xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6  *                stack - Manfred Spraul <manfred@colorfullife.com>
7  *
8  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9  *                them correctly. Now the emulation will be in a
10  *                consistent state after stackfaults - Kasper Dupont
11  *                <kasperd@daimi.au.dk>
12  *
13  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14  *                <kasperd@daimi.au.dk>
15  *
16  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17  *                caused by Kasper Dupont's changes - Stas Sergeev
18  *
19  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20  *                Kasper Dupont <kasperd@daimi.au.dk>
21  *
22  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23  *                Kasper Dupont <kasperd@daimi.au.dk>
24  *
25  *   9 apr 2002 - Changed stack access macros to jump to a label
26  *                instead of returning to userspace. This simplifies
27  *                do_int, and is needed by handle_vm6_fault. Kasper
28  *                Dupont <kasperd@daimi.au.dk>
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/tlbflush.h>
55 #include <asm/irq.h>
56 #include <asm/traps.h>
57 #include <asm/vm86.h>
58 
59 /*
60  * Known problems:
61  *
62  * Interrupt handling is not guaranteed:
63  * - a real x86 will disable all interrupts for one instruction
64  *   after a "mov ss,xx" to make stack handling atomic even without
65  *   the 'lss' instruction. We can't guarantee this in v86 mode,
66  *   as the next instruction might result in a page fault or similar.
67  * - a real x86 will have interrupts disabled for one instruction
68  *   past the 'sti' that enables them. We don't bother with all the
69  *   details yet.
70  *
71  * Let's hope these problems do not actually matter for anything.
72  */
73 
74 
75 /*
76  * 8- and 16-bit register defines..
77  */
78 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
79 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
80 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
81 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
82 
83 /*
84  * virtual flags (16 and 32-bit versions)
85  */
86 #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
87 #define VEFLAGS	(current->thread.vm86->veflags)
88 
89 #define set_flags(X, new, mask) \
90 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
91 
92 #define SAFE_MASK	(0xDD5)
93 #define RETURN_MASK	(0xDFF)
94 
95 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
96 {
97 	struct tss_struct *tss;
98 	struct task_struct *tsk = current;
99 	struct vm86plus_struct __user *user;
100 	struct vm86 *vm86 = current->thread.vm86;
101 	long err = 0;
102 
103 	/*
104 	 * This gets called from entry.S with interrupts disabled, but
105 	 * from process context. Enable interrupts here, before trying
106 	 * to access user space.
107 	 */
108 	local_irq_enable();
109 
110 	if (!vm86 || !vm86->user_vm86) {
111 		pr_alert("no user_vm86: BAD\n");
112 		do_exit(SIGSEGV);
113 	}
114 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
115 	user = vm86->user_vm86;
116 
117 	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
118 		       sizeof(struct vm86plus_struct) :
119 		       sizeof(struct vm86_struct))) {
120 		pr_alert("could not access userspace vm86 info\n");
121 		do_exit(SIGSEGV);
122 	}
123 
124 	put_user_try {
125 		put_user_ex(regs->pt.bx, &user->regs.ebx);
126 		put_user_ex(regs->pt.cx, &user->regs.ecx);
127 		put_user_ex(regs->pt.dx, &user->regs.edx);
128 		put_user_ex(regs->pt.si, &user->regs.esi);
129 		put_user_ex(regs->pt.di, &user->regs.edi);
130 		put_user_ex(regs->pt.bp, &user->regs.ebp);
131 		put_user_ex(regs->pt.ax, &user->regs.eax);
132 		put_user_ex(regs->pt.ip, &user->regs.eip);
133 		put_user_ex(regs->pt.cs, &user->regs.cs);
134 		put_user_ex(regs->pt.flags, &user->regs.eflags);
135 		put_user_ex(regs->pt.sp, &user->regs.esp);
136 		put_user_ex(regs->pt.ss, &user->regs.ss);
137 		put_user_ex(regs->es, &user->regs.es);
138 		put_user_ex(regs->ds, &user->regs.ds);
139 		put_user_ex(regs->fs, &user->regs.fs);
140 		put_user_ex(regs->gs, &user->regs.gs);
141 
142 		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
143 	} put_user_catch(err);
144 	if (err) {
145 		pr_alert("could not access userspace vm86 info\n");
146 		do_exit(SIGSEGV);
147 	}
148 
149 	tss = &per_cpu(cpu_tss, get_cpu());
150 	tsk->thread.sp0 = vm86->saved_sp0;
151 	tsk->thread.sysenter_cs = __KERNEL_CS;
152 	load_sp0(tss, &tsk->thread);
153 	vm86->saved_sp0 = 0;
154 	put_cpu();
155 
156 	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
157 
158 	lazy_load_gs(vm86->regs32.gs);
159 
160 	regs->pt.ax = retval;
161 }
162 
163 static void mark_screen_rdonly(struct mm_struct *mm)
164 {
165 	struct vm_area_struct *vma;
166 	spinlock_t *ptl;
167 	pgd_t *pgd;
168 	p4d_t *p4d;
169 	pud_t *pud;
170 	pmd_t *pmd;
171 	pte_t *pte;
172 	int i;
173 
174 	down_write(&mm->mmap_sem);
175 	pgd = pgd_offset(mm, 0xA0000);
176 	if (pgd_none_or_clear_bad(pgd))
177 		goto out;
178 	p4d = p4d_offset(pgd, 0xA0000);
179 	if (p4d_none_or_clear_bad(p4d))
180 		goto out;
181 	pud = pud_offset(p4d, 0xA0000);
182 	if (pud_none_or_clear_bad(pud))
183 		goto out;
184 	pmd = pmd_offset(pud, 0xA0000);
185 
186 	if (pmd_trans_huge(*pmd)) {
187 		vma = find_vma(mm, 0xA0000);
188 		split_huge_pmd(vma, pmd, 0xA0000);
189 	}
190 	if (pmd_none_or_clear_bad(pmd))
191 		goto out;
192 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
193 	for (i = 0; i < 32; i++) {
194 		if (pte_present(*pte))
195 			set_pte(pte, pte_wrprotect(*pte));
196 		pte++;
197 	}
198 	pte_unmap_unlock(pte, ptl);
199 out:
200 	up_write(&mm->mmap_sem);
201 	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
202 }
203 
204 
205 
206 static int do_vm86_irq_handling(int subfunction, int irqnumber);
207 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
208 
209 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
210 {
211 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
212 }
213 
214 
215 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
216 {
217 	switch (cmd) {
218 	case VM86_REQUEST_IRQ:
219 	case VM86_FREE_IRQ:
220 	case VM86_GET_IRQ_BITS:
221 	case VM86_GET_AND_RESET_IRQ:
222 		return do_vm86_irq_handling(cmd, (int)arg);
223 	case VM86_PLUS_INSTALL_CHECK:
224 		/*
225 		 * NOTE: on old vm86 stuff this will return the error
226 		 *  from access_ok(), because the subfunction is
227 		 *  interpreted as (invalid) address to vm86_struct.
228 		 *  So the installation check works.
229 		 */
230 		return 0;
231 	}
232 
233 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
234 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
235 }
236 
237 
238 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
239 {
240 	struct tss_struct *tss;
241 	struct task_struct *tsk = current;
242 	struct vm86 *vm86 = tsk->thread.vm86;
243 	struct kernel_vm86_regs vm86regs;
244 	struct pt_regs *regs = current_pt_regs();
245 	unsigned long err = 0;
246 
247 	err = security_mmap_addr(0);
248 	if (err) {
249 		/*
250 		 * vm86 cannot virtualize the address space, so vm86 users
251 		 * need to manage the low 1MB themselves using mmap.  Given
252 		 * that BIOS places important data in the first page, vm86
253 		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
254 		 * for example, won't even bother trying to use vm86 if it
255 		 * can't map a page at virtual address 0.
256 		 *
257 		 * To reduce the available kernel attack surface, simply
258 		 * disallow vm86(old) for users who cannot mmap at va 0.
259 		 *
260 		 * The implementation of security_mmap_addr will allow
261 		 * suitably privileged users to map va 0 even if
262 		 * vm.mmap_min_addr is set above 0, and we want this
263 		 * behavior for vm86 as well, as it ensures that legacy
264 		 * tools like vbetool will not fail just because of
265 		 * vm.mmap_min_addr.
266 		 */
267 		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268 			     current->comm, task_pid_nr(current),
269 			     from_kuid_munged(&init_user_ns, current_uid()));
270 		return -EPERM;
271 	}
272 
273 	if (!vm86) {
274 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
275 			return -ENOMEM;
276 		tsk->thread.vm86 = vm86;
277 	}
278 	if (vm86->saved_sp0)
279 		return -EPERM;
280 
281 	if (!access_ok(VERIFY_READ, user_vm86, plus ?
282 		       sizeof(struct vm86_struct) :
283 		       sizeof(struct vm86plus_struct)))
284 		return -EFAULT;
285 
286 	memset(&vm86regs, 0, sizeof(vm86regs));
287 	get_user_try {
288 		unsigned short seg;
289 		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
290 		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
291 		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
292 		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
293 		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
294 		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
295 		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
296 		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
297 		get_user_ex(seg, &user_vm86->regs.cs);
298 		vm86regs.pt.cs = seg;
299 		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
300 		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
301 		get_user_ex(seg, &user_vm86->regs.ss);
302 		vm86regs.pt.ss = seg;
303 		get_user_ex(vm86regs.es, &user_vm86->regs.es);
304 		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
305 		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
306 		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
307 
308 		get_user_ex(vm86->flags, &user_vm86->flags);
309 		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
310 		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
311 	} get_user_catch(err);
312 	if (err)
313 		return err;
314 
315 	if (copy_from_user(&vm86->int_revectored,
316 			   &user_vm86->int_revectored,
317 			   sizeof(struct revectored_struct)))
318 		return -EFAULT;
319 	if (copy_from_user(&vm86->int21_revectored,
320 			   &user_vm86->int21_revectored,
321 			   sizeof(struct revectored_struct)))
322 		return -EFAULT;
323 	if (plus) {
324 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
325 				   sizeof(struct vm86plus_info_struct)))
326 			return -EFAULT;
327 		vm86->vm86plus.is_vm86pus = 1;
328 	} else
329 		memset(&vm86->vm86plus, 0,
330 		       sizeof(struct vm86plus_info_struct));
331 
332 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
333 	vm86->user_vm86 = user_vm86;
334 
335 /*
336  * The flags register is also special: we cannot trust that the user
337  * has set it up safely, so this makes sure interrupt etc flags are
338  * inherited from protected mode.
339  */
340 	VEFLAGS = vm86regs.pt.flags;
341 	vm86regs.pt.flags &= SAFE_MASK;
342 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
343 	vm86regs.pt.flags |= X86_VM_MASK;
344 
345 	vm86regs.pt.orig_ax = regs->orig_ax;
346 
347 	switch (vm86->cpu_type) {
348 	case CPU_286:
349 		vm86->veflags_mask = 0;
350 		break;
351 	case CPU_386:
352 		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
353 		break;
354 	case CPU_486:
355 		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
356 		break;
357 	default:
358 		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
359 		break;
360 	}
361 
362 /*
363  * Save old state
364  */
365 	vm86->saved_sp0 = tsk->thread.sp0;
366 	lazy_save_gs(vm86->regs32.gs);
367 
368 	tss = &per_cpu(cpu_tss, get_cpu());
369 	/* make room for real-mode segments */
370 	tsk->thread.sp0 += 16;
371 
372 	if (static_cpu_has(X86_FEATURE_SEP))
373 		tsk->thread.sysenter_cs = 0;
374 
375 	load_sp0(tss, &tsk->thread);
376 	put_cpu();
377 
378 	if (vm86->flags & VM86_SCREEN_BITMAP)
379 		mark_screen_rdonly(tsk->mm);
380 
381 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
382 	force_iret();
383 	return regs->ax;
384 }
385 
386 static inline void set_IF(struct kernel_vm86_regs *regs)
387 {
388 	VEFLAGS |= X86_EFLAGS_VIF;
389 }
390 
391 static inline void clear_IF(struct kernel_vm86_regs *regs)
392 {
393 	VEFLAGS &= ~X86_EFLAGS_VIF;
394 }
395 
396 static inline void clear_TF(struct kernel_vm86_regs *regs)
397 {
398 	regs->pt.flags &= ~X86_EFLAGS_TF;
399 }
400 
401 static inline void clear_AC(struct kernel_vm86_regs *regs)
402 {
403 	regs->pt.flags &= ~X86_EFLAGS_AC;
404 }
405 
406 /*
407  * It is correct to call set_IF(regs) from the set_vflags_*
408  * functions. However someone forgot to call clear_IF(regs)
409  * in the opposite case.
410  * After the command sequence CLI PUSHF STI POPF you should
411  * end up with interrupts disabled, but you ended up with
412  * interrupts enabled.
413  *  ( I was testing my own changes, but the only bug I
414  *    could find was in a function I had not changed. )
415  * [KD]
416  */
417 
418 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
419 {
420 	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
421 	set_flags(regs->pt.flags, flags, SAFE_MASK);
422 	if (flags & X86_EFLAGS_IF)
423 		set_IF(regs);
424 	else
425 		clear_IF(regs);
426 }
427 
428 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
429 {
430 	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
431 	set_flags(regs->pt.flags, flags, SAFE_MASK);
432 	if (flags & X86_EFLAGS_IF)
433 		set_IF(regs);
434 	else
435 		clear_IF(regs);
436 }
437 
438 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
439 {
440 	unsigned long flags = regs->pt.flags & RETURN_MASK;
441 
442 	if (VEFLAGS & X86_EFLAGS_VIF)
443 		flags |= X86_EFLAGS_IF;
444 	flags |= X86_EFLAGS_IOPL;
445 	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
446 }
447 
448 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
449 {
450 	return test_bit(nr, bitmap->__map);
451 }
452 
453 #define val_byte(val, n) (((__u8 *)&val)[n])
454 
455 #define pushb(base, ptr, val, err_label) \
456 	do { \
457 		__u8 __val = val; \
458 		ptr--; \
459 		if (put_user(__val, base + ptr) < 0) \
460 			goto err_label; \
461 	} while (0)
462 
463 #define pushw(base, ptr, val, err_label) \
464 	do { \
465 		__u16 __val = val; \
466 		ptr--; \
467 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
468 			goto err_label; \
469 		ptr--; \
470 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
471 			goto err_label; \
472 	} while (0)
473 
474 #define pushl(base, ptr, val, err_label) \
475 	do { \
476 		__u32 __val = val; \
477 		ptr--; \
478 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
479 			goto err_label; \
480 		ptr--; \
481 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
482 			goto err_label; \
483 		ptr--; \
484 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
485 			goto err_label; \
486 		ptr--; \
487 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
488 			goto err_label; \
489 	} while (0)
490 
491 #define popb(base, ptr, err_label) \
492 	({ \
493 		__u8 __res; \
494 		if (get_user(__res, base + ptr) < 0) \
495 			goto err_label; \
496 		ptr++; \
497 		__res; \
498 	})
499 
500 #define popw(base, ptr, err_label) \
501 	({ \
502 		__u16 __res; \
503 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
504 			goto err_label; \
505 		ptr++; \
506 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
507 			goto err_label; \
508 		ptr++; \
509 		__res; \
510 	})
511 
512 #define popl(base, ptr, err_label) \
513 	({ \
514 		__u32 __res; \
515 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
516 			goto err_label; \
517 		ptr++; \
518 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
519 			goto err_label; \
520 		ptr++; \
521 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
522 			goto err_label; \
523 		ptr++; \
524 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
525 			goto err_label; \
526 		ptr++; \
527 		__res; \
528 	})
529 
530 /* There are so many possible reasons for this function to return
531  * VM86_INTx, so adding another doesn't bother me. We can expect
532  * userspace programs to be able to handle it. (Getting a problem
533  * in userspace is always better than an Oops anyway.) [KD]
534  */
535 static void do_int(struct kernel_vm86_regs *regs, int i,
536     unsigned char __user *ssp, unsigned short sp)
537 {
538 	unsigned long __user *intr_ptr;
539 	unsigned long segoffs;
540 	struct vm86 *vm86 = current->thread.vm86;
541 
542 	if (regs->pt.cs == BIOSSEG)
543 		goto cannot_handle;
544 	if (is_revectored(i, &vm86->int_revectored))
545 		goto cannot_handle;
546 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
547 		goto cannot_handle;
548 	intr_ptr = (unsigned long __user *) (i << 2);
549 	if (get_user(segoffs, intr_ptr))
550 		goto cannot_handle;
551 	if ((segoffs >> 16) == BIOSSEG)
552 		goto cannot_handle;
553 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
554 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
555 	pushw(ssp, sp, IP(regs), cannot_handle);
556 	regs->pt.cs = segoffs >> 16;
557 	SP(regs) -= 6;
558 	IP(regs) = segoffs & 0xffff;
559 	clear_TF(regs);
560 	clear_IF(regs);
561 	clear_AC(regs);
562 	return;
563 
564 cannot_handle:
565 	save_v86_state(regs, VM86_INTx + (i << 8));
566 }
567 
568 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
569 {
570 	struct vm86 *vm86 = current->thread.vm86;
571 
572 	if (vm86->vm86plus.is_vm86pus) {
573 		if ((trapno == 3) || (trapno == 1)) {
574 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
575 			return 0;
576 		}
577 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
578 		return 0;
579 	}
580 	if (trapno != 1)
581 		return 1; /* we let this handle by the calling routine */
582 	current->thread.trap_nr = trapno;
583 	current->thread.error_code = error_code;
584 	force_sig(SIGTRAP, current);
585 	return 0;
586 }
587 
588 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
589 {
590 	unsigned char opcode;
591 	unsigned char __user *csp;
592 	unsigned char __user *ssp;
593 	unsigned short ip, sp, orig_flags;
594 	int data32, pref_done;
595 	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
596 
597 #define CHECK_IF_IN_TRAP \
598 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
599 		newflags |= X86_EFLAGS_TF
600 
601 	orig_flags = *(unsigned short *)&regs->pt.flags;
602 
603 	csp = (unsigned char __user *) (regs->pt.cs << 4);
604 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
605 	sp = SP(regs);
606 	ip = IP(regs);
607 
608 	data32 = 0;
609 	pref_done = 0;
610 	do {
611 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
612 		case 0x66:      /* 32-bit data */     data32 = 1; break;
613 		case 0x67:      /* 32-bit address */  break;
614 		case 0x2e:      /* CS */              break;
615 		case 0x3e:      /* DS */              break;
616 		case 0x26:      /* ES */              break;
617 		case 0x36:      /* SS */              break;
618 		case 0x65:      /* GS */              break;
619 		case 0x64:      /* FS */              break;
620 		case 0xf2:      /* repnz */       break;
621 		case 0xf3:      /* rep */             break;
622 		default: pref_done = 1;
623 		}
624 	} while (!pref_done);
625 
626 	switch (opcode) {
627 
628 	/* pushf */
629 	case 0x9c:
630 		if (data32) {
631 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
632 			SP(regs) -= 4;
633 		} else {
634 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
635 			SP(regs) -= 2;
636 		}
637 		IP(regs) = ip;
638 		goto vm86_fault_return;
639 
640 	/* popf */
641 	case 0x9d:
642 		{
643 		unsigned long newflags;
644 		if (data32) {
645 			newflags = popl(ssp, sp, simulate_sigsegv);
646 			SP(regs) += 4;
647 		} else {
648 			newflags = popw(ssp, sp, simulate_sigsegv);
649 			SP(regs) += 2;
650 		}
651 		IP(regs) = ip;
652 		CHECK_IF_IN_TRAP;
653 		if (data32)
654 			set_vflags_long(newflags, regs);
655 		else
656 			set_vflags_short(newflags, regs);
657 
658 		goto check_vip;
659 		}
660 
661 	/* int xx */
662 	case 0xcd: {
663 		int intno = popb(csp, ip, simulate_sigsegv);
664 		IP(regs) = ip;
665 		if (vmpi->vm86dbg_active) {
666 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
667 				save_v86_state(regs, VM86_INTx + (intno << 8));
668 				return;
669 			}
670 		}
671 		do_int(regs, intno, ssp, sp);
672 		return;
673 	}
674 
675 	/* iret */
676 	case 0xcf:
677 		{
678 		unsigned long newip;
679 		unsigned long newcs;
680 		unsigned long newflags;
681 		if (data32) {
682 			newip = popl(ssp, sp, simulate_sigsegv);
683 			newcs = popl(ssp, sp, simulate_sigsegv);
684 			newflags = popl(ssp, sp, simulate_sigsegv);
685 			SP(regs) += 12;
686 		} else {
687 			newip = popw(ssp, sp, simulate_sigsegv);
688 			newcs = popw(ssp, sp, simulate_sigsegv);
689 			newflags = popw(ssp, sp, simulate_sigsegv);
690 			SP(regs) += 6;
691 		}
692 		IP(regs) = newip;
693 		regs->pt.cs = newcs;
694 		CHECK_IF_IN_TRAP;
695 		if (data32) {
696 			set_vflags_long(newflags, regs);
697 		} else {
698 			set_vflags_short(newflags, regs);
699 		}
700 		goto check_vip;
701 		}
702 
703 	/* cli */
704 	case 0xfa:
705 		IP(regs) = ip;
706 		clear_IF(regs);
707 		goto vm86_fault_return;
708 
709 	/* sti */
710 	/*
711 	 * Damn. This is incorrect: the 'sti' instruction should actually
712 	 * enable interrupts after the /next/ instruction. Not good.
713 	 *
714 	 * Probably needs some horsing around with the TF flag. Aiee..
715 	 */
716 	case 0xfb:
717 		IP(regs) = ip;
718 		set_IF(regs);
719 		goto check_vip;
720 
721 	default:
722 		save_v86_state(regs, VM86_UNKNOWN);
723 	}
724 
725 	return;
726 
727 check_vip:
728 	if (VEFLAGS & X86_EFLAGS_VIP) {
729 		save_v86_state(regs, VM86_STI);
730 		return;
731 	}
732 
733 vm86_fault_return:
734 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
735 		save_v86_state(regs, VM86_PICRETURN);
736 		return;
737 	}
738 	if (orig_flags & X86_EFLAGS_TF)
739 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
740 	return;
741 
742 simulate_sigsegv:
743 	/* FIXME: After a long discussion with Stas we finally
744 	 *        agreed, that this is wrong. Here we should
745 	 *        really send a SIGSEGV to the user program.
746 	 *        But how do we create the correct context? We
747 	 *        are inside a general protection fault handler
748 	 *        and has just returned from a page fault handler.
749 	 *        The correct context for the signal handler
750 	 *        should be a mixture of the two, but how do we
751 	 *        get the information? [KD]
752 	 */
753 	save_v86_state(regs, VM86_UNKNOWN);
754 }
755 
756 /* ---------------- vm86 special IRQ passing stuff ----------------- */
757 
758 #define VM86_IRQNAME		"vm86irq"
759 
760 static struct vm86_irqs {
761 	struct task_struct *tsk;
762 	int sig;
763 } vm86_irqs[16];
764 
765 static DEFINE_SPINLOCK(irqbits_lock);
766 static int irqbits;
767 
768 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
769 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
770 	| (1 << SIGUNUSED))
771 
772 static irqreturn_t irq_handler(int intno, void *dev_id)
773 {
774 	int irq_bit;
775 	unsigned long flags;
776 
777 	spin_lock_irqsave(&irqbits_lock, flags);
778 	irq_bit = 1 << intno;
779 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
780 		goto out;
781 	irqbits |= irq_bit;
782 	if (vm86_irqs[intno].sig)
783 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
784 	/*
785 	 * IRQ will be re-enabled when user asks for the irq (whether
786 	 * polling or as a result of the signal)
787 	 */
788 	disable_irq_nosync(intno);
789 	spin_unlock_irqrestore(&irqbits_lock, flags);
790 	return IRQ_HANDLED;
791 
792 out:
793 	spin_unlock_irqrestore(&irqbits_lock, flags);
794 	return IRQ_NONE;
795 }
796 
797 static inline void free_vm86_irq(int irqnumber)
798 {
799 	unsigned long flags;
800 
801 	free_irq(irqnumber, NULL);
802 	vm86_irqs[irqnumber].tsk = NULL;
803 
804 	spin_lock_irqsave(&irqbits_lock, flags);
805 	irqbits &= ~(1 << irqnumber);
806 	spin_unlock_irqrestore(&irqbits_lock, flags);
807 }
808 
809 void release_vm86_irqs(struct task_struct *task)
810 {
811 	int i;
812 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
813 	    if (vm86_irqs[i].tsk == task)
814 		free_vm86_irq(i);
815 }
816 
817 static inline int get_and_reset_irq(int irqnumber)
818 {
819 	int bit;
820 	unsigned long flags;
821 	int ret = 0;
822 
823 	if (invalid_vm86_irq(irqnumber)) return 0;
824 	if (vm86_irqs[irqnumber].tsk != current) return 0;
825 	spin_lock_irqsave(&irqbits_lock, flags);
826 	bit = irqbits & (1 << irqnumber);
827 	irqbits &= ~bit;
828 	if (bit) {
829 		enable_irq(irqnumber);
830 		ret = 1;
831 	}
832 
833 	spin_unlock_irqrestore(&irqbits_lock, flags);
834 	return ret;
835 }
836 
837 
838 static int do_vm86_irq_handling(int subfunction, int irqnumber)
839 {
840 	int ret;
841 	switch (subfunction) {
842 		case VM86_GET_AND_RESET_IRQ: {
843 			return get_and_reset_irq(irqnumber);
844 		}
845 		case VM86_GET_IRQ_BITS: {
846 			return irqbits;
847 		}
848 		case VM86_REQUEST_IRQ: {
849 			int sig = irqnumber >> 8;
850 			int irq = irqnumber & 255;
851 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
852 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
853 			if (invalid_vm86_irq(irq)) return -EPERM;
854 			if (vm86_irqs[irq].tsk) return -EPERM;
855 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
856 			if (ret) return ret;
857 			vm86_irqs[irq].sig = sig;
858 			vm86_irqs[irq].tsk = current;
859 			return irq;
860 		}
861 		case  VM86_FREE_IRQ: {
862 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
863 			if (!vm86_irqs[irqnumber].tsk) return 0;
864 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
865 			free_vm86_irq(irqnumber);
866 			return 0;
867 		}
868 	}
869 	return -EINVAL;
870 }
871 
872