1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86 5 * stack - Manfred Spraul <manfred@colorfullife.com> 6 * 7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle 8 * them correctly. Now the emulation will be in a 9 * consistent state after stackfaults - Kasper Dupont 10 * <kasperd@daimi.au.dk> 11 * 12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont 13 * <kasperd@daimi.au.dk> 14 * 15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault 16 * caused by Kasper Dupont's changes - Stas Sergeev 17 * 18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes. 19 * Kasper Dupont <kasperd@daimi.au.dk> 20 * 21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault. 22 * Kasper Dupont <kasperd@daimi.au.dk> 23 * 24 * 9 apr 2002 - Changed stack access macros to jump to a label 25 * instead of returning to userspace. This simplifies 26 * do_int, and is needed by handle_vm6_fault. Kasper 27 * Dupont <kasperd@daimi.au.dk> 28 * 29 */ 30 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/interrupt.h> 34 #include <linux/sched.h> 35 #include <linux/kernel.h> 36 #include <linux/signal.h> 37 #include <linux/string.h> 38 #include <linux/mm.h> 39 #include <linux/smp.h> 40 #include <linux/highmem.h> 41 #include <linux/ptrace.h> 42 #include <linux/audit.h> 43 #include <linux/stddef.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/io.h> 47 #include <asm/tlbflush.h> 48 #include <asm/irq.h> 49 #include <asm/syscalls.h> 50 51 /* 52 * Known problems: 53 * 54 * Interrupt handling is not guaranteed: 55 * - a real x86 will disable all interrupts for one instruction 56 * after a "mov ss,xx" to make stack handling atomic even without 57 * the 'lss' instruction. We can't guarantee this in v86 mode, 58 * as the next instruction might result in a page fault or similar. 59 * - a real x86 will have interrupts disabled for one instruction 60 * past the 'sti' that enables them. We don't bother with all the 61 * details yet. 62 * 63 * Let's hope these problems do not actually matter for anything. 64 */ 65 66 67 #define KVM86 ((struct kernel_vm86_struct *)regs) 68 #define VMPI KVM86->vm86plus 69 70 71 /* 72 * 8- and 16-bit register defines.. 73 */ 74 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0]) 75 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1]) 76 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip)) 77 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp)) 78 79 /* 80 * virtual flags (16 and 32-bit versions) 81 */ 82 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags)) 83 #define VEFLAGS (current->thread.v86flags) 84 85 #define set_flags(X, new, mask) \ 86 ((X) = ((X) & ~(mask)) | ((new) & (mask))) 87 88 #define SAFE_MASK (0xDD5) 89 #define RETURN_MASK (0xDFF) 90 91 /* convert kernel_vm86_regs to vm86_regs */ 92 static int copy_vm86_regs_to_user(struct vm86_regs __user *user, 93 const struct kernel_vm86_regs *regs) 94 { 95 int ret = 0; 96 97 /* 98 * kernel_vm86_regs is missing gs, so copy everything up to 99 * (but not including) orig_eax, and then rest including orig_eax. 100 */ 101 ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax)); 102 ret += copy_to_user(&user->orig_eax, ®s->pt.orig_ax, 103 sizeof(struct kernel_vm86_regs) - 104 offsetof(struct kernel_vm86_regs, pt.orig_ax)); 105 106 return ret; 107 } 108 109 /* convert vm86_regs to kernel_vm86_regs */ 110 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs, 111 const struct vm86_regs __user *user, 112 unsigned extra) 113 { 114 int ret = 0; 115 116 /* copy ax-fs inclusive */ 117 ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax)); 118 /* copy orig_ax-__gsh+extra */ 119 ret += copy_from_user(®s->pt.orig_ax, &user->orig_eax, 120 sizeof(struct kernel_vm86_regs) - 121 offsetof(struct kernel_vm86_regs, pt.orig_ax) + 122 extra); 123 return ret; 124 } 125 126 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs) 127 { 128 struct tss_struct *tss; 129 struct pt_regs *ret; 130 unsigned long tmp; 131 132 /* 133 * This gets called from entry.S with interrupts disabled, but 134 * from process context. Enable interrupts here, before trying 135 * to access user space. 136 */ 137 local_irq_enable(); 138 139 if (!current->thread.vm86_info) { 140 printk("no vm86_info: BAD\n"); 141 do_exit(SIGSEGV); 142 } 143 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask); 144 tmp = copy_vm86_regs_to_user(¤t->thread.vm86_info->regs, regs); 145 tmp += put_user(current->thread.screen_bitmap, ¤t->thread.vm86_info->screen_bitmap); 146 if (tmp) { 147 printk("vm86: could not access userspace vm86_info\n"); 148 do_exit(SIGSEGV); 149 } 150 151 tss = &per_cpu(init_tss, get_cpu()); 152 current->thread.sp0 = current->thread.saved_sp0; 153 current->thread.sysenter_cs = __KERNEL_CS; 154 load_sp0(tss, ¤t->thread); 155 current->thread.saved_sp0 = 0; 156 put_cpu(); 157 158 ret = KVM86->regs32; 159 160 ret->fs = current->thread.saved_fs; 161 set_user_gs(ret, current->thread.saved_gs); 162 163 return ret; 164 } 165 166 static void mark_screen_rdonly(struct mm_struct *mm) 167 { 168 pgd_t *pgd; 169 pud_t *pud; 170 pmd_t *pmd; 171 pte_t *pte; 172 spinlock_t *ptl; 173 int i; 174 175 pgd = pgd_offset(mm, 0xA0000); 176 if (pgd_none_or_clear_bad(pgd)) 177 goto out; 178 pud = pud_offset(pgd, 0xA0000); 179 if (pud_none_or_clear_bad(pud)) 180 goto out; 181 pmd = pmd_offset(pud, 0xA0000); 182 if (pmd_none_or_clear_bad(pmd)) 183 goto out; 184 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl); 185 for (i = 0; i < 32; i++) { 186 if (pte_present(*pte)) 187 set_pte(pte, pte_wrprotect(*pte)); 188 pte++; 189 } 190 pte_unmap_unlock(pte, ptl); 191 out: 192 flush_tlb(); 193 } 194 195 196 197 static int do_vm86_irq_handling(int subfunction, int irqnumber); 198 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk); 199 200 int sys_vm86old(struct pt_regs *regs) 201 { 202 struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs->bx; 203 struct kernel_vm86_struct info; /* declare this _on top_, 204 * this avoids wasting of stack space. 205 * This remains on the stack until we 206 * return to 32 bit user space. 207 */ 208 struct task_struct *tsk; 209 int tmp, ret = -EPERM; 210 211 tsk = current; 212 if (tsk->thread.saved_sp0) 213 goto out; 214 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs, 215 offsetof(struct kernel_vm86_struct, vm86plus) - 216 sizeof(info.regs)); 217 ret = -EFAULT; 218 if (tmp) 219 goto out; 220 memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus); 221 info.regs32 = regs; 222 tsk->thread.vm86_info = v86; 223 do_sys_vm86(&info, tsk); 224 ret = 0; /* we never return here */ 225 out: 226 return ret; 227 } 228 229 230 int sys_vm86(struct pt_regs *regs) 231 { 232 struct kernel_vm86_struct info; /* declare this _on top_, 233 * this avoids wasting of stack space. 234 * This remains on the stack until we 235 * return to 32 bit user space. 236 */ 237 struct task_struct *tsk; 238 int tmp, ret; 239 struct vm86plus_struct __user *v86; 240 241 tsk = current; 242 switch (regs->bx) { 243 case VM86_REQUEST_IRQ: 244 case VM86_FREE_IRQ: 245 case VM86_GET_IRQ_BITS: 246 case VM86_GET_AND_RESET_IRQ: 247 ret = do_vm86_irq_handling(regs->bx, (int)regs->cx); 248 goto out; 249 case VM86_PLUS_INSTALL_CHECK: 250 /* 251 * NOTE: on old vm86 stuff this will return the error 252 * from access_ok(), because the subfunction is 253 * interpreted as (invalid) address to vm86_struct. 254 * So the installation check works. 255 */ 256 ret = 0; 257 goto out; 258 } 259 260 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */ 261 ret = -EPERM; 262 if (tsk->thread.saved_sp0) 263 goto out; 264 v86 = (struct vm86plus_struct __user *)regs->cx; 265 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs, 266 offsetof(struct kernel_vm86_struct, regs32) - 267 sizeof(info.regs)); 268 ret = -EFAULT; 269 if (tmp) 270 goto out; 271 info.regs32 = regs; 272 info.vm86plus.is_vm86pus = 1; 273 tsk->thread.vm86_info = (struct vm86_struct __user *)v86; 274 do_sys_vm86(&info, tsk); 275 ret = 0; /* we never return here */ 276 out: 277 return ret; 278 } 279 280 281 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk) 282 { 283 struct tss_struct *tss; 284 /* 285 * make sure the vm86() system call doesn't try to do anything silly 286 */ 287 info->regs.pt.ds = 0; 288 info->regs.pt.es = 0; 289 info->regs.pt.fs = 0; 290 #ifndef CONFIG_X86_32_LAZY_GS 291 info->regs.pt.gs = 0; 292 #endif 293 294 /* 295 * The flags register is also special: we cannot trust that the user 296 * has set it up safely, so this makes sure interrupt etc flags are 297 * inherited from protected mode. 298 */ 299 VEFLAGS = info->regs.pt.flags; 300 info->regs.pt.flags &= SAFE_MASK; 301 info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK; 302 info->regs.pt.flags |= X86_VM_MASK; 303 304 switch (info->cpu_type) { 305 case CPU_286: 306 tsk->thread.v86mask = 0; 307 break; 308 case CPU_386: 309 tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL; 310 break; 311 case CPU_486: 312 tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; 313 break; 314 default: 315 tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; 316 break; 317 } 318 319 /* 320 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL) 321 */ 322 info->regs32->ax = VM86_SIGNAL; 323 tsk->thread.saved_sp0 = tsk->thread.sp0; 324 tsk->thread.saved_fs = info->regs32->fs; 325 tsk->thread.saved_gs = get_user_gs(info->regs32); 326 327 tss = &per_cpu(init_tss, get_cpu()); 328 tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0; 329 if (cpu_has_sep) 330 tsk->thread.sysenter_cs = 0; 331 load_sp0(tss, &tsk->thread); 332 put_cpu(); 333 334 tsk->thread.screen_bitmap = info->screen_bitmap; 335 if (info->flags & VM86_SCREEN_BITMAP) 336 mark_screen_rdonly(tsk->mm); 337 338 /*call audit_syscall_exit since we do not exit via the normal paths */ 339 if (unlikely(current->audit_context)) 340 audit_syscall_exit(AUDITSC_RESULT(0), 0); 341 342 __asm__ __volatile__( 343 "movl %0,%%esp\n\t" 344 "movl %1,%%ebp\n\t" 345 #ifdef CONFIG_X86_32_LAZY_GS 346 "mov %2, %%gs\n\t" 347 #endif 348 "jmp resume_userspace" 349 : /* no outputs */ 350 :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0)); 351 /* we never return here */ 352 } 353 354 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval) 355 { 356 struct pt_regs *regs32; 357 358 regs32 = save_v86_state(regs16); 359 regs32->ax = retval; 360 __asm__ __volatile__("movl %0,%%esp\n\t" 361 "movl %1,%%ebp\n\t" 362 "jmp resume_userspace" 363 : : "r" (regs32), "r" (current_thread_info())); 364 } 365 366 static inline void set_IF(struct kernel_vm86_regs *regs) 367 { 368 VEFLAGS |= X86_EFLAGS_VIF; 369 if (VEFLAGS & X86_EFLAGS_VIP) 370 return_to_32bit(regs, VM86_STI); 371 } 372 373 static inline void clear_IF(struct kernel_vm86_regs *regs) 374 { 375 VEFLAGS &= ~X86_EFLAGS_VIF; 376 } 377 378 static inline void clear_TF(struct kernel_vm86_regs *regs) 379 { 380 regs->pt.flags &= ~X86_EFLAGS_TF; 381 } 382 383 static inline void clear_AC(struct kernel_vm86_regs *regs) 384 { 385 regs->pt.flags &= ~X86_EFLAGS_AC; 386 } 387 388 /* 389 * It is correct to call set_IF(regs) from the set_vflags_* 390 * functions. However someone forgot to call clear_IF(regs) 391 * in the opposite case. 392 * After the command sequence CLI PUSHF STI POPF you should 393 * end up with interrupts disabled, but you ended up with 394 * interrupts enabled. 395 * ( I was testing my own changes, but the only bug I 396 * could find was in a function I had not changed. ) 397 * [KD] 398 */ 399 400 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs) 401 { 402 set_flags(VEFLAGS, flags, current->thread.v86mask); 403 set_flags(regs->pt.flags, flags, SAFE_MASK); 404 if (flags & X86_EFLAGS_IF) 405 set_IF(regs); 406 else 407 clear_IF(regs); 408 } 409 410 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs) 411 { 412 set_flags(VFLAGS, flags, current->thread.v86mask); 413 set_flags(regs->pt.flags, flags, SAFE_MASK); 414 if (flags & X86_EFLAGS_IF) 415 set_IF(regs); 416 else 417 clear_IF(regs); 418 } 419 420 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs) 421 { 422 unsigned long flags = regs->pt.flags & RETURN_MASK; 423 424 if (VEFLAGS & X86_EFLAGS_VIF) 425 flags |= X86_EFLAGS_IF; 426 flags |= X86_EFLAGS_IOPL; 427 return flags | (VEFLAGS & current->thread.v86mask); 428 } 429 430 static inline int is_revectored(int nr, struct revectored_struct *bitmap) 431 { 432 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0" 433 :"=r" (nr) 434 :"m" (*bitmap), "r" (nr)); 435 return nr; 436 } 437 438 #define val_byte(val, n) (((__u8 *)&val)[n]) 439 440 #define pushb(base, ptr, val, err_label) \ 441 do { \ 442 __u8 __val = val; \ 443 ptr--; \ 444 if (put_user(__val, base + ptr) < 0) \ 445 goto err_label; \ 446 } while (0) 447 448 #define pushw(base, ptr, val, err_label) \ 449 do { \ 450 __u16 __val = val; \ 451 ptr--; \ 452 if (put_user(val_byte(__val, 1), base + ptr) < 0) \ 453 goto err_label; \ 454 ptr--; \ 455 if (put_user(val_byte(__val, 0), base + ptr) < 0) \ 456 goto err_label; \ 457 } while (0) 458 459 #define pushl(base, ptr, val, err_label) \ 460 do { \ 461 __u32 __val = val; \ 462 ptr--; \ 463 if (put_user(val_byte(__val, 3), base + ptr) < 0) \ 464 goto err_label; \ 465 ptr--; \ 466 if (put_user(val_byte(__val, 2), base + ptr) < 0) \ 467 goto err_label; \ 468 ptr--; \ 469 if (put_user(val_byte(__val, 1), base + ptr) < 0) \ 470 goto err_label; \ 471 ptr--; \ 472 if (put_user(val_byte(__val, 0), base + ptr) < 0) \ 473 goto err_label; \ 474 } while (0) 475 476 #define popb(base, ptr, err_label) \ 477 ({ \ 478 __u8 __res; \ 479 if (get_user(__res, base + ptr) < 0) \ 480 goto err_label; \ 481 ptr++; \ 482 __res; \ 483 }) 484 485 #define popw(base, ptr, err_label) \ 486 ({ \ 487 __u16 __res; \ 488 if (get_user(val_byte(__res, 0), base + ptr) < 0) \ 489 goto err_label; \ 490 ptr++; \ 491 if (get_user(val_byte(__res, 1), base + ptr) < 0) \ 492 goto err_label; \ 493 ptr++; \ 494 __res; \ 495 }) 496 497 #define popl(base, ptr, err_label) \ 498 ({ \ 499 __u32 __res; \ 500 if (get_user(val_byte(__res, 0), base + ptr) < 0) \ 501 goto err_label; \ 502 ptr++; \ 503 if (get_user(val_byte(__res, 1), base + ptr) < 0) \ 504 goto err_label; \ 505 ptr++; \ 506 if (get_user(val_byte(__res, 2), base + ptr) < 0) \ 507 goto err_label; \ 508 ptr++; \ 509 if (get_user(val_byte(__res, 3), base + ptr) < 0) \ 510 goto err_label; \ 511 ptr++; \ 512 __res; \ 513 }) 514 515 /* There are so many possible reasons for this function to return 516 * VM86_INTx, so adding another doesn't bother me. We can expect 517 * userspace programs to be able to handle it. (Getting a problem 518 * in userspace is always better than an Oops anyway.) [KD] 519 */ 520 static void do_int(struct kernel_vm86_regs *regs, int i, 521 unsigned char __user *ssp, unsigned short sp) 522 { 523 unsigned long __user *intr_ptr; 524 unsigned long segoffs; 525 526 if (regs->pt.cs == BIOSSEG) 527 goto cannot_handle; 528 if (is_revectored(i, &KVM86->int_revectored)) 529 goto cannot_handle; 530 if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored)) 531 goto cannot_handle; 532 intr_ptr = (unsigned long __user *) (i << 2); 533 if (get_user(segoffs, intr_ptr)) 534 goto cannot_handle; 535 if ((segoffs >> 16) == BIOSSEG) 536 goto cannot_handle; 537 pushw(ssp, sp, get_vflags(regs), cannot_handle); 538 pushw(ssp, sp, regs->pt.cs, cannot_handle); 539 pushw(ssp, sp, IP(regs), cannot_handle); 540 regs->pt.cs = segoffs >> 16; 541 SP(regs) -= 6; 542 IP(regs) = segoffs & 0xffff; 543 clear_TF(regs); 544 clear_IF(regs); 545 clear_AC(regs); 546 return; 547 548 cannot_handle: 549 return_to_32bit(regs, VM86_INTx + (i << 8)); 550 } 551 552 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno) 553 { 554 if (VMPI.is_vm86pus) { 555 if ((trapno == 3) || (trapno == 1)) 556 return_to_32bit(regs, VM86_TRAP + (trapno << 8)); 557 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs)); 558 return 0; 559 } 560 if (trapno != 1) 561 return 1; /* we let this handle by the calling routine */ 562 current->thread.trap_no = trapno; 563 current->thread.error_code = error_code; 564 force_sig(SIGTRAP, current); 565 return 0; 566 } 567 568 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code) 569 { 570 unsigned char opcode; 571 unsigned char __user *csp; 572 unsigned char __user *ssp; 573 unsigned short ip, sp, orig_flags; 574 int data32, pref_done; 575 576 #define CHECK_IF_IN_TRAP \ 577 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \ 578 newflags |= X86_EFLAGS_TF 579 #define VM86_FAULT_RETURN do { \ 580 if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \ 581 return_to_32bit(regs, VM86_PICRETURN); \ 582 if (orig_flags & X86_EFLAGS_TF) \ 583 handle_vm86_trap(regs, 0, 1); \ 584 return; } while (0) 585 586 orig_flags = *(unsigned short *)®s->pt.flags; 587 588 csp = (unsigned char __user *) (regs->pt.cs << 4); 589 ssp = (unsigned char __user *) (regs->pt.ss << 4); 590 sp = SP(regs); 591 ip = IP(regs); 592 593 data32 = 0; 594 pref_done = 0; 595 do { 596 switch (opcode = popb(csp, ip, simulate_sigsegv)) { 597 case 0x66: /* 32-bit data */ data32 = 1; break; 598 case 0x67: /* 32-bit address */ break; 599 case 0x2e: /* CS */ break; 600 case 0x3e: /* DS */ break; 601 case 0x26: /* ES */ break; 602 case 0x36: /* SS */ break; 603 case 0x65: /* GS */ break; 604 case 0x64: /* FS */ break; 605 case 0xf2: /* repnz */ break; 606 case 0xf3: /* rep */ break; 607 default: pref_done = 1; 608 } 609 } while (!pref_done); 610 611 switch (opcode) { 612 613 /* pushf */ 614 case 0x9c: 615 if (data32) { 616 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv); 617 SP(regs) -= 4; 618 } else { 619 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv); 620 SP(regs) -= 2; 621 } 622 IP(regs) = ip; 623 VM86_FAULT_RETURN; 624 625 /* popf */ 626 case 0x9d: 627 { 628 unsigned long newflags; 629 if (data32) { 630 newflags = popl(ssp, sp, simulate_sigsegv); 631 SP(regs) += 4; 632 } else { 633 newflags = popw(ssp, sp, simulate_sigsegv); 634 SP(regs) += 2; 635 } 636 IP(regs) = ip; 637 CHECK_IF_IN_TRAP; 638 if (data32) 639 set_vflags_long(newflags, regs); 640 else 641 set_vflags_short(newflags, regs); 642 643 VM86_FAULT_RETURN; 644 } 645 646 /* int xx */ 647 case 0xcd: { 648 int intno = popb(csp, ip, simulate_sigsegv); 649 IP(regs) = ip; 650 if (VMPI.vm86dbg_active) { 651 if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3]) 652 return_to_32bit(regs, VM86_INTx + (intno << 8)); 653 } 654 do_int(regs, intno, ssp, sp); 655 return; 656 } 657 658 /* iret */ 659 case 0xcf: 660 { 661 unsigned long newip; 662 unsigned long newcs; 663 unsigned long newflags; 664 if (data32) { 665 newip = popl(ssp, sp, simulate_sigsegv); 666 newcs = popl(ssp, sp, simulate_sigsegv); 667 newflags = popl(ssp, sp, simulate_sigsegv); 668 SP(regs) += 12; 669 } else { 670 newip = popw(ssp, sp, simulate_sigsegv); 671 newcs = popw(ssp, sp, simulate_sigsegv); 672 newflags = popw(ssp, sp, simulate_sigsegv); 673 SP(regs) += 6; 674 } 675 IP(regs) = newip; 676 regs->pt.cs = newcs; 677 CHECK_IF_IN_TRAP; 678 if (data32) { 679 set_vflags_long(newflags, regs); 680 } else { 681 set_vflags_short(newflags, regs); 682 } 683 VM86_FAULT_RETURN; 684 } 685 686 /* cli */ 687 case 0xfa: 688 IP(regs) = ip; 689 clear_IF(regs); 690 VM86_FAULT_RETURN; 691 692 /* sti */ 693 /* 694 * Damn. This is incorrect: the 'sti' instruction should actually 695 * enable interrupts after the /next/ instruction. Not good. 696 * 697 * Probably needs some horsing around with the TF flag. Aiee.. 698 */ 699 case 0xfb: 700 IP(regs) = ip; 701 set_IF(regs); 702 VM86_FAULT_RETURN; 703 704 default: 705 return_to_32bit(regs, VM86_UNKNOWN); 706 } 707 708 return; 709 710 simulate_sigsegv: 711 /* FIXME: After a long discussion with Stas we finally 712 * agreed, that this is wrong. Here we should 713 * really send a SIGSEGV to the user program. 714 * But how do we create the correct context? We 715 * are inside a general protection fault handler 716 * and has just returned from a page fault handler. 717 * The correct context for the signal handler 718 * should be a mixture of the two, but how do we 719 * get the information? [KD] 720 */ 721 return_to_32bit(regs, VM86_UNKNOWN); 722 } 723 724 /* ---------------- vm86 special IRQ passing stuff ----------------- */ 725 726 #define VM86_IRQNAME "vm86irq" 727 728 static struct vm86_irqs { 729 struct task_struct *tsk; 730 int sig; 731 } vm86_irqs[16]; 732 733 static DEFINE_SPINLOCK(irqbits_lock); 734 static int irqbits; 735 736 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \ 737 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \ 738 | (1 << SIGUNUSED)) 739 740 static irqreturn_t irq_handler(int intno, void *dev_id) 741 { 742 int irq_bit; 743 unsigned long flags; 744 745 spin_lock_irqsave(&irqbits_lock, flags); 746 irq_bit = 1 << intno; 747 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk) 748 goto out; 749 irqbits |= irq_bit; 750 if (vm86_irqs[intno].sig) 751 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1); 752 /* 753 * IRQ will be re-enabled when user asks for the irq (whether 754 * polling or as a result of the signal) 755 */ 756 disable_irq_nosync(intno); 757 spin_unlock_irqrestore(&irqbits_lock, flags); 758 return IRQ_HANDLED; 759 760 out: 761 spin_unlock_irqrestore(&irqbits_lock, flags); 762 return IRQ_NONE; 763 } 764 765 static inline void free_vm86_irq(int irqnumber) 766 { 767 unsigned long flags; 768 769 free_irq(irqnumber, NULL); 770 vm86_irqs[irqnumber].tsk = NULL; 771 772 spin_lock_irqsave(&irqbits_lock, flags); 773 irqbits &= ~(1 << irqnumber); 774 spin_unlock_irqrestore(&irqbits_lock, flags); 775 } 776 777 void release_vm86_irqs(struct task_struct *task) 778 { 779 int i; 780 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++) 781 if (vm86_irqs[i].tsk == task) 782 free_vm86_irq(i); 783 } 784 785 static inline int get_and_reset_irq(int irqnumber) 786 { 787 int bit; 788 unsigned long flags; 789 int ret = 0; 790 791 if (invalid_vm86_irq(irqnumber)) return 0; 792 if (vm86_irqs[irqnumber].tsk != current) return 0; 793 spin_lock_irqsave(&irqbits_lock, flags); 794 bit = irqbits & (1 << irqnumber); 795 irqbits &= ~bit; 796 if (bit) { 797 enable_irq(irqnumber); 798 ret = 1; 799 } 800 801 spin_unlock_irqrestore(&irqbits_lock, flags); 802 return ret; 803 } 804 805 806 static int do_vm86_irq_handling(int subfunction, int irqnumber) 807 { 808 int ret; 809 switch (subfunction) { 810 case VM86_GET_AND_RESET_IRQ: { 811 return get_and_reset_irq(irqnumber); 812 } 813 case VM86_GET_IRQ_BITS: { 814 return irqbits; 815 } 816 case VM86_REQUEST_IRQ: { 817 int sig = irqnumber >> 8; 818 int irq = irqnumber & 255; 819 if (!capable(CAP_SYS_ADMIN)) return -EPERM; 820 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM; 821 if (invalid_vm86_irq(irq)) return -EPERM; 822 if (vm86_irqs[irq].tsk) return -EPERM; 823 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL); 824 if (ret) return ret; 825 vm86_irqs[irq].sig = sig; 826 vm86_irqs[irq].tsk = current; 827 return irq; 828 } 829 case VM86_FREE_IRQ: { 830 if (invalid_vm86_irq(irqnumber)) return -EPERM; 831 if (!vm86_irqs[irqnumber].tsk) return 0; 832 if (vm86_irqs[irqnumber].tsk != current) return -EPERM; 833 free_vm86_irq(irqnumber); 834 return 0; 835 } 836 } 837 return -EINVAL; 838 } 839 840