xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision 7bcae826)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/signal.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/smp.h>
43 #include <linux/highmem.h>
44 #include <linux/ptrace.h>
45 #include <linux/audit.h>
46 #include <linux/stddef.h>
47 #include <linux/slab.h>
48 #include <linux/security.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/io.h>
52 #include <asm/tlbflush.h>
53 #include <asm/irq.h>
54 #include <asm/traps.h>
55 #include <asm/vm86.h>
56 
57 /*
58  * Known problems:
59  *
60  * Interrupt handling is not guaranteed:
61  * - a real x86 will disable all interrupts for one instruction
62  *   after a "mov ss,xx" to make stack handling atomic even without
63  *   the 'lss' instruction. We can't guarantee this in v86 mode,
64  *   as the next instruction might result in a page fault or similar.
65  * - a real x86 will have interrupts disabled for one instruction
66  *   past the 'sti' that enables them. We don't bother with all the
67  *   details yet.
68  *
69  * Let's hope these problems do not actually matter for anything.
70  */
71 
72 
73 /*
74  * 8- and 16-bit register defines..
75  */
76 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
77 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
78 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
79 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
80 
81 /*
82  * virtual flags (16 and 32-bit versions)
83  */
84 #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
85 #define VEFLAGS	(current->thread.vm86->veflags)
86 
87 #define set_flags(X, new, mask) \
88 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
89 
90 #define SAFE_MASK	(0xDD5)
91 #define RETURN_MASK	(0xDFF)
92 
93 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
94 {
95 	struct tss_struct *tss;
96 	struct task_struct *tsk = current;
97 	struct vm86plus_struct __user *user;
98 	struct vm86 *vm86 = current->thread.vm86;
99 	long err = 0;
100 
101 	/*
102 	 * This gets called from entry.S with interrupts disabled, but
103 	 * from process context. Enable interrupts here, before trying
104 	 * to access user space.
105 	 */
106 	local_irq_enable();
107 
108 	if (!vm86 || !vm86->user_vm86) {
109 		pr_alert("no user_vm86: BAD\n");
110 		do_exit(SIGSEGV);
111 	}
112 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
113 	user = vm86->user_vm86;
114 
115 	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
116 		       sizeof(struct vm86plus_struct) :
117 		       sizeof(struct vm86_struct))) {
118 		pr_alert("could not access userspace vm86 info\n");
119 		do_exit(SIGSEGV);
120 	}
121 
122 	put_user_try {
123 		put_user_ex(regs->pt.bx, &user->regs.ebx);
124 		put_user_ex(regs->pt.cx, &user->regs.ecx);
125 		put_user_ex(regs->pt.dx, &user->regs.edx);
126 		put_user_ex(regs->pt.si, &user->regs.esi);
127 		put_user_ex(regs->pt.di, &user->regs.edi);
128 		put_user_ex(regs->pt.bp, &user->regs.ebp);
129 		put_user_ex(regs->pt.ax, &user->regs.eax);
130 		put_user_ex(regs->pt.ip, &user->regs.eip);
131 		put_user_ex(regs->pt.cs, &user->regs.cs);
132 		put_user_ex(regs->pt.flags, &user->regs.eflags);
133 		put_user_ex(regs->pt.sp, &user->regs.esp);
134 		put_user_ex(regs->pt.ss, &user->regs.ss);
135 		put_user_ex(regs->es, &user->regs.es);
136 		put_user_ex(regs->ds, &user->regs.ds);
137 		put_user_ex(regs->fs, &user->regs.fs);
138 		put_user_ex(regs->gs, &user->regs.gs);
139 
140 		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
141 	} put_user_catch(err);
142 	if (err) {
143 		pr_alert("could not access userspace vm86 info\n");
144 		do_exit(SIGSEGV);
145 	}
146 
147 	tss = &per_cpu(cpu_tss, get_cpu());
148 	tsk->thread.sp0 = vm86->saved_sp0;
149 	tsk->thread.sysenter_cs = __KERNEL_CS;
150 	load_sp0(tss, &tsk->thread);
151 	vm86->saved_sp0 = 0;
152 	put_cpu();
153 
154 	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
155 
156 	lazy_load_gs(vm86->regs32.gs);
157 
158 	regs->pt.ax = retval;
159 }
160 
161 static void mark_screen_rdonly(struct mm_struct *mm)
162 {
163 	struct vm_area_struct *vma;
164 	spinlock_t *ptl;
165 	pgd_t *pgd;
166 	pud_t *pud;
167 	pmd_t *pmd;
168 	pte_t *pte;
169 	int i;
170 
171 	down_write(&mm->mmap_sem);
172 	pgd = pgd_offset(mm, 0xA0000);
173 	if (pgd_none_or_clear_bad(pgd))
174 		goto out;
175 	pud = pud_offset(pgd, 0xA0000);
176 	if (pud_none_or_clear_bad(pud))
177 		goto out;
178 	pmd = pmd_offset(pud, 0xA0000);
179 
180 	if (pmd_trans_huge(*pmd)) {
181 		vma = find_vma(mm, 0xA0000);
182 		split_huge_pmd(vma, pmd, 0xA0000);
183 	}
184 	if (pmd_none_or_clear_bad(pmd))
185 		goto out;
186 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
187 	for (i = 0; i < 32; i++) {
188 		if (pte_present(*pte))
189 			set_pte(pte, pte_wrprotect(*pte));
190 		pte++;
191 	}
192 	pte_unmap_unlock(pte, ptl);
193 out:
194 	up_write(&mm->mmap_sem);
195 	flush_tlb();
196 }
197 
198 
199 
200 static int do_vm86_irq_handling(int subfunction, int irqnumber);
201 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
202 
203 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
204 {
205 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
206 }
207 
208 
209 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
210 {
211 	switch (cmd) {
212 	case VM86_REQUEST_IRQ:
213 	case VM86_FREE_IRQ:
214 	case VM86_GET_IRQ_BITS:
215 	case VM86_GET_AND_RESET_IRQ:
216 		return do_vm86_irq_handling(cmd, (int)arg);
217 	case VM86_PLUS_INSTALL_CHECK:
218 		/*
219 		 * NOTE: on old vm86 stuff this will return the error
220 		 *  from access_ok(), because the subfunction is
221 		 *  interpreted as (invalid) address to vm86_struct.
222 		 *  So the installation check works.
223 		 */
224 		return 0;
225 	}
226 
227 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
228 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
229 }
230 
231 
232 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
233 {
234 	struct tss_struct *tss;
235 	struct task_struct *tsk = current;
236 	struct vm86 *vm86 = tsk->thread.vm86;
237 	struct kernel_vm86_regs vm86regs;
238 	struct pt_regs *regs = current_pt_regs();
239 	unsigned long err = 0;
240 
241 	err = security_mmap_addr(0);
242 	if (err) {
243 		/*
244 		 * vm86 cannot virtualize the address space, so vm86 users
245 		 * need to manage the low 1MB themselves using mmap.  Given
246 		 * that BIOS places important data in the first page, vm86
247 		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
248 		 * for example, won't even bother trying to use vm86 if it
249 		 * can't map a page at virtual address 0.
250 		 *
251 		 * To reduce the available kernel attack surface, simply
252 		 * disallow vm86(old) for users who cannot mmap at va 0.
253 		 *
254 		 * The implementation of security_mmap_addr will allow
255 		 * suitably privileged users to map va 0 even if
256 		 * vm.mmap_min_addr is set above 0, and we want this
257 		 * behavior for vm86 as well, as it ensures that legacy
258 		 * tools like vbetool will not fail just because of
259 		 * vm.mmap_min_addr.
260 		 */
261 		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
262 			     current->comm, task_pid_nr(current),
263 			     from_kuid_munged(&init_user_ns, current_uid()));
264 		return -EPERM;
265 	}
266 
267 	if (!vm86) {
268 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
269 			return -ENOMEM;
270 		tsk->thread.vm86 = vm86;
271 	}
272 	if (vm86->saved_sp0)
273 		return -EPERM;
274 
275 	if (!access_ok(VERIFY_READ, user_vm86, plus ?
276 		       sizeof(struct vm86_struct) :
277 		       sizeof(struct vm86plus_struct)))
278 		return -EFAULT;
279 
280 	memset(&vm86regs, 0, sizeof(vm86regs));
281 	get_user_try {
282 		unsigned short seg;
283 		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
284 		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
285 		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
286 		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
287 		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
288 		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
289 		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
290 		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
291 		get_user_ex(seg, &user_vm86->regs.cs);
292 		vm86regs.pt.cs = seg;
293 		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
294 		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
295 		get_user_ex(seg, &user_vm86->regs.ss);
296 		vm86regs.pt.ss = seg;
297 		get_user_ex(vm86regs.es, &user_vm86->regs.es);
298 		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
299 		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
300 		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
301 
302 		get_user_ex(vm86->flags, &user_vm86->flags);
303 		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
304 		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
305 	} get_user_catch(err);
306 	if (err)
307 		return err;
308 
309 	if (copy_from_user(&vm86->int_revectored,
310 			   &user_vm86->int_revectored,
311 			   sizeof(struct revectored_struct)))
312 		return -EFAULT;
313 	if (copy_from_user(&vm86->int21_revectored,
314 			   &user_vm86->int21_revectored,
315 			   sizeof(struct revectored_struct)))
316 		return -EFAULT;
317 	if (plus) {
318 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
319 				   sizeof(struct vm86plus_info_struct)))
320 			return -EFAULT;
321 		vm86->vm86plus.is_vm86pus = 1;
322 	} else
323 		memset(&vm86->vm86plus, 0,
324 		       sizeof(struct vm86plus_info_struct));
325 
326 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
327 	vm86->user_vm86 = user_vm86;
328 
329 /*
330  * The flags register is also special: we cannot trust that the user
331  * has set it up safely, so this makes sure interrupt etc flags are
332  * inherited from protected mode.
333  */
334 	VEFLAGS = vm86regs.pt.flags;
335 	vm86regs.pt.flags &= SAFE_MASK;
336 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
337 	vm86regs.pt.flags |= X86_VM_MASK;
338 
339 	vm86regs.pt.orig_ax = regs->orig_ax;
340 
341 	switch (vm86->cpu_type) {
342 	case CPU_286:
343 		vm86->veflags_mask = 0;
344 		break;
345 	case CPU_386:
346 		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
347 		break;
348 	case CPU_486:
349 		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
350 		break;
351 	default:
352 		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
353 		break;
354 	}
355 
356 /*
357  * Save old state
358  */
359 	vm86->saved_sp0 = tsk->thread.sp0;
360 	lazy_save_gs(vm86->regs32.gs);
361 
362 	tss = &per_cpu(cpu_tss, get_cpu());
363 	/* make room for real-mode segments */
364 	tsk->thread.sp0 += 16;
365 
366 	if (static_cpu_has(X86_FEATURE_SEP))
367 		tsk->thread.sysenter_cs = 0;
368 
369 	load_sp0(tss, &tsk->thread);
370 	put_cpu();
371 
372 	if (vm86->flags & VM86_SCREEN_BITMAP)
373 		mark_screen_rdonly(tsk->mm);
374 
375 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
376 	force_iret();
377 	return regs->ax;
378 }
379 
380 static inline void set_IF(struct kernel_vm86_regs *regs)
381 {
382 	VEFLAGS |= X86_EFLAGS_VIF;
383 }
384 
385 static inline void clear_IF(struct kernel_vm86_regs *regs)
386 {
387 	VEFLAGS &= ~X86_EFLAGS_VIF;
388 }
389 
390 static inline void clear_TF(struct kernel_vm86_regs *regs)
391 {
392 	regs->pt.flags &= ~X86_EFLAGS_TF;
393 }
394 
395 static inline void clear_AC(struct kernel_vm86_regs *regs)
396 {
397 	regs->pt.flags &= ~X86_EFLAGS_AC;
398 }
399 
400 /*
401  * It is correct to call set_IF(regs) from the set_vflags_*
402  * functions. However someone forgot to call clear_IF(regs)
403  * in the opposite case.
404  * After the command sequence CLI PUSHF STI POPF you should
405  * end up with interrupts disabled, but you ended up with
406  * interrupts enabled.
407  *  ( I was testing my own changes, but the only bug I
408  *    could find was in a function I had not changed. )
409  * [KD]
410  */
411 
412 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
413 {
414 	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
415 	set_flags(regs->pt.flags, flags, SAFE_MASK);
416 	if (flags & X86_EFLAGS_IF)
417 		set_IF(regs);
418 	else
419 		clear_IF(regs);
420 }
421 
422 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
423 {
424 	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
425 	set_flags(regs->pt.flags, flags, SAFE_MASK);
426 	if (flags & X86_EFLAGS_IF)
427 		set_IF(regs);
428 	else
429 		clear_IF(regs);
430 }
431 
432 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
433 {
434 	unsigned long flags = regs->pt.flags & RETURN_MASK;
435 
436 	if (VEFLAGS & X86_EFLAGS_VIF)
437 		flags |= X86_EFLAGS_IF;
438 	flags |= X86_EFLAGS_IOPL;
439 	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
440 }
441 
442 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
443 {
444 	return test_bit(nr, bitmap->__map);
445 }
446 
447 #define val_byte(val, n) (((__u8 *)&val)[n])
448 
449 #define pushb(base, ptr, val, err_label) \
450 	do { \
451 		__u8 __val = val; \
452 		ptr--; \
453 		if (put_user(__val, base + ptr) < 0) \
454 			goto err_label; \
455 	} while (0)
456 
457 #define pushw(base, ptr, val, err_label) \
458 	do { \
459 		__u16 __val = val; \
460 		ptr--; \
461 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
462 			goto err_label; \
463 		ptr--; \
464 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
465 			goto err_label; \
466 	} while (0)
467 
468 #define pushl(base, ptr, val, err_label) \
469 	do { \
470 		__u32 __val = val; \
471 		ptr--; \
472 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
473 			goto err_label; \
474 		ptr--; \
475 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
476 			goto err_label; \
477 		ptr--; \
478 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
479 			goto err_label; \
480 		ptr--; \
481 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
482 			goto err_label; \
483 	} while (0)
484 
485 #define popb(base, ptr, err_label) \
486 	({ \
487 		__u8 __res; \
488 		if (get_user(__res, base + ptr) < 0) \
489 			goto err_label; \
490 		ptr++; \
491 		__res; \
492 	})
493 
494 #define popw(base, ptr, err_label) \
495 	({ \
496 		__u16 __res; \
497 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
498 			goto err_label; \
499 		ptr++; \
500 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
501 			goto err_label; \
502 		ptr++; \
503 		__res; \
504 	})
505 
506 #define popl(base, ptr, err_label) \
507 	({ \
508 		__u32 __res; \
509 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
510 			goto err_label; \
511 		ptr++; \
512 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
513 			goto err_label; \
514 		ptr++; \
515 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
516 			goto err_label; \
517 		ptr++; \
518 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
519 			goto err_label; \
520 		ptr++; \
521 		__res; \
522 	})
523 
524 /* There are so many possible reasons for this function to return
525  * VM86_INTx, so adding another doesn't bother me. We can expect
526  * userspace programs to be able to handle it. (Getting a problem
527  * in userspace is always better than an Oops anyway.) [KD]
528  */
529 static void do_int(struct kernel_vm86_regs *regs, int i,
530     unsigned char __user *ssp, unsigned short sp)
531 {
532 	unsigned long __user *intr_ptr;
533 	unsigned long segoffs;
534 	struct vm86 *vm86 = current->thread.vm86;
535 
536 	if (regs->pt.cs == BIOSSEG)
537 		goto cannot_handle;
538 	if (is_revectored(i, &vm86->int_revectored))
539 		goto cannot_handle;
540 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
541 		goto cannot_handle;
542 	intr_ptr = (unsigned long __user *) (i << 2);
543 	if (get_user(segoffs, intr_ptr))
544 		goto cannot_handle;
545 	if ((segoffs >> 16) == BIOSSEG)
546 		goto cannot_handle;
547 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
548 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
549 	pushw(ssp, sp, IP(regs), cannot_handle);
550 	regs->pt.cs = segoffs >> 16;
551 	SP(regs) -= 6;
552 	IP(regs) = segoffs & 0xffff;
553 	clear_TF(regs);
554 	clear_IF(regs);
555 	clear_AC(regs);
556 	return;
557 
558 cannot_handle:
559 	save_v86_state(regs, VM86_INTx + (i << 8));
560 }
561 
562 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
563 {
564 	struct vm86 *vm86 = current->thread.vm86;
565 
566 	if (vm86->vm86plus.is_vm86pus) {
567 		if ((trapno == 3) || (trapno == 1)) {
568 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
569 			return 0;
570 		}
571 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
572 		return 0;
573 	}
574 	if (trapno != 1)
575 		return 1; /* we let this handle by the calling routine */
576 	current->thread.trap_nr = trapno;
577 	current->thread.error_code = error_code;
578 	force_sig(SIGTRAP, current);
579 	return 0;
580 }
581 
582 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
583 {
584 	unsigned char opcode;
585 	unsigned char __user *csp;
586 	unsigned char __user *ssp;
587 	unsigned short ip, sp, orig_flags;
588 	int data32, pref_done;
589 	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
590 
591 #define CHECK_IF_IN_TRAP \
592 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
593 		newflags |= X86_EFLAGS_TF
594 
595 	orig_flags = *(unsigned short *)&regs->pt.flags;
596 
597 	csp = (unsigned char __user *) (regs->pt.cs << 4);
598 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
599 	sp = SP(regs);
600 	ip = IP(regs);
601 
602 	data32 = 0;
603 	pref_done = 0;
604 	do {
605 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
606 		case 0x66:      /* 32-bit data */     data32 = 1; break;
607 		case 0x67:      /* 32-bit address */  break;
608 		case 0x2e:      /* CS */              break;
609 		case 0x3e:      /* DS */              break;
610 		case 0x26:      /* ES */              break;
611 		case 0x36:      /* SS */              break;
612 		case 0x65:      /* GS */              break;
613 		case 0x64:      /* FS */              break;
614 		case 0xf2:      /* repnz */       break;
615 		case 0xf3:      /* rep */             break;
616 		default: pref_done = 1;
617 		}
618 	} while (!pref_done);
619 
620 	switch (opcode) {
621 
622 	/* pushf */
623 	case 0x9c:
624 		if (data32) {
625 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
626 			SP(regs) -= 4;
627 		} else {
628 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
629 			SP(regs) -= 2;
630 		}
631 		IP(regs) = ip;
632 		goto vm86_fault_return;
633 
634 	/* popf */
635 	case 0x9d:
636 		{
637 		unsigned long newflags;
638 		if (data32) {
639 			newflags = popl(ssp, sp, simulate_sigsegv);
640 			SP(regs) += 4;
641 		} else {
642 			newflags = popw(ssp, sp, simulate_sigsegv);
643 			SP(regs) += 2;
644 		}
645 		IP(regs) = ip;
646 		CHECK_IF_IN_TRAP;
647 		if (data32)
648 			set_vflags_long(newflags, regs);
649 		else
650 			set_vflags_short(newflags, regs);
651 
652 		goto check_vip;
653 		}
654 
655 	/* int xx */
656 	case 0xcd: {
657 		int intno = popb(csp, ip, simulate_sigsegv);
658 		IP(regs) = ip;
659 		if (vmpi->vm86dbg_active) {
660 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
661 				save_v86_state(regs, VM86_INTx + (intno << 8));
662 				return;
663 			}
664 		}
665 		do_int(regs, intno, ssp, sp);
666 		return;
667 	}
668 
669 	/* iret */
670 	case 0xcf:
671 		{
672 		unsigned long newip;
673 		unsigned long newcs;
674 		unsigned long newflags;
675 		if (data32) {
676 			newip = popl(ssp, sp, simulate_sigsegv);
677 			newcs = popl(ssp, sp, simulate_sigsegv);
678 			newflags = popl(ssp, sp, simulate_sigsegv);
679 			SP(regs) += 12;
680 		} else {
681 			newip = popw(ssp, sp, simulate_sigsegv);
682 			newcs = popw(ssp, sp, simulate_sigsegv);
683 			newflags = popw(ssp, sp, simulate_sigsegv);
684 			SP(regs) += 6;
685 		}
686 		IP(regs) = newip;
687 		regs->pt.cs = newcs;
688 		CHECK_IF_IN_TRAP;
689 		if (data32) {
690 			set_vflags_long(newflags, regs);
691 		} else {
692 			set_vflags_short(newflags, regs);
693 		}
694 		goto check_vip;
695 		}
696 
697 	/* cli */
698 	case 0xfa:
699 		IP(regs) = ip;
700 		clear_IF(regs);
701 		goto vm86_fault_return;
702 
703 	/* sti */
704 	/*
705 	 * Damn. This is incorrect: the 'sti' instruction should actually
706 	 * enable interrupts after the /next/ instruction. Not good.
707 	 *
708 	 * Probably needs some horsing around with the TF flag. Aiee..
709 	 */
710 	case 0xfb:
711 		IP(regs) = ip;
712 		set_IF(regs);
713 		goto check_vip;
714 
715 	default:
716 		save_v86_state(regs, VM86_UNKNOWN);
717 	}
718 
719 	return;
720 
721 check_vip:
722 	if (VEFLAGS & X86_EFLAGS_VIP) {
723 		save_v86_state(regs, VM86_STI);
724 		return;
725 	}
726 
727 vm86_fault_return:
728 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
729 		save_v86_state(regs, VM86_PICRETURN);
730 		return;
731 	}
732 	if (orig_flags & X86_EFLAGS_TF)
733 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
734 	return;
735 
736 simulate_sigsegv:
737 	/* FIXME: After a long discussion with Stas we finally
738 	 *        agreed, that this is wrong. Here we should
739 	 *        really send a SIGSEGV to the user program.
740 	 *        But how do we create the correct context? We
741 	 *        are inside a general protection fault handler
742 	 *        and has just returned from a page fault handler.
743 	 *        The correct context for the signal handler
744 	 *        should be a mixture of the two, but how do we
745 	 *        get the information? [KD]
746 	 */
747 	save_v86_state(regs, VM86_UNKNOWN);
748 }
749 
750 /* ---------------- vm86 special IRQ passing stuff ----------------- */
751 
752 #define VM86_IRQNAME		"vm86irq"
753 
754 static struct vm86_irqs {
755 	struct task_struct *tsk;
756 	int sig;
757 } vm86_irqs[16];
758 
759 static DEFINE_SPINLOCK(irqbits_lock);
760 static int irqbits;
761 
762 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
763 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
764 	| (1 << SIGUNUSED))
765 
766 static irqreturn_t irq_handler(int intno, void *dev_id)
767 {
768 	int irq_bit;
769 	unsigned long flags;
770 
771 	spin_lock_irqsave(&irqbits_lock, flags);
772 	irq_bit = 1 << intno;
773 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
774 		goto out;
775 	irqbits |= irq_bit;
776 	if (vm86_irqs[intno].sig)
777 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
778 	/*
779 	 * IRQ will be re-enabled when user asks for the irq (whether
780 	 * polling or as a result of the signal)
781 	 */
782 	disable_irq_nosync(intno);
783 	spin_unlock_irqrestore(&irqbits_lock, flags);
784 	return IRQ_HANDLED;
785 
786 out:
787 	spin_unlock_irqrestore(&irqbits_lock, flags);
788 	return IRQ_NONE;
789 }
790 
791 static inline void free_vm86_irq(int irqnumber)
792 {
793 	unsigned long flags;
794 
795 	free_irq(irqnumber, NULL);
796 	vm86_irqs[irqnumber].tsk = NULL;
797 
798 	spin_lock_irqsave(&irqbits_lock, flags);
799 	irqbits &= ~(1 << irqnumber);
800 	spin_unlock_irqrestore(&irqbits_lock, flags);
801 }
802 
803 void release_vm86_irqs(struct task_struct *task)
804 {
805 	int i;
806 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
807 	    if (vm86_irqs[i].tsk == task)
808 		free_vm86_irq(i);
809 }
810 
811 static inline int get_and_reset_irq(int irqnumber)
812 {
813 	int bit;
814 	unsigned long flags;
815 	int ret = 0;
816 
817 	if (invalid_vm86_irq(irqnumber)) return 0;
818 	if (vm86_irqs[irqnumber].tsk != current) return 0;
819 	spin_lock_irqsave(&irqbits_lock, flags);
820 	bit = irqbits & (1 << irqnumber);
821 	irqbits &= ~bit;
822 	if (bit) {
823 		enable_irq(irqnumber);
824 		ret = 1;
825 	}
826 
827 	spin_unlock_irqrestore(&irqbits_lock, flags);
828 	return ret;
829 }
830 
831 
832 static int do_vm86_irq_handling(int subfunction, int irqnumber)
833 {
834 	int ret;
835 	switch (subfunction) {
836 		case VM86_GET_AND_RESET_IRQ: {
837 			return get_and_reset_irq(irqnumber);
838 		}
839 		case VM86_GET_IRQ_BITS: {
840 			return irqbits;
841 		}
842 		case VM86_REQUEST_IRQ: {
843 			int sig = irqnumber >> 8;
844 			int irq = irqnumber & 255;
845 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
846 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
847 			if (invalid_vm86_irq(irq)) return -EPERM;
848 			if (vm86_irqs[irq].tsk) return -EPERM;
849 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
850 			if (ret) return ret;
851 			vm86_irqs[irq].sig = sig;
852 			vm86_irqs[irq].tsk = current;
853 			return irq;
854 		}
855 		case  VM86_FREE_IRQ: {
856 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
857 			if (!vm86_irqs[irqnumber].tsk) return 0;
858 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
859 			free_vm86_irq(irqnumber);
860 			return 0;
861 		}
862 	}
863 	return -EINVAL;
864 }
865 
866