struct *tsk = current;
99 	struct vm86plus_struct __user *user;
100 	struct vm86 *vm86 = current->thread.vm86;
101 
102 	/*
103 	 * This gets called from entry.S with interrupts disabled, but
104 	 * from process context. Enable interrupts here, before trying
105 	 * to access user space.
106 	 */
107 	local_irq_enable();
108 
109 	if (!vm86 || !vm86->user_vm86) {
110 		pr_alert("no user_vm86: BAD\n");
111 		do_exit(SIGSEGV);
112 	}
113 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
114 	user = vm86->user_vm86;
115 
116 	if (!user_access_begin(user, vm86->vm86plus.is_vm86pus ?
117 		       sizeof(struct vm86plus_struct) :
118 		       sizeof(struct vm86_struct)))
119 		goto Efault;
120 
121 	unsafe_put_user(regs->pt.bx, &user->regs.ebx, Efault_end);
122 	unsafe_put_user(regs->pt.cx, &user->regs.ecx, Efault_end);
123 	unsafe_put_user(regs->pt.dx, &user->regs.edx, Efault_end);
124 	unsafe_put_user(regs->pt.si, &user->regs.esi, Efault_end);
125 	unsafe_put_user(regs->pt.di, &user->regs.edi, Efault_end);
126 	unsafe_put_user(regs->pt.bp, &user->regs.ebp, Efault_end);
127 	unsafe_put_user(regs->pt.ax, &user->regs.eax, Efault_end);
128 	unsafe_put_user(regs->pt.ip, &user->regs.eip, Efault_end);
129 	unsafe_put_user(regs->pt.cs, &user->regs.cs, Efault_end);
130 	unsafe_put_user(regs->pt.flags, &user->regs.eflags, Efault_end);
131 	unsafe_put_user(regs->pt.sp, &user->regs.esp, Efault_end);
132 	unsafe_put_user(regs->pt.ss, &user->regs.ss, Efault_end);
133 	unsafe_put_user(regs->es, &user->regs.es, Efault_end);
134 	unsafe_put_user(regs->ds, &user->regs.ds, Efault_end);
135 	unsafe_put_user(regs->fs, &user->regs.fs, Efault_end);
136 	unsafe_put_user(regs->gs, &user->regs.gs, Efault_end);
137 	unsafe_put_user(vm86->screen_bitmap, &user->screen_bitmap, Efault_end);
138 
139 	user_access_end();
140 
141 	preempt_disable();
142 	tsk->thread.sp0 = vm86->saved_sp0;
143 	tsk->thread.sysenter_cs = __KERNEL_CS;
144 	update_task_stack(tsk);
145 	refresh_sysenter_cs(&tsk->thread);
146 	vm86->saved_sp0 = 0;
147 	preempt_enable();
148 
149 	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
150 
151 	lazy_load_gs(vm86->regs32.gs);
152 
153 	regs->pt.ax = retval;
154 	return;
155 
156 Efault_end:
157 	user_access_end();
158 Efault:
159 	pr_alert("could not access userspace vm86 info\n");
160 	do_exit(SIGSEGV);
161 }
162 
163 static void mark_screen_rdonly(struct mm_struct *mm)
164 {
165 	struct vm_area_struct *vma;
166 	spinlock_t *ptl;
167 	pgd_t *pgd;
168 	p4d_t *p4d;
169 	pud_t *pud;
170 	pmd_t *pmd;
171 	pte_t *pte;
172 	int i;
173 
174 	mmap_write_lock(mm);
175 	pgd = pgd_offset(mm, 0xA0000);
176 	if (pgd_none_or_clear_bad(pgd))
177 		goto out;
178 	p4d = p4d_offset(pgd, 0xA0000);
179 	if (p4d_none_or_clear_bad(p4d))
180 		goto out;
181 	pud = pud_offset(p4d, 0xA0000);
182 	if (pud_none_or_clear_bad(pud))
183 		goto out;
184 	pmd = pmd_offset(pud, 0xA0000);
185 
186 	if (pmd_trans_huge(*pmd)) {
187 		vma = find_vma(mm, 0xA0000);
188 		split_huge_pmd(vma, pmd, 0xA0000);
189 	}
190 	if (pmd_none_or_clear_bad(pmd))
191 		goto out;
192 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
193 	for (i = 0; i < 32; i++) {
194 		if (pte_present(*pte))
195 			set_pte(pte, pte_wrprotect(*pte));
196 		pte++;
197 	}
198 	pte_unmap_unlock(pte, ptl);
199 out:
200 	mmap_write_unlock(mm);
201 	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, PAGE_SHIFT, false);
202 }
203 
204 
205 
206 static int do_vm86_irq_handling(int subfunction, int irqnumber);
207 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
208 
209 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
210 {
211 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
212 }
213 
214 
215 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
216 {
217 	switch (cmd) {
218 	case VM86_REQUEST_IRQ:
219 	case VM86_FREE_IRQ:
220 	case VM86_GET_IRQ_BITS:
221 	case VM86_GET_AND_RESET_IRQ:
222 		return do_vm86_irq_handling(cmd, (int)arg);
223 	case VM86_PLUS_INSTALL_CHECK:
224 		/*
225 		 * NOTE: on old vm86 stuff this will return the error
226 		 *  from access_ok(), because the subfunction is
227 		 *  interpreted as (invalid) address to vm86_struct.
228 		 *  So the installation check works.
229 		 */
230 		return 0;
231 	}
232 
233 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
234 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
235 }
236 
237 
238 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
239 {
240 	struct task_struct *tsk = current;
241 	struct vm86 *vm86 = tsk->thread.vm86;
242 	struct kernel_vm86_regs vm86regs;
243 	struct pt_regs *regs = current_pt_regs();
244 	unsigned long err = 0;
245 	struct vm86_struct v;
246 
247 	err = security_mmap_addr(0);
248 	if (err) {
249 		/*
250 		 * vm86 cannot virtualize the address space, so vm86 users
251 		 * need to manage the low 1MB themselves using mmap.  Given
252 		 * that BIOS places important data in the first page, vm86
253 		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
254 		 * for example, won't even bother trying to use vm86 if it
255 		 * can't map a page at virtual address 0.
256 		 *
257 		 * To reduce the available kernel attack surface, simply
258 		 * disallow vm86(old) for users who cannot mmap at va 0.
259 		 *
260 		 * The implementation of security_mmap_addr will allow
261 		 * suitably privileged users to map va 0 even if
262 		 * vm.mmap_min_addr is set above 0, and we want this
263 		 * behavior for vm86 as well, as it ensures that legacy
264 		 * tools like vbetool will not fail just because of
265 		 * vm.mmap_min_addr.
266 		 */
267 		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268 			     current->comm, task_pid_nr(current),
269 			     from_kuid_munged(&init_user_ns, current_uid()));
270 		return -EPERM;
271 	}
272 
273 	if (!vm86) {
274 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
275 			return -ENOMEM;
276 		tsk->thread.vm86 = vm86;
277 	}
278 	if (vm86->saved_sp0)
279 		return -EPERM;
280 
281 	if (copy_from_user(&v, user_vm86,
282 			offsetof(struct vm86_struct, int_revectored)))
283 		return -EFAULT;
284 
285 	memset(&vm86regs, 0, sizeof(vm86regs));
286 
287 	vm86regs.pt.bx = v.regs.ebx;
288 	vm86regs.pt.cx = v.regs.ecx;
289 	vm86regs.pt.dx = v.regs.edx;
290 	vm86regs.pt.si = v.regs.esi;
291 	vm86regs.pt.di = v.regs.edi;
292 	vm86regs.pt.bp = v.regs.ebp;
293 	vm86regs.pt.ax = v.regs.eax;
294 	vm86regs.pt.ip = v.regs.eip;
295 	vm86regs.pt.cs = v.regs.cs;
296 	vm86regs.pt.flags = v.regs.eflags;
297 	vm86regs.pt.sp = v.regs.esp;
298 	vm86regs.pt.ss = v.regs.ss;
299 	vm86regs.es = v.regs.es;
300 	vm86regs.ds = v.regs.ds;
301 	vm86regs.fs = v.regs.fs;
302 	vm86regs.gs = v.regs.gs;
303 
304 	vm86->flags = v.flags;
305 	vm86->screen_bitmap = v.screen_bitmap;
306 	vm86->cpu_type = v.cpu_type;
307 
308 	if (copy_from_user(&vm86->int_revectored,
309 			   &user_vm86->int_revectored,
310 			   sizeof(struct revectored_struct)))
311 		return -EFAULT;
312 	if (copy_from_user(&vm86->int21_revectored,
313 			   &user_vm86->int21_revectored,
314 			   sizeof(struct revectored_struct)))
315 		return -EFAULT;
316 	if (plus) {
317 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
318 				   sizeof(struct vm86plus_info_struct)))
319 			return -EFAULT;
320 		vm86->vm86plus.is_vm86pus = 1;
321 	} else
322 		memset(&vm86->vm86plus, 0,
323 		       sizeof(struct vm86plus_info_struct));
324 
325 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
326 	vm86->user_vm86 = user_vm86;
327 
328 /*
329  * The flags register is also special: we cannot trust that the user
330  * has set it up safely, so this makes sure interrupt etc flags are
331  * inherited from protected mode.
332  */
333 	VEFLAGS = vm86regs.pt.flags;
334 	vm86regs.pt.flags &= SAFE_MASK;
335 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
336 	vm86regs.pt.flags |= X86_VM_MASK;
337 
338 	vm86regs.pt.orig_ax = regs->orig_ax;
339 
340 	switch (vm86->cpu_type) {
341 	case CPU_286:
342 		vm86->veflags_mask = 0;
343 		break;
344 	case CPU_386:
345 		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
346 		break;
347 	case CPU_486:
348 		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
349 		break;
350 	default:
351 		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352 		break;
353 	}
354 
355 /*
356  * Save old state
357  */
358 	vm86->saved_sp0 = tsk->thread.sp0;
359 	lazy_save_gs(vm86->regs32.gs);
360 
361 	/* make room for real-mode segments */
362 	preempt_disable();
363 	tsk->thread.sp0 += 16;
364 
365 	if (boot_cpu_has(X86_FEATURE_SEP)) {
366 		tsk->thread.sysenter_cs = 0;
367 		refresh_sysenter_cs(&tsk->thread);
368 	}
369 
370 	update_task_stack(tsk);
371 	preempt_enable();
372 
373 	if (vm86->flags & VM86_SCREEN_BITMAP)
374 		mark_screen_rdonly(tsk->mm);
375 
376 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
377 	return regs->ax;
378 }
379 
380 static inline void set_IF(struct kernel_vm86_regs *regs)
381 {
382 	VEFLAGS |= X86_EFLAGS_VIF;
383 }
384 
385 static inline void clear_IF(struct kernel_vm86_regs *regs)
386 {
387 	VEFLAGS &= ~X86_EFLAGS_VIF;
388 }
389 
390 static inline void clear_TF(struct kernel_vm86_regs *regs)
391 {
392 	regs->pt.flags &= ~X86_EFLAGS_TF;
393 }
394 
395 static inline void clear_AC(struct kernel_vm86_regs *regs)
396 {
397 	regs->pt.flags &= ~X86_EFLAGS_AC;
398 }
399 
400 /*
401  * It is correct to call set_IF(regs) from the set_vflags_*
402  * functions. However someone forgot to call clear_IF(regs)
403  * in the opposite case.
404  * After the command sequence CLI PUSHF STI POPF you should
405  * end up with interrupts disabled, but you ended up with
406  * interrupts enabled.
407  *  ( I was testing my own changes, but the only bug I
408  *    could find was in a function I had not changed. )
409  * [KD]
410  */
411 
412 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
413 {
414 	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
415 	set_flags(regs->pt.flags, flags, SAFE_MASK);
416 	if (flags & X86_EFLAGS_IF)
417 		set_IF(regs);
418 	else
419 		clear_IF(regs);
420 }
421 
422 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
423 {
424 	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
425 	set_flags(regs->pt.flags, flags, SAFE_MASK);
426 	if (flags & X86_EFLAGS_IF)
427 		set_IF(regs);
428 	else
429 		clear_IF(regs);
430 }
431 
432 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
433 {
434 	unsigned long flags = regs->pt.flags & RETURN_MASK;
435 
436 	if (VEFLAGS & X86_EFLAGS_VIF)
437 		flags |= X86_EFLAGS_IF;
438 	flags |= X86_EFLAGS_IOPL;
439 	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
440 }
441 
442 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
443 {
444 	return test_bit(nr, bitmap->__map);
445 }
446 
447 #define val_byte(val, n) (((__u8 *)&val)[n])
448 
449 #define pushb(base, ptr, val, err_label) \
450 	do { \
451 		__u8 __val = val; \
452 		ptr--; \
453 		if (put_user(__val, base + ptr) < 0) \
454 			goto err_label; \
455 	} while (0)
456 
457 #define pushw(base, ptr, val, err_label) \
458 	do { \
459 		__u16 __val = val; \
460 		ptr--; \
461 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
462 			goto err_label; \
463 		ptr--; \
464 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
465 			goto err_label; \
466 	} while (0)
467 
468 #define pushl(base, ptr, val, err_label) \
469 	do { \
470 		__u32 __val = val; \
471 		ptr--; \
472 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
473 			goto err_label; \
474 		ptr--; \
475 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
476 			goto err_label; \
477 		ptr--; \
478 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
479 			goto err_label; \
480 		ptr--; \
481 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
482 			goto err_label; \
483 	} while (0)
484 
485 #define popb(base, ptr, err_label) \
486 	({ \
487 		__u8 __res; \
488 		if (get_user(__res, base + ptr) < 0) \
489 			goto err_label; \
490 		ptr++; \
491 		__res; \
492 	})
493 
494 #define popw(base, ptr, err_label) \
495 	({ \
496 		__u16 __res; \
497 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
498 			goto err_label; \
499 		ptr++; \
500 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
501 			goto err_label; \
502 		ptr++; \
503 		__res; \
504 	})
505 
506 #define popl(base, ptr, err_label) \
507 	({ \
508 		__u32 __res; \
509 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
510 			goto err_label; \
511 		ptr++; \
512 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
513 			goto err_label; \
514 		ptr++; \
515 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
516 			goto err_label; \
517 		ptr++; \
518 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
519 			goto err_label; \
520 		ptr++; \
521 		__res; \
522 	})
523 
524 /* There are so many possible reasons for this function to return
525  * VM86_INTx, so adding another doesn't bother me. We can expect
526  * userspace programs to be able to handle it. (Getting a problem
527  * in userspace is always better than an Oops anyway.) [KD]
528  */
529 static void do_int(struct kernel_vm86_regs *regs, int i,
530     unsigned char __user *ssp, unsigned short sp)
531 {
532 	unsigned long __user *intr_ptr;
533 	unsigned long segoffs;
534 	struct vm86 *vm86 = current->thread.vm86;
535 
536 	if (regs->pt.cs == BIOSSEG)
537 		goto cannot_handle;
538 	if (is_revectored(i, &vm86->int_revectored))
539 		goto cannot_handle;
540 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
541 		goto cannot_handle;
542 	intr_ptr = (unsigned long __user *) (i << 2);
543 	if (get_user(segoffs, intr_ptr))
544 		goto cannot_handle;
545 	if ((segoffs >> 16) == BIOSSEG)
546 		goto cannot_handle;
547 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
548 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
549 	pushw(ssp, sp, IP(regs), cannot_handle);
550 	regs->pt.cs = segoffs >> 16;
551 	SP(regs) -= 6;
552 	IP(regs) = segoffs & 0xffff;
553 	clear_TF(regs);
554 	clear_IF(regs);
555 	clear_AC(regs);
556 	return;
557 
558 cannot_handle:
559 	save_v86_state(regs, VM86_INTx + (i << 8));
560 }
561 
562 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
563 {
564 	struct vm86 *vm86 = current->thread.vm86;
565 
566 	if (vm86->vm86plus.is_vm86pus) {
567 		if ((trapno == 3) || (trapno == 1)) {
568 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
569 			return 0;
570 		}
571 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
572 		return 0;
573 	}
574 	if (trapno != 1)
575 		return 1; /* we let this handle by the calling routine */
576 	current->thread.trap_nr = trapno;
577 	current->thread.error_code = error_code;
578 	force_sig(SIGTRAP);
579 	return 0;
580 }
581 
582 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
583 {
584 	unsigned char opcode;
585 	unsigned char __user *csp;
586 	unsigned char __user *ssp;
587 	unsigned short ip, sp, orig_flags;
588 	int data32, pref_done;
589 	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
590 
591 #define CHECK_IF_IN_TRAP \
592 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
593 		newflags |= X86_EFLAGS_TF
594 
595 	orig_flags = *(unsigned short *)&regs->pt.flags;
596 
597 	csp = (unsigned char __user *) (regs->pt.cs << 4);
598 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
599 	sp = SP(regs);
600 	ip = IP(regs);
601 
602 	data32 = 0;
603 	pref_done = 0;
604 	do {
605 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
606 		case 0x66:      /* 32-bit data */     data32 = 1; break;
607 		case 0x67:      /* 32-bit address */  break;
608 		case 0x2e:      /* CS */              break;
609 		case 0x3e:      /* DS */              break;
610 		case 0x26:      /* ES */              break;
611 		case 0x36:      /* SS */              break;
612 		case 0x65:      /* GS */              break;
613 		case 0x64:      /* FS */              break;
614 		case 0xf2:      /* repnz */       break;
615 		case 0xf3:      /* rep */             break;
616 		default: pref_done = 1;
617 		}
618 	} while (!pref_done);
619 
620 	switch (opcode) {
621 
622 	/* pushf */
623 	case 0x9c:
624 		if (data32) {
625 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
626 			SP(regs) -= 4;
627 		} else {
628 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
629 			SP(regs) -= 2;
630 		}
631 		IP(regs) = ip;
632 		goto vm86_fault_return;
633 
634 	/* popf */
635 	case 0x9d:
636 		{
637 		unsigned long newflags;
638 		if (data32) {
639 			newflags = popl(ssp, sp, simulate_sigsegv);
640 			SP(regs) += 4;
641 		} else {
642 			newflags = popw(ssp, sp, simulate_sigsegv);
643 			SP(regs) += 2;
644 		}
645 		IP(regs) = ip;
646 		CHECK_IF_IN_TRAP;
647 		if (data32)
648 			set_vflags_long(newflags, regs);
649 		else
650 			set_vflags_short(newflags, regs);
651 
652 		goto check_vip;
653 		}
654 
655 	/* int xx */
656 	case 0xcd: {
657 		int intno = popb(csp, ip, simulate_sigsegv);
658 		IP(regs) = ip;
659 		if (vmpi->vm86dbg_active) {
660 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
661 				save_v86_state(regs, VM86_INTx + (intno << 8));
662 				return;
663 			}
664 		}
665 		do_int(regs, intno, ssp, sp);
666 		return;
667 	}
668 
669 	/* iret */
670 	case 0xcf:
671 		{
672 		unsigned long newip;
673 		unsigned long newcs;
674 		unsigned long newflags;
675 		if (data32) {
676 			newip = popl(ssp, sp, simulate_sigsegv);
677 			newcs = popl(ssp, sp, simulate_sigsegv);
678 			newflags = popl(ssp, sp, simulate_sigsegv);
679 			SP(regs) += 12;
680 		} else {
681 			newip = popw(ssp, sp, simulate_sigsegv);
682 			newcs = popw(ssp, sp, simulate_sigsegv);
683 			newflags = popw(ssp, sp, simulate_sigsegv);
684 			SP(regs) += 6;
685 		}
686 		IP(regs) = newip;
687 		regs->pt.cs = newcs;
688 		CHECK_IF_IN_TRAP;
689 		if (data32) {
690 			set_vflags_long(newflags, regs);
691 		} else {
692 			set_vflags_short(newflags, regs);
693 		}
694 		goto check_vip;
695 		}
696 
697 	/* cli */
698 	case 0xfa:
699 		IP(regs) = ip;
700 		clear_IF(regs);
701 		goto vm86_fault_return;
702 
703 	/* sti */
704 	/*
705 	 * Damn. This is incorrect: the 'sti' instruction should actually
706 	 * enable interrupts after the /next/ instruction. Not good.
707 	 *
708 	 * Probably needs some horsing around with the TF flag. Aiee..
709 	 */
710 	case 0xfb:
711 		IP(regs) = ip;
712 		set_IF(regs);
713 		goto check_vip;
714 
715 	default:
716 		save_v86_state(regs, VM86_UNKNOWN);
717 	}
718 
719 	return;
720 
721 check_vip:
722 	if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
723 	    (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
724 		save_v86_state(regs, VM86_STI);
725 		return;
726 	}
727 
728 vm86_fault_return:
729 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
730 		save_v86_state(regs, VM86_PICRETURN);
731 		return;
732 	}
733 	if (orig_flags & X86_EFLAGS_TF)
734 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
735 	return;
736 
737 simulate_sigsegv:
738 	/* FIXME: After a long discussion with Stas we finally
739 	 *        agreed, that this is wrong. Here we should
740 	 *        really send a SIGSEGV to the user program.
741 	 *        But how do we create the correct context? We
742 	 *        are inside a general protection fault handler
743 	 *        and has just returned from a page fault handler.
744 	 *        The correct context for the signal handler
745 	 *        should be a mixture of the two, but how do we
746 	 *        get the information? [KD]
747 	 */
748 	save_v86_state(regs, VM86_UNKNOWN);
749 }
750 
751 /* ---------------- vm86 special IRQ passing stuff ----------------- */
752 
753 #define VM86_IRQNAME		"vm86irq"
754 
755 static struct vm86_irqs {
756 	struct task_struct *tsk;
757 	int sig;
758 } vm86_irqs[16];
759 
760 static DEFINE_SPINLOCK(irqbits_lock);
761 static int irqbits;
762 
763 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
764 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
765 	| (1 << SIGUNUSED))
766 
767 static irqreturn_t irq_handler(int intno, void *dev_id)
768 {
769 	int irq_bit;
770 	unsigned long flags;
771 
772 	spin_lock_irqsave(&irqbits_lock, flags);
773 	irq_bit = 1 << intno;
774 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
775 		goto out;
776 	irqbits |= irq_bit;
777 	if (vm86_irqs[intno].sig)
778 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
779 	/*
780 	 * IRQ will be re-enabled when user asks for the irq (whether
781 	 * polling or as a result of the signal)
782 	 */
783 	disable_irq_nosync(intno);
784 	spin_unlock_irqrestore(&irqbits_lock, flags);
785 	return IRQ_HANDLED;
786 
787 out:
788 	spin_unlock_irqrestore(&irqbits_lock, flags);
789 	return IRQ_NONE;
790 }
791 
792 static inline void free_vm86_irq(int irqnumber)
793 {
794 	unsigned long flags;
795 
796 	free_irq(irqnumber, NULL);
797 	vm86_irqs[irqnumber].tsk = NULL;
798 
799 	spin_lock_irqsave(&irqbits_lock, flags);
800 	irqbits &= ~(1 << irqnumber);
801 	spin_unlock_irqrestore(&irqbits_lock, flags);
802 }
803 
804 void release_vm86_irqs(struct task_struct *task)
805 {
806 	int i;
807 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
808 	    if (vm86_irqs[i].tsk == task)
809 		free_vm86_irq(i);
810 }
811 
812 static inline int get_and_reset_irq(int irqnumber)
813 {
814 	int bit;
815 	unsigned long flags;
816 	int ret = 0;
817 
818 	if (invalid_vm86_irq(irqnumber)) return 0;
819 	if (vm86_irqs[irqnumber].tsk != current) return 0;
820 	spin_lock_irqsave(&irqbits_lock, flags);
821 	bit = irqbits & (1 << irqnumber);
822 	irqbits &= ~bit;
823 	if (bit) {
824 		enable_irq(irqnumber);
825 		ret = 1;
826 	}
827 
828 	spin_unlock_irqrestore(&irqbits_lock, flags);
829 	return ret;
830 }
831 
832 
833 static int do_vm86_irq_handling(int subfunction, int irqnumber)
834 {
835 	int ret;
836 	switch (subfunction) {
837 		case VM86_GET_AND_RESET_IRQ: {
838 			return get_and_reset_irq(irqnumber);
839 		}
840 		case VM86_GET_IRQ_BITS: {
841 			return irqbits;
842 		}
843 		case VM86_REQUEST_IRQ: {
844 			int sig = irqnumber >> 8;
845 			int irq = irqnumber & 255;
846 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
847 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
848 			if (invalid_vm86_irq(irq)) return -EPERM;
849 			if (vm86_irqs[irq].tsk) return -EPERM;
850 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
851 			if (ret) return ret;
852 			vm86_irqs[irq].sig = sig;
853 			vm86_irqs[irq].tsk = current;
854 			return irq;
855 		}
856 		case  VM86_FREE_IRQ: {
857 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
858 			if (!vm86_irqs[irqnumber].tsk) return 0;
859 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
860 			free_vm86_irq(irqnumber);
861 			return 0;
862 		}
863 	}
864 	return -EINVAL;
865 }
866 
867