xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision c63aad69)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6  *                stack - Manfred Spraul <manfred@colorfullife.com>
7  *
8  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9  *                them correctly. Now the emulation will be in a
10  *                consistent state after stackfaults - Kasper Dupont
11  *                <kasperd@daimi.au.dk>
12  *
13  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14  *                <kasperd@daimi.au.dk>
15  *
16  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17  *                caused by Kasper Dupont's changes - Stas Sergeev
18  *
19  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20  *                Kasper Dupont <kasperd@daimi.au.dk>
21  *
22  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23  *                Kasper Dupont <kasperd@daimi.au.dk>
24  *
25  *   9 apr 2002 - Changed stack access macros to jump to a label
26  *                instead of returning to userspace. This simplifies
27  *                do_int, and is needed by handle_vm6_fault. Kasper
28  *                Dupont <kasperd@daimi.au.dk>
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/tlbflush.h>
55 #include <asm/irq.h>
56 #include <asm/traps.h>
57 #include <asm/vm86.h>
58 #include <asm/switch_to.h>
59 
60 /*
61  * Known problems:
62  *
63  * Interrupt handling is not guaranteed:
64  * - a real x86 will disable all interrupts for one instruction
65  *   after a "mov ss,xx" to make stack handling atomic even without
66  *   the 'lss' instruction. We can't guarantee this in v86 mode,
67  *   as the next instruction might result in a page fault or similar.
68  * - a real x86 will have interrupts disabled for one instruction
69  *   past the 'sti' that enables them. We don't bother with all the
70  *   details yet.
71  *
72  * Let's hope these problems do not actually matter for anything.
73  */
74 
75 
76 /*
77  * 8- and 16-bit register defines..
78  */
79 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
80 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
81 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
82 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
83 
84 /*
85  * virtual flags (16 and 32-bit versions)
86  */
87 #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
88 #define VEFLAGS	(current->thread.vm86->veflags)
89 
90 #define set_flags(X, new, mask) \
91 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
92 
93 #define SAFE_MASK	(0xDD5)
94 #define RETURN_MASK	(0xDFF)
95 
96 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
97 {
98 	struct task_struct *tsk = current;
99 	struct vm86plus_struct __user *user;
100 	struct vm86 *vm86 = current->thread.vm86;
101 	long err = 0;
102 
103 	/*
104 	 * This gets called from entry.S with interrupts disabled, but
105 	 * from process context. Enable interrupts here, before trying
106 	 * to access user space.
107 	 */
108 	local_irq_enable();
109 
110 	if (!vm86 || !vm86->user_vm86) {
111 		pr_alert("no user_vm86: BAD\n");
112 		do_exit(SIGSEGV);
113 	}
114 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
115 	user = vm86->user_vm86;
116 
117 	if (!access_ok(user, vm86->vm86plus.is_vm86pus ?
118 		       sizeof(struct vm86plus_struct) :
119 		       sizeof(struct vm86_struct))) {
120 		pr_alert("could not access userspace vm86 info\n");
121 		do_exit(SIGSEGV);
122 	}
123 
124 	put_user_try {
125 		put_user_ex(regs->pt.bx, &user->regs.ebx);
126 		put_user_ex(regs->pt.cx, &user->regs.ecx);
127 		put_user_ex(regs->pt.dx, &user->regs.edx);
128 		put_user_ex(regs->pt.si, &user->regs.esi);
129 		put_user_ex(regs->pt.di, &user->regs.edi);
130 		put_user_ex(regs->pt.bp, &user->regs.ebp);
131 		put_user_ex(regs->pt.ax, &user->regs.eax);
132 		put_user_ex(regs->pt.ip, &user->regs.eip);
133 		put_user_ex(regs->pt.cs, &user->regs.cs);
134 		put_user_ex(regs->pt.flags, &user->regs.eflags);
135 		put_user_ex(regs->pt.sp, &user->regs.esp);
136 		put_user_ex(regs->pt.ss, &user->regs.ss);
137 		put_user_ex(regs->es, &user->regs.es);
138 		put_user_ex(regs->ds, &user->regs.ds);
139 		put_user_ex(regs->fs, &user->regs.fs);
140 		put_user_ex(regs->gs, &user->regs.gs);
141 
142 		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
143 	} put_user_catch(err);
144 	if (err) {
145 		pr_alert("could not access userspace vm86 info\n");
146 		do_exit(SIGSEGV);
147 	}
148 
149 	preempt_disable();
150 	tsk->thread.sp0 = vm86->saved_sp0;
151 	tsk->thread.sysenter_cs = __KERNEL_CS;
152 	update_task_stack(tsk);
153 	refresh_sysenter_cs(&tsk->thread);
154 	vm86->saved_sp0 = 0;
155 	preempt_enable();
156 
157 	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
158 
159 	lazy_load_gs(vm86->regs32.gs);
160 
161 	regs->pt.ax = retval;
162 }
163 
164 static void mark_screen_rdonly(struct mm_struct *mm)
165 {
166 	struct vm_area_struct *vma;
167 	spinlock_t *ptl;
168 	pgd_t *pgd;
169 	p4d_t *p4d;
170 	pud_t *pud;
171 	pmd_t *pmd;
172 	pte_t *pte;
173 	int i;
174 
175 	down_write(&mm->mmap_sem);
176 	pgd = pgd_offset(mm, 0xA0000);
177 	if (pgd_none_or_clear_bad(pgd))
178 		goto out;
179 	p4d = p4d_offset(pgd, 0xA0000);
180 	if (p4d_none_or_clear_bad(p4d))
181 		goto out;
182 	pud = pud_offset(p4d, 0xA0000);
183 	if (pud_none_or_clear_bad(pud))
184 		goto out;
185 	pmd = pmd_offset(pud, 0xA0000);
186 
187 	if (pmd_trans_huge(*pmd)) {
188 		vma = find_vma(mm, 0xA0000);
189 		split_huge_pmd(vma, pmd, 0xA0000);
190 	}
191 	if (pmd_none_or_clear_bad(pmd))
192 		goto out;
193 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
194 	for (i = 0; i < 32; i++) {
195 		if (pte_present(*pte))
196 			set_pte(pte, pte_wrprotect(*pte));
197 		pte++;
198 	}
199 	pte_unmap_unlock(pte, ptl);
200 out:
201 	up_write(&mm->mmap_sem);
202 	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, PAGE_SHIFT, false);
203 }
204 
205 
206 
207 static int do_vm86_irq_handling(int subfunction, int irqnumber);
208 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
209 
210 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
211 {
212 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
213 }
214 
215 
216 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
217 {
218 	switch (cmd) {
219 	case VM86_REQUEST_IRQ:
220 	case VM86_FREE_IRQ:
221 	case VM86_GET_IRQ_BITS:
222 	case VM86_GET_AND_RESET_IRQ:
223 		return do_vm86_irq_handling(cmd, (int)arg);
224 	case VM86_PLUS_INSTALL_CHECK:
225 		/*
226 		 * NOTE: on old vm86 stuff this will return the error
227 		 *  from access_ok(), because the subfunction is
228 		 *  interpreted as (invalid) address to vm86_struct.
229 		 *  So the installation check works.
230 		 */
231 		return 0;
232 	}
233 
234 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
235 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
236 }
237 
238 
239 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
240 {
241 	struct task_struct *tsk = current;
242 	struct vm86 *vm86 = tsk->thread.vm86;
243 	struct kernel_vm86_regs vm86regs;
244 	struct pt_regs *regs = current_pt_regs();
245 	unsigned long err = 0;
246 	struct vm86_struct v;
247 
248 	err = security_mmap_addr(0);
249 	if (err) {
250 		/*
251 		 * vm86 cannot virtualize the address space, so vm86 users
252 		 * need to manage the low 1MB themselves using mmap.  Given
253 		 * that BIOS places important data in the first page, vm86
254 		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
255 		 * for example, won't even bother trying to use vm86 if it
256 		 * can't map a page at virtual address 0.
257 		 *
258 		 * To reduce the available kernel attack surface, simply
259 		 * disallow vm86(old) for users who cannot mmap at va 0.
260 		 *
261 		 * The implementation of security_mmap_addr will allow
262 		 * suitably privileged users to map va 0 even if
263 		 * vm.mmap_min_addr is set above 0, and we want this
264 		 * behavior for vm86 as well, as it ensures that legacy
265 		 * tools like vbetool will not fail just because of
266 		 * vm.mmap_min_addr.
267 		 */
268 		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
269 			     current->comm, task_pid_nr(current),
270 			     from_kuid_munged(&init_user_ns, current_uid()));
271 		return -EPERM;
272 	}
273 
274 	if (!vm86) {
275 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
276 			return -ENOMEM;
277 		tsk->thread.vm86 = vm86;
278 	}
279 	if (vm86->saved_sp0)
280 		return -EPERM;
281 
282 	if (copy_from_user(&v, user_vm86,
283 			offsetof(struct vm86_struct, int_revectored)))
284 		return -EFAULT;
285 
286 	memset(&vm86regs, 0, sizeof(vm86regs));
287 
288 	vm86regs.pt.bx = v.regs.ebx;
289 	vm86regs.pt.cx = v.regs.ecx;
290 	vm86regs.pt.dx = v.regs.edx;
291 	vm86regs.pt.si = v.regs.esi;
292 	vm86regs.pt.di = v.regs.edi;
293 	vm86regs.pt.bp = v.regs.ebp;
294 	vm86regs.pt.ax = v.regs.eax;
295 	vm86regs.pt.ip = v.regs.eip;
296 	vm86regs.pt.cs = v.regs.cs;
297 	vm86regs.pt.flags = v.regs.eflags;
298 	vm86regs.pt.sp = v.regs.esp;
299 	vm86regs.pt.ss = v.regs.ss;
300 	vm86regs.es = v.regs.es;
301 	vm86regs.ds = v.regs.ds;
302 	vm86regs.fs = v.regs.fs;
303 	vm86regs.gs = v.regs.gs;
304 
305 	vm86->flags = v.flags;
306 	vm86->screen_bitmap = v.screen_bitmap;
307 	vm86->cpu_type = v.cpu_type;
308 
309 	if (copy_from_user(&vm86->int_revectored,
310 			   &user_vm86->int_revectored,
311 			   sizeof(struct revectored_struct)))
312 		return -EFAULT;
313 	if (copy_from_user(&vm86->int21_revectored,
314 			   &user_vm86->int21_revectored,
315 			   sizeof(struct revectored_struct)))
316 		return -EFAULT;
317 	if (plus) {
318 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
319 				   sizeof(struct vm86plus_info_struct)))
320 			return -EFAULT;
321 		vm86->vm86plus.is_vm86pus = 1;
322 	} else
323 		memset(&vm86->vm86plus, 0,
324 		       sizeof(struct vm86plus_info_struct));
325 
326 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
327 	vm86->user_vm86 = user_vm86;
328 
329 /*
330  * The flags register is also special: we cannot trust that the user
331  * has set it up safely, so this makes sure interrupt etc flags are
332  * inherited from protected mode.
333  */
334 	VEFLAGS = vm86regs.pt.flags;
335 	vm86regs.pt.flags &= SAFE_MASK;
336 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
337 	vm86regs.pt.flags |= X86_VM_MASK;
338 
339 	vm86regs.pt.orig_ax = regs->orig_ax;
340 
341 	switch (vm86->cpu_type) {
342 	case CPU_286:
343 		vm86->veflags_mask = 0;
344 		break;
345 	case CPU_386:
346 		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
347 		break;
348 	case CPU_486:
349 		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
350 		break;
351 	default:
352 		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
353 		break;
354 	}
355 
356 /*
357  * Save old state
358  */
359 	vm86->saved_sp0 = tsk->thread.sp0;
360 	lazy_save_gs(vm86->regs32.gs);
361 
362 	/* make room for real-mode segments */
363 	preempt_disable();
364 	tsk->thread.sp0 += 16;
365 
366 	if (boot_cpu_has(X86_FEATURE_SEP)) {
367 		tsk->thread.sysenter_cs = 0;
368 		refresh_sysenter_cs(&tsk->thread);
369 	}
370 
371 	update_task_stack(tsk);
372 	preempt_enable();
373 
374 	if (vm86->flags & VM86_SCREEN_BITMAP)
375 		mark_screen_rdonly(tsk->mm);
376 
377 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
378 	return regs->ax;
379 }
380 
381 static inline void set_IF(struct kernel_vm86_regs *regs)
382 {
383 	VEFLAGS |= X86_EFLAGS_VIF;
384 }
385 
386 static inline void clear_IF(struct kernel_vm86_regs *regs)
387 {
388 	VEFLAGS &= ~X86_EFLAGS_VIF;
389 }
390 
391 static inline void clear_TF(struct kernel_vm86_regs *regs)
392 {
393 	regs->pt.flags &= ~X86_EFLAGS_TF;
394 }
395 
396 static inline void clear_AC(struct kernel_vm86_regs *regs)
397 {
398 	regs->pt.flags &= ~X86_EFLAGS_AC;
399 }
400 
401 /*
402  * It is correct to call set_IF(regs) from the set_vflags_*
403  * functions. However someone forgot to call clear_IF(regs)
404  * in the opposite case.
405  * After the command sequence CLI PUSHF STI POPF you should
406  * end up with interrupts disabled, but you ended up with
407  * interrupts enabled.
408  *  ( I was testing my own changes, but the only bug I
409  *    could find was in a function I had not changed. )
410  * [KD]
411  */
412 
413 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
414 {
415 	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
416 	set_flags(regs->pt.flags, flags, SAFE_MASK);
417 	if (flags & X86_EFLAGS_IF)
418 		set_IF(regs);
419 	else
420 		clear_IF(regs);
421 }
422 
423 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
424 {
425 	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
426 	set_flags(regs->pt.flags, flags, SAFE_MASK);
427 	if (flags & X86_EFLAGS_IF)
428 		set_IF(regs);
429 	else
430 		clear_IF(regs);
431 }
432 
433 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
434 {
435 	unsigned long flags = regs->pt.flags & RETURN_MASK;
436 
437 	if (VEFLAGS & X86_EFLAGS_VIF)
438 		flags |= X86_EFLAGS_IF;
439 	flags |= X86_EFLAGS_IOPL;
440 	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
441 }
442 
443 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
444 {
445 	return test_bit(nr, bitmap->__map);
446 }
447 
448 #define val_byte(val, n) (((__u8 *)&val)[n])
449 
450 #define pushb(base, ptr, val, err_label) \
451 	do { \
452 		__u8 __val = val; \
453 		ptr--; \
454 		if (put_user(__val, base + ptr) < 0) \
455 			goto err_label; \
456 	} while (0)
457 
458 #define pushw(base, ptr, val, err_label) \
459 	do { \
460 		__u16 __val = val; \
461 		ptr--; \
462 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
463 			goto err_label; \
464 		ptr--; \
465 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
466 			goto err_label; \
467 	} while (0)
468 
469 #define pushl(base, ptr, val, err_label) \
470 	do { \
471 		__u32 __val = val; \
472 		ptr--; \
473 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
474 			goto err_label; \
475 		ptr--; \
476 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
477 			goto err_label; \
478 		ptr--; \
479 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
480 			goto err_label; \
481 		ptr--; \
482 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
483 			goto err_label; \
484 	} while (0)
485 
486 #define popb(base, ptr, err_label) \
487 	({ \
488 		__u8 __res; \
489 		if (get_user(__res, base + ptr) < 0) \
490 			goto err_label; \
491 		ptr++; \
492 		__res; \
493 	})
494 
495 #define popw(base, ptr, err_label) \
496 	({ \
497 		__u16 __res; \
498 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
499 			goto err_label; \
500 		ptr++; \
501 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
502 			goto err_label; \
503 		ptr++; \
504 		__res; \
505 	})
506 
507 #define popl(base, ptr, err_label) \
508 	({ \
509 		__u32 __res; \
510 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
511 			goto err_label; \
512 		ptr++; \
513 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
514 			goto err_label; \
515 		ptr++; \
516 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
517 			goto err_label; \
518 		ptr++; \
519 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
520 			goto err_label; \
521 		ptr++; \
522 		__res; \
523 	})
524 
525 /* There are so many possible reasons for this function to return
526  * VM86_INTx, so adding another doesn't bother me. We can expect
527  * userspace programs to be able to handle it. (Getting a problem
528  * in userspace is always better than an Oops anyway.) [KD]
529  */
530 static void do_int(struct kernel_vm86_regs *regs, int i,
531     unsigned char __user *ssp, unsigned short sp)
532 {
533 	unsigned long __user *intr_ptr;
534 	unsigned long segoffs;
535 	struct vm86 *vm86 = current->thread.vm86;
536 
537 	if (regs->pt.cs == BIOSSEG)
538 		goto cannot_handle;
539 	if (is_revectored(i, &vm86->int_revectored))
540 		goto cannot_handle;
541 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
542 		goto cannot_handle;
543 	intr_ptr = (unsigned long __user *) (i << 2);
544 	if (get_user(segoffs, intr_ptr))
545 		goto cannot_handle;
546 	if ((segoffs >> 16) == BIOSSEG)
547 		goto cannot_handle;
548 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
549 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
550 	pushw(ssp, sp, IP(regs), cannot_handle);
551 	regs->pt.cs = segoffs >> 16;
552 	SP(regs) -= 6;
553 	IP(regs) = segoffs & 0xffff;
554 	clear_TF(regs);
555 	clear_IF(regs);
556 	clear_AC(regs);
557 	return;
558 
559 cannot_handle:
560 	save_v86_state(regs, VM86_INTx + (i << 8));
561 }
562 
563 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
564 {
565 	struct vm86 *vm86 = current->thread.vm86;
566 
567 	if (vm86->vm86plus.is_vm86pus) {
568 		if ((trapno == 3) || (trapno == 1)) {
569 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
570 			return 0;
571 		}
572 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
573 		return 0;
574 	}
575 	if (trapno != 1)
576 		return 1; /* we let this handle by the calling routine */
577 	current->thread.trap_nr = trapno;
578 	current->thread.error_code = error_code;
579 	force_sig(SIGTRAP);
580 	return 0;
581 }
582 
583 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
584 {
585 	unsigned char opcode;
586 	unsigned char __user *csp;
587 	unsigned char __user *ssp;
588 	unsigned short ip, sp, orig_flags;
589 	int data32, pref_done;
590 	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
591 
592 #define CHECK_IF_IN_TRAP \
593 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
594 		newflags |= X86_EFLAGS_TF
595 
596 	orig_flags = *(unsigned short *)&regs->pt.flags;
597 
598 	csp = (unsigned char __user *) (regs->pt.cs << 4);
599 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
600 	sp = SP(regs);
601 	ip = IP(regs);
602 
603 	data32 = 0;
604 	pref_done = 0;
605 	do {
606 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
607 		case 0x66:      /* 32-bit data */     data32 = 1; break;
608 		case 0x67:      /* 32-bit address */  break;
609 		case 0x2e:      /* CS */              break;
610 		case 0x3e:      /* DS */              break;
611 		case 0x26:      /* ES */              break;
612 		case 0x36:      /* SS */              break;
613 		case 0x65:      /* GS */              break;
614 		case 0x64:      /* FS */              break;
615 		case 0xf2:      /* repnz */       break;
616 		case 0xf3:      /* rep */             break;
617 		default: pref_done = 1;
618 		}
619 	} while (!pref_done);
620 
621 	switch (opcode) {
622 
623 	/* pushf */
624 	case 0x9c:
625 		if (data32) {
626 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
627 			SP(regs) -= 4;
628 		} else {
629 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
630 			SP(regs) -= 2;
631 		}
632 		IP(regs) = ip;
633 		goto vm86_fault_return;
634 
635 	/* popf */
636 	case 0x9d:
637 		{
638 		unsigned long newflags;
639 		if (data32) {
640 			newflags = popl(ssp, sp, simulate_sigsegv);
641 			SP(regs) += 4;
642 		} else {
643 			newflags = popw(ssp, sp, simulate_sigsegv);
644 			SP(regs) += 2;
645 		}
646 		IP(regs) = ip;
647 		CHECK_IF_IN_TRAP;
648 		if (data32)
649 			set_vflags_long(newflags, regs);
650 		else
651 			set_vflags_short(newflags, regs);
652 
653 		goto check_vip;
654 		}
655 
656 	/* int xx */
657 	case 0xcd: {
658 		int intno = popb(csp, ip, simulate_sigsegv);
659 		IP(regs) = ip;
660 		if (vmpi->vm86dbg_active) {
661 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
662 				save_v86_state(regs, VM86_INTx + (intno << 8));
663 				return;
664 			}
665 		}
666 		do_int(regs, intno, ssp, sp);
667 		return;
668 	}
669 
670 	/* iret */
671 	case 0xcf:
672 		{
673 		unsigned long newip;
674 		unsigned long newcs;
675 		unsigned long newflags;
676 		if (data32) {
677 			newip = popl(ssp, sp, simulate_sigsegv);
678 			newcs = popl(ssp, sp, simulate_sigsegv);
679 			newflags = popl(ssp, sp, simulate_sigsegv);
680 			SP(regs) += 12;
681 		} else {
682 			newip = popw(ssp, sp, simulate_sigsegv);
683 			newcs = popw(ssp, sp, simulate_sigsegv);
684 			newflags = popw(ssp, sp, simulate_sigsegv);
685 			SP(regs) += 6;
686 		}
687 		IP(regs) = newip;
688 		regs->pt.cs = newcs;
689 		CHECK_IF_IN_TRAP;
690 		if (data32) {
691 			set_vflags_long(newflags, regs);
692 		} else {
693 			set_vflags_short(newflags, regs);
694 		}
695 		goto check_vip;
696 		}
697 
698 	/* cli */
699 	case 0xfa:
700 		IP(regs) = ip;
701 		clear_IF(regs);
702 		goto vm86_fault_return;
703 
704 	/* sti */
705 	/*
706 	 * Damn. This is incorrect: the 'sti' instruction should actually
707 	 * enable interrupts after the /next/ instruction. Not good.
708 	 *
709 	 * Probably needs some horsing around with the TF flag. Aiee..
710 	 */
711 	case 0xfb:
712 		IP(regs) = ip;
713 		set_IF(regs);
714 		goto check_vip;
715 
716 	default:
717 		save_v86_state(regs, VM86_UNKNOWN);
718 	}
719 
720 	return;
721 
722 check_vip:
723 	if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
724 	    (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
725 		save_v86_state(regs, VM86_STI);
726 		return;
727 	}
728 
729 vm86_fault_return:
730 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
731 		save_v86_state(regs, VM86_PICRETURN);
732 		return;
733 	}
734 	if (orig_flags & X86_EFLAGS_TF)
735 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
736 	return;
737 
738 simulate_sigsegv:
739 	/* FIXME: After a long discussion with Stas we finally
740 	 *        agreed, that this is wrong. Here we should
741 	 *        really send a SIGSEGV to the user program.
742 	 *        But how do we create the correct context? We
743 	 *        are inside a general protection fault handler
744 	 *        and has just returned from a page fault handler.
745 	 *        The correct context for the signal handler
746 	 *        should be a mixture of the two, but how do we
747 	 *        get the information? [KD]
748 	 */
749 	save_v86_state(regs, VM86_UNKNOWN);
750 }
751 
752 /* ---------------- vm86 special IRQ passing stuff ----------------- */
753 
754 #define VM86_IRQNAME		"vm86irq"
755 
756 static struct vm86_irqs {
757 	struct task_struct *tsk;
758 	int sig;
759 } vm86_irqs[16];
760 
761 static DEFINE_SPINLOCK(irqbits_lock);
762 static int irqbits;
763 
764 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
765 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
766 	| (1 << SIGUNUSED))
767 
768 static irqreturn_t irq_handler(int intno, void *dev_id)
769 {
770 	int irq_bit;
771 	unsigned long flags;
772 
773 	spin_lock_irqsave(&irqbits_lock, flags);
774 	irq_bit = 1 << intno;
775 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
776 		goto out;
777 	irqbits |= irq_bit;
778 	if (vm86_irqs[intno].sig)
779 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
780 	/*
781 	 * IRQ will be re-enabled when user asks for the irq (whether
782 	 * polling or as a result of the signal)
783 	 */
784 	disable_irq_nosync(intno);
785 	spin_unlock_irqrestore(&irqbits_lock, flags);
786 	return IRQ_HANDLED;
787 
788 out:
789 	spin_unlock_irqrestore(&irqbits_lock, flags);
790 	return IRQ_NONE;
791 }
792 
793 static inline void free_vm86_irq(int irqnumber)
794 {
795 	unsigned long flags;
796 
797 	free_irq(irqnumber, NULL);
798 	vm86_irqs[irqnumber].tsk = NULL;
799 
800 	spin_lock_irqsave(&irqbits_lock, flags);
801 	irqbits &= ~(1 << irqnumber);
802 	spin_unlock_irqrestore(&irqbits_lock, flags);
803 }
804 
805 void release_vm86_irqs(struct task_struct *task)
806 {
807 	int i;
808 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
809 	    if (vm86_irqs[i].tsk == task)
810 		free_vm86_irq(i);
811 }
812 
813 static inline int get_and_reset_irq(int irqnumber)
814 {
815 	int bit;
816 	unsigned long flags;
817 	int ret = 0;
818 
819 	if (invalid_vm86_irq(irqnumber)) return 0;
820 	if (vm86_irqs[irqnumber].tsk != current) return 0;
821 	spin_lock_irqsave(&irqbits_lock, flags);
822 	bit = irqbits & (1 << irqnumber);
823 	irqbits &= ~bit;
824 	if (bit) {
825 		enable_irq(irqnumber);
826 		ret = 1;
827 	}
828 
829 	spin_unlock_irqrestore(&irqbits_lock, flags);
830 	return ret;
831 }
832 
833 
834 static int do_vm86_irq_handling(int subfunction, int irqnumber)
835 {
836 	int ret;
837 	switch (subfunction) {
838 		case VM86_GET_AND_RESET_IRQ: {
839 			return get_and_reset_irq(irqnumber);
840 		}
841 		case VM86_GET_IRQ_BITS: {
842 			return irqbits;
843 		}
844 		case VM86_REQUEST_IRQ: {
845 			int sig = irqnumber >> 8;
846 			int irq = irqnumber & 255;
847 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
848 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
849 			if (invalid_vm86_irq(irq)) return -EPERM;
850 			if (vm86_irqs[irq].tsk) return -EPERM;
851 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
852 			if (ret) return ret;
853 			vm86_irqs[irq].sig = sig;
854 			vm86_irqs[irq].tsk = current;
855 			return irq;
856 		}
857 		case  VM86_FREE_IRQ: {
858 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
859 			if (!vm86_irqs[irqnumber].tsk) return 0;
860 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
861 			free_vm86_irq(irqnumber);
862 			return 0;
863 		}
864 	}
865 	return -EINVAL;
866 }
867 
868