1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86 5 * stack - Manfred Spraul <manfred@colorfullife.com> 6 * 7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle 8 * them correctly. Now the emulation will be in a 9 * consistent state after stackfaults - Kasper Dupont 10 * <kasperd@daimi.au.dk> 11 * 12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont 13 * <kasperd@daimi.au.dk> 14 * 15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault 16 * caused by Kasper Dupont's changes - Stas Sergeev 17 * 18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes. 19 * Kasper Dupont <kasperd@daimi.au.dk> 20 * 21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault. 22 * Kasper Dupont <kasperd@daimi.au.dk> 23 * 24 * 9 apr 2002 - Changed stack access macros to jump to a label 25 * instead of returning to userspace. This simplifies 26 * do_int, and is needed by handle_vm6_fault. Kasper 27 * Dupont <kasperd@daimi.au.dk> 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/capability.h> 34 #include <linux/errno.h> 35 #include <linux/interrupt.h> 36 #include <linux/syscalls.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/signal.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/smp.h> 43 #include <linux/highmem.h> 44 #include <linux/ptrace.h> 45 #include <linux/audit.h> 46 #include <linux/stddef.h> 47 #include <linux/slab.h> 48 #include <linux/security.h> 49 50 #include <linux/uaccess.h> 51 #include <asm/io.h> 52 #include <asm/tlbflush.h> 53 #include <asm/irq.h> 54 #include <asm/traps.h> 55 #include <asm/vm86.h> 56 57 /* 58 * Known problems: 59 * 60 * Interrupt handling is not guaranteed: 61 * - a real x86 will disable all interrupts for one instruction 62 * after a "mov ss,xx" to make stack handling atomic even without 63 * the 'lss' instruction. We can't guarantee this in v86 mode, 64 * as the next instruction might result in a page fault or similar. 65 * - a real x86 will have interrupts disabled for one instruction 66 * past the 'sti' that enables them. We don't bother with all the 67 * details yet. 68 * 69 * Let's hope these problems do not actually matter for anything. 70 */ 71 72 73 /* 74 * 8- and 16-bit register defines.. 75 */ 76 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0]) 77 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1]) 78 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip)) 79 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp)) 80 81 /* 82 * virtual flags (16 and 32-bit versions) 83 */ 84 #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags)) 85 #define VEFLAGS (current->thread.vm86->veflags) 86 87 #define set_flags(X, new, mask) \ 88 ((X) = ((X) & ~(mask)) | ((new) & (mask))) 89 90 #define SAFE_MASK (0xDD5) 91 #define RETURN_MASK (0xDFF) 92 93 void save_v86_state(struct kernel_vm86_regs *regs, int retval) 94 { 95 struct tss_struct *tss; 96 struct task_struct *tsk = current; 97 struct vm86plus_struct __user *user; 98 struct vm86 *vm86 = current->thread.vm86; 99 long err = 0; 100 101 /* 102 * This gets called from entry.S with interrupts disabled, but 103 * from process context. Enable interrupts here, before trying 104 * to access user space. 105 */ 106 local_irq_enable(); 107 108 if (!vm86 || !vm86->user_vm86) { 109 pr_alert("no user_vm86: BAD\n"); 110 do_exit(SIGSEGV); 111 } 112 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask); 113 user = vm86->user_vm86; 114 115 if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ? 116 sizeof(struct vm86plus_struct) : 117 sizeof(struct vm86_struct))) { 118 pr_alert("could not access userspace vm86 info\n"); 119 do_exit(SIGSEGV); 120 } 121 122 put_user_try { 123 put_user_ex(regs->pt.bx, &user->regs.ebx); 124 put_user_ex(regs->pt.cx, &user->regs.ecx); 125 put_user_ex(regs->pt.dx, &user->regs.edx); 126 put_user_ex(regs->pt.si, &user->regs.esi); 127 put_user_ex(regs->pt.di, &user->regs.edi); 128 put_user_ex(regs->pt.bp, &user->regs.ebp); 129 put_user_ex(regs->pt.ax, &user->regs.eax); 130 put_user_ex(regs->pt.ip, &user->regs.eip); 131 put_user_ex(regs->pt.cs, &user->regs.cs); 132 put_user_ex(regs->pt.flags, &user->regs.eflags); 133 put_user_ex(regs->pt.sp, &user->regs.esp); 134 put_user_ex(regs->pt.ss, &user->regs.ss); 135 put_user_ex(regs->es, &user->regs.es); 136 put_user_ex(regs->ds, &user->regs.ds); 137 put_user_ex(regs->fs, &user->regs.fs); 138 put_user_ex(regs->gs, &user->regs.gs); 139 140 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap); 141 } put_user_catch(err); 142 if (err) { 143 pr_alert("could not access userspace vm86 info\n"); 144 do_exit(SIGSEGV); 145 } 146 147 tss = &per_cpu(cpu_tss, get_cpu()); 148 tsk->thread.sp0 = vm86->saved_sp0; 149 tsk->thread.sysenter_cs = __KERNEL_CS; 150 load_sp0(tss, &tsk->thread); 151 vm86->saved_sp0 = 0; 152 put_cpu(); 153 154 memcpy(®s->pt, &vm86->regs32, sizeof(struct pt_regs)); 155 156 lazy_load_gs(vm86->regs32.gs); 157 158 regs->pt.ax = retval; 159 } 160 161 static void mark_screen_rdonly(struct mm_struct *mm) 162 { 163 struct vm_area_struct *vma; 164 spinlock_t *ptl; 165 pgd_t *pgd; 166 pud_t *pud; 167 pmd_t *pmd; 168 pte_t *pte; 169 int i; 170 171 down_write(&mm->mmap_sem); 172 pgd = pgd_offset(mm, 0xA0000); 173 if (pgd_none_or_clear_bad(pgd)) 174 goto out; 175 pud = pud_offset(pgd, 0xA0000); 176 if (pud_none_or_clear_bad(pud)) 177 goto out; 178 pmd = pmd_offset(pud, 0xA0000); 179 180 if (pmd_trans_huge(*pmd)) { 181 vma = find_vma(mm, 0xA0000); 182 split_huge_pmd(vma, pmd, 0xA0000); 183 } 184 if (pmd_none_or_clear_bad(pmd)) 185 goto out; 186 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl); 187 for (i = 0; i < 32; i++) { 188 if (pte_present(*pte)) 189 set_pte(pte, pte_wrprotect(*pte)); 190 pte++; 191 } 192 pte_unmap_unlock(pte, ptl); 193 out: 194 up_write(&mm->mmap_sem); 195 flush_tlb(); 196 } 197 198 199 200 static int do_vm86_irq_handling(int subfunction, int irqnumber); 201 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus); 202 203 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86) 204 { 205 return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false); 206 } 207 208 209 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg) 210 { 211 switch (cmd) { 212 case VM86_REQUEST_IRQ: 213 case VM86_FREE_IRQ: 214 case VM86_GET_IRQ_BITS: 215 case VM86_GET_AND_RESET_IRQ: 216 return do_vm86_irq_handling(cmd, (int)arg); 217 case VM86_PLUS_INSTALL_CHECK: 218 /* 219 * NOTE: on old vm86 stuff this will return the error 220 * from access_ok(), because the subfunction is 221 * interpreted as (invalid) address to vm86_struct. 222 * So the installation check works. 223 */ 224 return 0; 225 } 226 227 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */ 228 return do_sys_vm86((struct vm86plus_struct __user *) arg, true); 229 } 230 231 232 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus) 233 { 234 struct tss_struct *tss; 235 struct task_struct *tsk = current; 236 struct vm86 *vm86 = tsk->thread.vm86; 237 struct kernel_vm86_regs vm86regs; 238 struct pt_regs *regs = current_pt_regs(); 239 unsigned long err = 0; 240 241 err = security_mmap_addr(0); 242 if (err) { 243 /* 244 * vm86 cannot virtualize the address space, so vm86 users 245 * need to manage the low 1MB themselves using mmap. Given 246 * that BIOS places important data in the first page, vm86 247 * is essentially useless if mmap_min_addr != 0. DOSEMU, 248 * for example, won't even bother trying to use vm86 if it 249 * can't map a page at virtual address 0. 250 * 251 * To reduce the available kernel attack surface, simply 252 * disallow vm86(old) for users who cannot mmap at va 0. 253 * 254 * The implementation of security_mmap_addr will allow 255 * suitably privileged users to map va 0 even if 256 * vm.mmap_min_addr is set above 0, and we want this 257 * behavior for vm86 as well, as it ensures that legacy 258 * tools like vbetool will not fail just because of 259 * vm.mmap_min_addr. 260 */ 261 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n", 262 current->comm, task_pid_nr(current), 263 from_kuid_munged(&init_user_ns, current_uid())); 264 return -EPERM; 265 } 266 267 if (!vm86) { 268 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL))) 269 return -ENOMEM; 270 tsk->thread.vm86 = vm86; 271 } 272 if (vm86->saved_sp0) 273 return -EPERM; 274 275 if (!access_ok(VERIFY_READ, user_vm86, plus ? 276 sizeof(struct vm86_struct) : 277 sizeof(struct vm86plus_struct))) 278 return -EFAULT; 279 280 memset(&vm86regs, 0, sizeof(vm86regs)); 281 get_user_try { 282 unsigned short seg; 283 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx); 284 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx); 285 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx); 286 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi); 287 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi); 288 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp); 289 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax); 290 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip); 291 get_user_ex(seg, &user_vm86->regs.cs); 292 vm86regs.pt.cs = seg; 293 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags); 294 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp); 295 get_user_ex(seg, &user_vm86->regs.ss); 296 vm86regs.pt.ss = seg; 297 get_user_ex(vm86regs.es, &user_vm86->regs.es); 298 get_user_ex(vm86regs.ds, &user_vm86->regs.ds); 299 get_user_ex(vm86regs.fs, &user_vm86->regs.fs); 300 get_user_ex(vm86regs.gs, &user_vm86->regs.gs); 301 302 get_user_ex(vm86->flags, &user_vm86->flags); 303 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap); 304 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type); 305 } get_user_catch(err); 306 if (err) 307 return err; 308 309 if (copy_from_user(&vm86->int_revectored, 310 &user_vm86->int_revectored, 311 sizeof(struct revectored_struct))) 312 return -EFAULT; 313 if (copy_from_user(&vm86->int21_revectored, 314 &user_vm86->int21_revectored, 315 sizeof(struct revectored_struct))) 316 return -EFAULT; 317 if (plus) { 318 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus, 319 sizeof(struct vm86plus_info_struct))) 320 return -EFAULT; 321 vm86->vm86plus.is_vm86pus = 1; 322 } else 323 memset(&vm86->vm86plus, 0, 324 sizeof(struct vm86plus_info_struct)); 325 326 memcpy(&vm86->regs32, regs, sizeof(struct pt_regs)); 327 vm86->user_vm86 = user_vm86; 328 329 /* 330 * The flags register is also special: we cannot trust that the user 331 * has set it up safely, so this makes sure interrupt etc flags are 332 * inherited from protected mode. 333 */ 334 VEFLAGS = vm86regs.pt.flags; 335 vm86regs.pt.flags &= SAFE_MASK; 336 vm86regs.pt.flags |= regs->flags & ~SAFE_MASK; 337 vm86regs.pt.flags |= X86_VM_MASK; 338 339 vm86regs.pt.orig_ax = regs->orig_ax; 340 341 switch (vm86->cpu_type) { 342 case CPU_286: 343 vm86->veflags_mask = 0; 344 break; 345 case CPU_386: 346 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL; 347 break; 348 case CPU_486: 349 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; 350 break; 351 default: 352 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; 353 break; 354 } 355 356 /* 357 * Save old state 358 */ 359 vm86->saved_sp0 = tsk->thread.sp0; 360 lazy_save_gs(vm86->regs32.gs); 361 362 tss = &per_cpu(cpu_tss, get_cpu()); 363 /* make room for real-mode segments */ 364 tsk->thread.sp0 += 16; 365 366 if (static_cpu_has(X86_FEATURE_SEP)) 367 tsk->thread.sysenter_cs = 0; 368 369 load_sp0(tss, &tsk->thread); 370 put_cpu(); 371 372 if (vm86->flags & VM86_SCREEN_BITMAP) 373 mark_screen_rdonly(tsk->mm); 374 375 memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs)); 376 force_iret(); 377 return regs->ax; 378 } 379 380 static inline void set_IF(struct kernel_vm86_regs *regs) 381 { 382 VEFLAGS |= X86_EFLAGS_VIF; 383 } 384 385 static inline void clear_IF(struct kernel_vm86_regs *regs) 386 { 387 VEFLAGS &= ~X86_EFLAGS_VIF; 388 } 389 390 static inline void clear_TF(struct kernel_vm86_regs *regs) 391 { 392 regs->pt.flags &= ~X86_EFLAGS_TF; 393 } 394 395 static inline void clear_AC(struct kernel_vm86_regs *regs) 396 { 397 regs->pt.flags &= ~X86_EFLAGS_AC; 398 } 399 400 /* 401 * It is correct to call set_IF(regs) from the set_vflags_* 402 * functions. However someone forgot to call clear_IF(regs) 403 * in the opposite case. 404 * After the command sequence CLI PUSHF STI POPF you should 405 * end up with interrupts disabled, but you ended up with 406 * interrupts enabled. 407 * ( I was testing my own changes, but the only bug I 408 * could find was in a function I had not changed. ) 409 * [KD] 410 */ 411 412 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs) 413 { 414 set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask); 415 set_flags(regs->pt.flags, flags, SAFE_MASK); 416 if (flags & X86_EFLAGS_IF) 417 set_IF(regs); 418 else 419 clear_IF(regs); 420 } 421 422 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs) 423 { 424 set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask); 425 set_flags(regs->pt.flags, flags, SAFE_MASK); 426 if (flags & X86_EFLAGS_IF) 427 set_IF(regs); 428 else 429 clear_IF(regs); 430 } 431 432 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs) 433 { 434 unsigned long flags = regs->pt.flags & RETURN_MASK; 435 436 if (VEFLAGS & X86_EFLAGS_VIF) 437 flags |= X86_EFLAGS_IF; 438 flags |= X86_EFLAGS_IOPL; 439 return flags | (VEFLAGS & current->thread.vm86->veflags_mask); 440 } 441 442 static inline int is_revectored(int nr, struct revectored_struct *bitmap) 443 { 444 return test_bit(nr, bitmap->__map); 445 } 446 447 #define val_byte(val, n) (((__u8 *)&val)[n]) 448 449 #define pushb(base, ptr, val, err_label) \ 450 do { \ 451 __u8 __val = val; \ 452 ptr--; \ 453 if (put_user(__val, base + ptr) < 0) \ 454 goto err_label; \ 455 } while (0) 456 457 #define pushw(base, ptr, val, err_label) \ 458 do { \ 459 __u16 __val = val; \ 460 ptr--; \ 461 if (put_user(val_byte(__val, 1), base + ptr) < 0) \ 462 goto err_label; \ 463 ptr--; \ 464 if (put_user(val_byte(__val, 0), base + ptr) < 0) \ 465 goto err_label; \ 466 } while (0) 467 468 #define pushl(base, ptr, val, err_label) \ 469 do { \ 470 __u32 __val = val; \ 471 ptr--; \ 472 if (put_user(val_byte(__val, 3), base + ptr) < 0) \ 473 goto err_label; \ 474 ptr--; \ 475 if (put_user(val_byte(__val, 2), base + ptr) < 0) \ 476 goto err_label; \ 477 ptr--; \ 478 if (put_user(val_byte(__val, 1), base + ptr) < 0) \ 479 goto err_label; \ 480 ptr--; \ 481 if (put_user(val_byte(__val, 0), base + ptr) < 0) \ 482 goto err_label; \ 483 } while (0) 484 485 #define popb(base, ptr, err_label) \ 486 ({ \ 487 __u8 __res; \ 488 if (get_user(__res, base + ptr) < 0) \ 489 goto err_label; \ 490 ptr++; \ 491 __res; \ 492 }) 493 494 #define popw(base, ptr, err_label) \ 495 ({ \ 496 __u16 __res; \ 497 if (get_user(val_byte(__res, 0), base + ptr) < 0) \ 498 goto err_label; \ 499 ptr++; \ 500 if (get_user(val_byte(__res, 1), base + ptr) < 0) \ 501 goto err_label; \ 502 ptr++; \ 503 __res; \ 504 }) 505 506 #define popl(base, ptr, err_label) \ 507 ({ \ 508 __u32 __res; \ 509 if (get_user(val_byte(__res, 0), base + ptr) < 0) \ 510 goto err_label; \ 511 ptr++; \ 512 if (get_user(val_byte(__res, 1), base + ptr) < 0) \ 513 goto err_label; \ 514 ptr++; \ 515 if (get_user(val_byte(__res, 2), base + ptr) < 0) \ 516 goto err_label; \ 517 ptr++; \ 518 if (get_user(val_byte(__res, 3), base + ptr) < 0) \ 519 goto err_label; \ 520 ptr++; \ 521 __res; \ 522 }) 523 524 /* There are so many possible reasons for this function to return 525 * VM86_INTx, so adding another doesn't bother me. We can expect 526 * userspace programs to be able to handle it. (Getting a problem 527 * in userspace is always better than an Oops anyway.) [KD] 528 */ 529 static void do_int(struct kernel_vm86_regs *regs, int i, 530 unsigned char __user *ssp, unsigned short sp) 531 { 532 unsigned long __user *intr_ptr; 533 unsigned long segoffs; 534 struct vm86 *vm86 = current->thread.vm86; 535 536 if (regs->pt.cs == BIOSSEG) 537 goto cannot_handle; 538 if (is_revectored(i, &vm86->int_revectored)) 539 goto cannot_handle; 540 if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored)) 541 goto cannot_handle; 542 intr_ptr = (unsigned long __user *) (i << 2); 543 if (get_user(segoffs, intr_ptr)) 544 goto cannot_handle; 545 if ((segoffs >> 16) == BIOSSEG) 546 goto cannot_handle; 547 pushw(ssp, sp, get_vflags(regs), cannot_handle); 548 pushw(ssp, sp, regs->pt.cs, cannot_handle); 549 pushw(ssp, sp, IP(regs), cannot_handle); 550 regs->pt.cs = segoffs >> 16; 551 SP(regs) -= 6; 552 IP(regs) = segoffs & 0xffff; 553 clear_TF(regs); 554 clear_IF(regs); 555 clear_AC(regs); 556 return; 557 558 cannot_handle: 559 save_v86_state(regs, VM86_INTx + (i << 8)); 560 } 561 562 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno) 563 { 564 struct vm86 *vm86 = current->thread.vm86; 565 566 if (vm86->vm86plus.is_vm86pus) { 567 if ((trapno == 3) || (trapno == 1)) { 568 save_v86_state(regs, VM86_TRAP + (trapno << 8)); 569 return 0; 570 } 571 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs)); 572 return 0; 573 } 574 if (trapno != 1) 575 return 1; /* we let this handle by the calling routine */ 576 current->thread.trap_nr = trapno; 577 current->thread.error_code = error_code; 578 force_sig(SIGTRAP, current); 579 return 0; 580 } 581 582 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code) 583 { 584 unsigned char opcode; 585 unsigned char __user *csp; 586 unsigned char __user *ssp; 587 unsigned short ip, sp, orig_flags; 588 int data32, pref_done; 589 struct vm86plus_info_struct *vmpi = ¤t->thread.vm86->vm86plus; 590 591 #define CHECK_IF_IN_TRAP \ 592 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \ 593 newflags |= X86_EFLAGS_TF 594 595 orig_flags = *(unsigned short *)®s->pt.flags; 596 597 csp = (unsigned char __user *) (regs->pt.cs << 4); 598 ssp = (unsigned char __user *) (regs->pt.ss << 4); 599 sp = SP(regs); 600 ip = IP(regs); 601 602 data32 = 0; 603 pref_done = 0; 604 do { 605 switch (opcode = popb(csp, ip, simulate_sigsegv)) { 606 case 0x66: /* 32-bit data */ data32 = 1; break; 607 case 0x67: /* 32-bit address */ break; 608 case 0x2e: /* CS */ break; 609 case 0x3e: /* DS */ break; 610 case 0x26: /* ES */ break; 611 case 0x36: /* SS */ break; 612 case 0x65: /* GS */ break; 613 case 0x64: /* FS */ break; 614 case 0xf2: /* repnz */ break; 615 case 0xf3: /* rep */ break; 616 default: pref_done = 1; 617 } 618 } while (!pref_done); 619 620 switch (opcode) { 621 622 /* pushf */ 623 case 0x9c: 624 if (data32) { 625 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv); 626 SP(regs) -= 4; 627 } else { 628 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv); 629 SP(regs) -= 2; 630 } 631 IP(regs) = ip; 632 goto vm86_fault_return; 633 634 /* popf */ 635 case 0x9d: 636 { 637 unsigned long newflags; 638 if (data32) { 639 newflags = popl(ssp, sp, simulate_sigsegv); 640 SP(regs) += 4; 641 } else { 642 newflags = popw(ssp, sp, simulate_sigsegv); 643 SP(regs) += 2; 644 } 645 IP(regs) = ip; 646 CHECK_IF_IN_TRAP; 647 if (data32) 648 set_vflags_long(newflags, regs); 649 else 650 set_vflags_short(newflags, regs); 651 652 goto check_vip; 653 } 654 655 /* int xx */ 656 case 0xcd: { 657 int intno = popb(csp, ip, simulate_sigsegv); 658 IP(regs) = ip; 659 if (vmpi->vm86dbg_active) { 660 if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) { 661 save_v86_state(regs, VM86_INTx + (intno << 8)); 662 return; 663 } 664 } 665 do_int(regs, intno, ssp, sp); 666 return; 667 } 668 669 /* iret */ 670 case 0xcf: 671 { 672 unsigned long newip; 673 unsigned long newcs; 674 unsigned long newflags; 675 if (data32) { 676 newip = popl(ssp, sp, simulate_sigsegv); 677 newcs = popl(ssp, sp, simulate_sigsegv); 678 newflags = popl(ssp, sp, simulate_sigsegv); 679 SP(regs) += 12; 680 } else { 681 newip = popw(ssp, sp, simulate_sigsegv); 682 newcs = popw(ssp, sp, simulate_sigsegv); 683 newflags = popw(ssp, sp, simulate_sigsegv); 684 SP(regs) += 6; 685 } 686 IP(regs) = newip; 687 regs->pt.cs = newcs; 688 CHECK_IF_IN_TRAP; 689 if (data32) { 690 set_vflags_long(newflags, regs); 691 } else { 692 set_vflags_short(newflags, regs); 693 } 694 goto check_vip; 695 } 696 697 /* cli */ 698 case 0xfa: 699 IP(regs) = ip; 700 clear_IF(regs); 701 goto vm86_fault_return; 702 703 /* sti */ 704 /* 705 * Damn. This is incorrect: the 'sti' instruction should actually 706 * enable interrupts after the /next/ instruction. Not good. 707 * 708 * Probably needs some horsing around with the TF flag. Aiee.. 709 */ 710 case 0xfb: 711 IP(regs) = ip; 712 set_IF(regs); 713 goto check_vip; 714 715 default: 716 save_v86_state(regs, VM86_UNKNOWN); 717 } 718 719 return; 720 721 check_vip: 722 if (VEFLAGS & X86_EFLAGS_VIP) { 723 save_v86_state(regs, VM86_STI); 724 return; 725 } 726 727 vm86_fault_return: 728 if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) { 729 save_v86_state(regs, VM86_PICRETURN); 730 return; 731 } 732 if (orig_flags & X86_EFLAGS_TF) 733 handle_vm86_trap(regs, 0, X86_TRAP_DB); 734 return; 735 736 simulate_sigsegv: 737 /* FIXME: After a long discussion with Stas we finally 738 * agreed, that this is wrong. Here we should 739 * really send a SIGSEGV to the user program. 740 * But how do we create the correct context? We 741 * are inside a general protection fault handler 742 * and has just returned from a page fault handler. 743 * The correct context for the signal handler 744 * should be a mixture of the two, but how do we 745 * get the information? [KD] 746 */ 747 save_v86_state(regs, VM86_UNKNOWN); 748 } 749 750 /* ---------------- vm86 special IRQ passing stuff ----------------- */ 751 752 #define VM86_IRQNAME "vm86irq" 753 754 static struct vm86_irqs { 755 struct task_struct *tsk; 756 int sig; 757 } vm86_irqs[16]; 758 759 static DEFINE_SPINLOCK(irqbits_lock); 760 static int irqbits; 761 762 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \ 763 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \ 764 | (1 << SIGUNUSED)) 765 766 static irqreturn_t irq_handler(int intno, void *dev_id) 767 { 768 int irq_bit; 769 unsigned long flags; 770 771 spin_lock_irqsave(&irqbits_lock, flags); 772 irq_bit = 1 << intno; 773 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk) 774 goto out; 775 irqbits |= irq_bit; 776 if (vm86_irqs[intno].sig) 777 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1); 778 /* 779 * IRQ will be re-enabled when user asks for the irq (whether 780 * polling or as a result of the signal) 781 */ 782 disable_irq_nosync(intno); 783 spin_unlock_irqrestore(&irqbits_lock, flags); 784 return IRQ_HANDLED; 785 786 out: 787 spin_unlock_irqrestore(&irqbits_lock, flags); 788 return IRQ_NONE; 789 } 790 791 static inline void free_vm86_irq(int irqnumber) 792 { 793 unsigned long flags; 794 795 free_irq(irqnumber, NULL); 796 vm86_irqs[irqnumber].tsk = NULL; 797 798 spin_lock_irqsave(&irqbits_lock, flags); 799 irqbits &= ~(1 << irqnumber); 800 spin_unlock_irqrestore(&irqbits_lock, flags); 801 } 802 803 void release_vm86_irqs(struct task_struct *task) 804 { 805 int i; 806 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++) 807 if (vm86_irqs[i].tsk == task) 808 free_vm86_irq(i); 809 } 810 811 static inline int get_and_reset_irq(int irqnumber) 812 { 813 int bit; 814 unsigned long flags; 815 int ret = 0; 816 817 if (invalid_vm86_irq(irqnumber)) return 0; 818 if (vm86_irqs[irqnumber].tsk != current) return 0; 819 spin_lock_irqsave(&irqbits_lock, flags); 820 bit = irqbits & (1 << irqnumber); 821 irqbits &= ~bit; 822 if (bit) { 823 enable_irq(irqnumber); 824 ret = 1; 825 } 826 827 spin_unlock_irqrestore(&irqbits_lock, flags); 828 return ret; 829 } 830 831 832 static int do_vm86_irq_handling(int subfunction, int irqnumber) 833 { 834 int ret; 835 switch (subfunction) { 836 case VM86_GET_AND_RESET_IRQ: { 837 return get_and_reset_irq(irqnumber); 838 } 839 case VM86_GET_IRQ_BITS: { 840 return irqbits; 841 } 842 case VM86_REQUEST_IRQ: { 843 int sig = irqnumber >> 8; 844 int irq = irqnumber & 255; 845 if (!capable(CAP_SYS_ADMIN)) return -EPERM; 846 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM; 847 if (invalid_vm86_irq(irq)) return -EPERM; 848 if (vm86_irqs[irq].tsk) return -EPERM; 849 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL); 850 if (ret) return ret; 851 vm86_irqs[irq].sig = sig; 852 vm86_irqs[irq].tsk = current; 853 return irq; 854 } 855 case VM86_FREE_IRQ: { 856 if (invalid_vm86_irq(irqnumber)) return -EPERM; 857 if (!vm86_irqs[irqnumber].tsk) return 0; 858 if (vm86_irqs[irqnumber].tsk != current) return -EPERM; 859 free_vm86_irq(irqnumber); 860 return 0; 861 } 862 } 863 return -EINVAL; 864 } 865 866