xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision 643d1f7f)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
49 
50 /*
51  * Known problems:
52  *
53  * Interrupt handling is not guaranteed:
54  * - a real x86 will disable all interrupts for one instruction
55  *   after a "mov ss,xx" to make stack handling atomic even without
56  *   the 'lss' instruction. We can't guarantee this in v86 mode,
57  *   as the next instruction might result in a page fault or similar.
58  * - a real x86 will have interrupts disabled for one instruction
59  *   past the 'sti' that enables them. We don't bother with all the
60  *   details yet.
61  *
62  * Let's hope these problems do not actually matter for anything.
63  */
64 
65 
66 #define KVM86	((struct kernel_vm86_struct *)regs)
67 #define VMPI 	KVM86->vm86plus
68 
69 
70 /*
71  * 8- and 16-bit register defines..
72  */
73 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
74 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
75 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
76 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
77 
78 /*
79  * virtual flags (16 and 32-bit versions)
80  */
81 #define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
82 #define VEFLAGS	(current->thread.v86flags)
83 
84 #define set_flags(X,new,mask) \
85 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
86 
87 #define SAFE_MASK	(0xDD5)
88 #define RETURN_MASK	(0xDFF)
89 
90 /* convert kernel_vm86_regs to vm86_regs */
91 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
92 				  const struct kernel_vm86_regs *regs)
93 {
94 	int ret = 0;
95 
96 	/* kernel_vm86_regs is missing gs, so copy everything up to
97 	   (but not including) orig_eax, and then rest including orig_eax. */
98 	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
99 	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
100 			    sizeof(struct kernel_vm86_regs) -
101 			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
102 
103 	return ret;
104 }
105 
106 /* convert vm86_regs to kernel_vm86_regs */
107 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
108 				    const struct vm86_regs __user *user,
109 				    unsigned extra)
110 {
111 	int ret = 0;
112 
113 	/* copy ax-fs inclusive */
114 	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
115 	/* copy orig_ax-__gsh+extra */
116 	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
117 			      sizeof(struct kernel_vm86_regs) -
118 			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
119 			      extra);
120 	return ret;
121 }
122 
123 struct pt_regs * save_v86_state(struct kernel_vm86_regs * regs)
124 {
125 	struct tss_struct *tss;
126 	struct pt_regs *ret;
127 	unsigned long tmp;
128 
129 	/*
130 	 * This gets called from entry.S with interrupts disabled, but
131 	 * from process context. Enable interrupts here, before trying
132 	 * to access user space.
133 	 */
134 	local_irq_enable();
135 
136 	if (!current->thread.vm86_info) {
137 		printk("no vm86_info: BAD\n");
138 		do_exit(SIGSEGV);
139 	}
140 	set_flags(regs->pt.flags, VEFLAGS, VIF_MASK | current->thread.v86mask);
141 	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
142 	tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
143 	if (tmp) {
144 		printk("vm86: could not access userspace vm86_info\n");
145 		do_exit(SIGSEGV);
146 	}
147 
148 	tss = &per_cpu(init_tss, get_cpu());
149 	current->thread.sp0 = current->thread.saved_sp0;
150 	current->thread.sysenter_cs = __KERNEL_CS;
151 	load_sp0(tss, &current->thread);
152 	current->thread.saved_sp0 = 0;
153 	put_cpu();
154 
155 	ret = KVM86->regs32;
156 
157 	ret->fs = current->thread.saved_fs;
158 	loadsegment(gs, current->thread.saved_gs);
159 
160 	return ret;
161 }
162 
163 static void mark_screen_rdonly(struct mm_struct *mm)
164 {
165 	pgd_t *pgd;
166 	pud_t *pud;
167 	pmd_t *pmd;
168 	pte_t *pte;
169 	spinlock_t *ptl;
170 	int i;
171 
172 	pgd = pgd_offset(mm, 0xA0000);
173 	if (pgd_none_or_clear_bad(pgd))
174 		goto out;
175 	pud = pud_offset(pgd, 0xA0000);
176 	if (pud_none_or_clear_bad(pud))
177 		goto out;
178 	pmd = pmd_offset(pud, 0xA0000);
179 	if (pmd_none_or_clear_bad(pmd))
180 		goto out;
181 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
182 	for (i = 0; i < 32; i++) {
183 		if (pte_present(*pte))
184 			set_pte(pte, pte_wrprotect(*pte));
185 		pte++;
186 	}
187 	pte_unmap_unlock(pte, ptl);
188 out:
189 	flush_tlb();
190 }
191 
192 
193 
194 static int do_vm86_irq_handling(int subfunction, int irqnumber);
195 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
196 
197 asmlinkage int sys_vm86old(struct pt_regs regs)
198 {
199 	struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx;
200 	struct kernel_vm86_struct info; /* declare this _on top_,
201 					 * this avoids wasting of stack space.
202 					 * This remains on the stack until we
203 					 * return to 32 bit user space.
204 					 */
205 	struct task_struct *tsk;
206 	int tmp, ret = -EPERM;
207 
208 	tsk = current;
209 	if (tsk->thread.saved_sp0)
210 		goto out;
211 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
212 				       offsetof(struct kernel_vm86_struct, vm86plus) -
213 				       sizeof(info.regs));
214 	ret = -EFAULT;
215 	if (tmp)
216 		goto out;
217 	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
218 	info.regs32 = &regs;
219 	tsk->thread.vm86_info = v86;
220 	do_sys_vm86(&info, tsk);
221 	ret = 0;	/* we never return here */
222 out:
223 	return ret;
224 }
225 
226 
227 asmlinkage int sys_vm86(struct pt_regs regs)
228 {
229 	struct kernel_vm86_struct info; /* declare this _on top_,
230 					 * this avoids wasting of stack space.
231 					 * This remains on the stack until we
232 					 * return to 32 bit user space.
233 					 */
234 	struct task_struct *tsk;
235 	int tmp, ret;
236 	struct vm86plus_struct __user *v86;
237 
238 	tsk = current;
239 	switch (regs.bx) {
240 		case VM86_REQUEST_IRQ:
241 		case VM86_FREE_IRQ:
242 		case VM86_GET_IRQ_BITS:
243 		case VM86_GET_AND_RESET_IRQ:
244 			ret = do_vm86_irq_handling(regs.bx, (int)regs.cx);
245 			goto out;
246 		case VM86_PLUS_INSTALL_CHECK:
247 			/* NOTE: on old vm86 stuff this will return the error
248 			   from access_ok(), because the subfunction is
249 			   interpreted as (invalid) address to vm86_struct.
250 			   So the installation check works.
251 			 */
252 			ret = 0;
253 			goto out;
254 	}
255 
256 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
257 	ret = -EPERM;
258 	if (tsk->thread.saved_sp0)
259 		goto out;
260 	v86 = (struct vm86plus_struct __user *)regs.cx;
261 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
262 				       offsetof(struct kernel_vm86_struct, regs32) -
263 				       sizeof(info.regs));
264 	ret = -EFAULT;
265 	if (tmp)
266 		goto out;
267 	info.regs32 = &regs;
268 	info.vm86plus.is_vm86pus = 1;
269 	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
270 	do_sys_vm86(&info, tsk);
271 	ret = 0;	/* we never return here */
272 out:
273 	return ret;
274 }
275 
276 
277 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
278 {
279 	struct tss_struct *tss;
280 /*
281  * make sure the vm86() system call doesn't try to do anything silly
282  */
283 	info->regs.pt.ds = 0;
284 	info->regs.pt.es = 0;
285 	info->regs.pt.fs = 0;
286 
287 /* we are clearing gs later just before "jmp resume_userspace",
288  * because it is not saved/restored.
289  */
290 
291 /*
292  * The flags register is also special: we cannot trust that the user
293  * has set it up safely, so this makes sure interrupt etc flags are
294  * inherited from protected mode.
295  */
296 	VEFLAGS = info->regs.pt.flags;
297 	info->regs.pt.flags &= SAFE_MASK;
298 	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
299 	info->regs.pt.flags |= VM_MASK;
300 
301 	switch (info->cpu_type) {
302 		case CPU_286:
303 			tsk->thread.v86mask = 0;
304 			break;
305 		case CPU_386:
306 			tsk->thread.v86mask = NT_MASK | IOPL_MASK;
307 			break;
308 		case CPU_486:
309 			tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
310 			break;
311 		default:
312 			tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
313 			break;
314 	}
315 
316 /*
317  * Save old state, set default return value (%ax) to 0
318  */
319 	info->regs32->ax = 0;
320 	tsk->thread.saved_sp0 = tsk->thread.sp0;
321 	tsk->thread.saved_fs = info->regs32->fs;
322 	savesegment(gs, tsk->thread.saved_gs);
323 
324 	tss = &per_cpu(init_tss, get_cpu());
325 	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
326 	if (cpu_has_sep)
327 		tsk->thread.sysenter_cs = 0;
328 	load_sp0(tss, &tsk->thread);
329 	put_cpu();
330 
331 	tsk->thread.screen_bitmap = info->screen_bitmap;
332 	if (info->flags & VM86_SCREEN_BITMAP)
333 		mark_screen_rdonly(tsk->mm);
334 
335 	/*call audit_syscall_exit since we do not exit via the normal paths */
336 	if (unlikely(current->audit_context))
337 		audit_syscall_exit(AUDITSC_RESULT(0), 0);
338 
339 	__asm__ __volatile__(
340 		"movl %0,%%esp\n\t"
341 		"movl %1,%%ebp\n\t"
342 		"mov  %2, %%gs\n\t"
343 		"jmp resume_userspace"
344 		: /* no outputs */
345 		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
346 	/* we never return here */
347 }
348 
349 static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
350 {
351 	struct pt_regs * regs32;
352 
353 	regs32 = save_v86_state(regs16);
354 	regs32->ax = retval;
355 	__asm__ __volatile__("movl %0,%%esp\n\t"
356 		"movl %1,%%ebp\n\t"
357 		"jmp resume_userspace"
358 		: : "r" (regs32), "r" (current_thread_info()));
359 }
360 
361 static inline void set_IF(struct kernel_vm86_regs * regs)
362 {
363 	VEFLAGS |= VIF_MASK;
364 	if (VEFLAGS & VIP_MASK)
365 		return_to_32bit(regs, VM86_STI);
366 }
367 
368 static inline void clear_IF(struct kernel_vm86_regs * regs)
369 {
370 	VEFLAGS &= ~VIF_MASK;
371 }
372 
373 static inline void clear_TF(struct kernel_vm86_regs * regs)
374 {
375 	regs->pt.flags &= ~TF_MASK;
376 }
377 
378 static inline void clear_AC(struct kernel_vm86_regs * regs)
379 {
380 	regs->pt.flags &= ~AC_MASK;
381 }
382 
383 /* It is correct to call set_IF(regs) from the set_vflags_*
384  * functions. However someone forgot to call clear_IF(regs)
385  * in the opposite case.
386  * After the command sequence CLI PUSHF STI POPF you should
387  * end up with interrupts disabled, but you ended up with
388  * interrupts enabled.
389  *  ( I was testing my own changes, but the only bug I
390  *    could find was in a function I had not changed. )
391  * [KD]
392  */
393 
394 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs * regs)
395 {
396 	set_flags(VEFLAGS, flags, current->thread.v86mask);
397 	set_flags(regs->pt.flags, flags, SAFE_MASK);
398 	if (flags & IF_MASK)
399 		set_IF(regs);
400 	else
401 		clear_IF(regs);
402 }
403 
404 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
405 {
406 	set_flags(VFLAGS, flags, current->thread.v86mask);
407 	set_flags(regs->pt.flags, flags, SAFE_MASK);
408 	if (flags & IF_MASK)
409 		set_IF(regs);
410 	else
411 		clear_IF(regs);
412 }
413 
414 static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
415 {
416 	unsigned long flags = regs->pt.flags & RETURN_MASK;
417 
418 	if (VEFLAGS & VIF_MASK)
419 		flags |= IF_MASK;
420 	flags |= IOPL_MASK;
421 	return flags | (VEFLAGS & current->thread.v86mask);
422 }
423 
424 static inline int is_revectored(int nr, struct revectored_struct * bitmap)
425 {
426 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
427 		:"=r" (nr)
428 		:"m" (*bitmap),"r" (nr));
429 	return nr;
430 }
431 
432 #define val_byte(val, n) (((__u8 *)&val)[n])
433 
434 #define pushb(base, ptr, val, err_label) \
435 	do { \
436 		__u8 __val = val; \
437 		ptr--; \
438 		if (put_user(__val, base + ptr) < 0) \
439 			goto err_label; \
440 	} while(0)
441 
442 #define pushw(base, ptr, val, err_label) \
443 	do { \
444 		__u16 __val = val; \
445 		ptr--; \
446 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
447 			goto err_label; \
448 		ptr--; \
449 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
450 			goto err_label; \
451 	} while(0)
452 
453 #define pushl(base, ptr, val, err_label) \
454 	do { \
455 		__u32 __val = val; \
456 		ptr--; \
457 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
458 			goto err_label; \
459 		ptr--; \
460 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
461 			goto err_label; \
462 		ptr--; \
463 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
464 			goto err_label; \
465 		ptr--; \
466 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
467 			goto err_label; \
468 	} while(0)
469 
470 #define popb(base, ptr, err_label) \
471 	({ \
472 		__u8 __res; \
473 		if (get_user(__res, base + ptr) < 0) \
474 			goto err_label; \
475 		ptr++; \
476 		__res; \
477 	})
478 
479 #define popw(base, ptr, err_label) \
480 	({ \
481 		__u16 __res; \
482 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
483 			goto err_label; \
484 		ptr++; \
485 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
486 			goto err_label; \
487 		ptr++; \
488 		__res; \
489 	})
490 
491 #define popl(base, ptr, err_label) \
492 	({ \
493 		__u32 __res; \
494 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
495 			goto err_label; \
496 		ptr++; \
497 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
498 			goto err_label; \
499 		ptr++; \
500 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
501 			goto err_label; \
502 		ptr++; \
503 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
504 			goto err_label; \
505 		ptr++; \
506 		__res; \
507 	})
508 
509 /* There are so many possible reasons for this function to return
510  * VM86_INTx, so adding another doesn't bother me. We can expect
511  * userspace programs to be able to handle it. (Getting a problem
512  * in userspace is always better than an Oops anyway.) [KD]
513  */
514 static void do_int(struct kernel_vm86_regs *regs, int i,
515     unsigned char __user * ssp, unsigned short sp)
516 {
517 	unsigned long __user *intr_ptr;
518 	unsigned long segoffs;
519 
520 	if (regs->pt.cs == BIOSSEG)
521 		goto cannot_handle;
522 	if (is_revectored(i, &KVM86->int_revectored))
523 		goto cannot_handle;
524 	if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
525 		goto cannot_handle;
526 	intr_ptr = (unsigned long __user *) (i << 2);
527 	if (get_user(segoffs, intr_ptr))
528 		goto cannot_handle;
529 	if ((segoffs >> 16) == BIOSSEG)
530 		goto cannot_handle;
531 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
532 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
533 	pushw(ssp, sp, IP(regs), cannot_handle);
534 	regs->pt.cs = segoffs >> 16;
535 	SP(regs) -= 6;
536 	IP(regs) = segoffs & 0xffff;
537 	clear_TF(regs);
538 	clear_IF(regs);
539 	clear_AC(regs);
540 	return;
541 
542 cannot_handle:
543 	return_to_32bit(regs, VM86_INTx + (i << 8));
544 }
545 
546 int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
547 {
548 	if (VMPI.is_vm86pus) {
549 		if ( (trapno==3) || (trapno==1) )
550 			return_to_32bit(regs, VM86_TRAP + (trapno << 8));
551 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
552 		return 0;
553 	}
554 	if (trapno !=1)
555 		return 1; /* we let this handle by the calling routine */
556 	if (current->ptrace & PT_PTRACED) {
557 		unsigned long flags;
558 		spin_lock_irqsave(&current->sighand->siglock, flags);
559 		sigdelset(&current->blocked, SIGTRAP);
560 		recalc_sigpending();
561 		spin_unlock_irqrestore(&current->sighand->siglock, flags);
562 	}
563 	send_sig(SIGTRAP, current, 1);
564 	current->thread.trap_no = trapno;
565 	current->thread.error_code = error_code;
566 	return 0;
567 }
568 
569 void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
570 {
571 	unsigned char opcode;
572 	unsigned char __user *csp;
573 	unsigned char __user *ssp;
574 	unsigned short ip, sp, orig_flags;
575 	int data32, pref_done;
576 
577 #define CHECK_IF_IN_TRAP \
578 	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
579 		newflags |= TF_MASK
580 #define VM86_FAULT_RETURN do { \
581 	if (VMPI.force_return_for_pic  && (VEFLAGS & (IF_MASK | VIF_MASK))) \
582 		return_to_32bit(regs, VM86_PICRETURN); \
583 	if (orig_flags & TF_MASK) \
584 		handle_vm86_trap(regs, 0, 1); \
585 	return; } while (0)
586 
587 	orig_flags = *(unsigned short *)&regs->pt.flags;
588 
589 	csp = (unsigned char __user *) (regs->pt.cs << 4);
590 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
591 	sp = SP(regs);
592 	ip = IP(regs);
593 
594 	data32 = 0;
595 	pref_done = 0;
596 	do {
597 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
598 			case 0x66:      /* 32-bit data */     data32=1; break;
599 			case 0x67:      /* 32-bit address */  break;
600 			case 0x2e:      /* CS */              break;
601 			case 0x3e:      /* DS */              break;
602 			case 0x26:      /* ES */              break;
603 			case 0x36:      /* SS */              break;
604 			case 0x65:      /* GS */              break;
605 			case 0x64:      /* FS */              break;
606 			case 0xf2:      /* repnz */       break;
607 			case 0xf3:      /* rep */             break;
608 			default: pref_done = 1;
609 		}
610 	} while (!pref_done);
611 
612 	switch (opcode) {
613 
614 	/* pushf */
615 	case 0x9c:
616 		if (data32) {
617 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
618 			SP(regs) -= 4;
619 		} else {
620 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
621 			SP(regs) -= 2;
622 		}
623 		IP(regs) = ip;
624 		VM86_FAULT_RETURN;
625 
626 	/* popf */
627 	case 0x9d:
628 		{
629 		unsigned long newflags;
630 		if (data32) {
631 			newflags=popl(ssp, sp, simulate_sigsegv);
632 			SP(regs) += 4;
633 		} else {
634 			newflags = popw(ssp, sp, simulate_sigsegv);
635 			SP(regs) += 2;
636 		}
637 		IP(regs) = ip;
638 		CHECK_IF_IN_TRAP;
639 		if (data32) {
640 			set_vflags_long(newflags, regs);
641 		} else {
642 			set_vflags_short(newflags, regs);
643 		}
644 		VM86_FAULT_RETURN;
645 		}
646 
647 	/* int xx */
648 	case 0xcd: {
649 		int intno=popb(csp, ip, simulate_sigsegv);
650 		IP(regs) = ip;
651 		if (VMPI.vm86dbg_active) {
652 			if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
653 				return_to_32bit(regs, VM86_INTx + (intno << 8));
654 		}
655 		do_int(regs, intno, ssp, sp);
656 		return;
657 	}
658 
659 	/* iret */
660 	case 0xcf:
661 		{
662 		unsigned long newip;
663 		unsigned long newcs;
664 		unsigned long newflags;
665 		if (data32) {
666 			newip=popl(ssp, sp, simulate_sigsegv);
667 			newcs=popl(ssp, sp, simulate_sigsegv);
668 			newflags=popl(ssp, sp, simulate_sigsegv);
669 			SP(regs) += 12;
670 		} else {
671 			newip = popw(ssp, sp, simulate_sigsegv);
672 			newcs = popw(ssp, sp, simulate_sigsegv);
673 			newflags = popw(ssp, sp, simulate_sigsegv);
674 			SP(regs) += 6;
675 		}
676 		IP(regs) = newip;
677 		regs->pt.cs = newcs;
678 		CHECK_IF_IN_TRAP;
679 		if (data32) {
680 			set_vflags_long(newflags, regs);
681 		} else {
682 			set_vflags_short(newflags, regs);
683 		}
684 		VM86_FAULT_RETURN;
685 		}
686 
687 	/* cli */
688 	case 0xfa:
689 		IP(regs) = ip;
690 		clear_IF(regs);
691 		VM86_FAULT_RETURN;
692 
693 	/* sti */
694 	/*
695 	 * Damn. This is incorrect: the 'sti' instruction should actually
696 	 * enable interrupts after the /next/ instruction. Not good.
697 	 *
698 	 * Probably needs some horsing around with the TF flag. Aiee..
699 	 */
700 	case 0xfb:
701 		IP(regs) = ip;
702 		set_IF(regs);
703 		VM86_FAULT_RETURN;
704 
705 	default:
706 		return_to_32bit(regs, VM86_UNKNOWN);
707 	}
708 
709 	return;
710 
711 simulate_sigsegv:
712 	/* FIXME: After a long discussion with Stas we finally
713 	 *        agreed, that this is wrong. Here we should
714 	 *        really send a SIGSEGV to the user program.
715 	 *        But how do we create the correct context? We
716 	 *        are inside a general protection fault handler
717 	 *        and has just returned from a page fault handler.
718 	 *        The correct context for the signal handler
719 	 *        should be a mixture of the two, but how do we
720 	 *        get the information? [KD]
721 	 */
722 	return_to_32bit(regs, VM86_UNKNOWN);
723 }
724 
725 /* ---------------- vm86 special IRQ passing stuff ----------------- */
726 
727 #define VM86_IRQNAME		"vm86irq"
728 
729 static struct vm86_irqs {
730 	struct task_struct *tsk;
731 	int sig;
732 } vm86_irqs[16];
733 
734 static DEFINE_SPINLOCK(irqbits_lock);
735 static int irqbits;
736 
737 #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
738 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
739 	| (1 << SIGUNUSED) )
740 
741 static irqreturn_t irq_handler(int intno, void *dev_id)
742 {
743 	int irq_bit;
744 	unsigned long flags;
745 
746 	spin_lock_irqsave(&irqbits_lock, flags);
747 	irq_bit = 1 << intno;
748 	if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
749 		goto out;
750 	irqbits |= irq_bit;
751 	if (vm86_irqs[intno].sig)
752 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
753 	/*
754 	 * IRQ will be re-enabled when user asks for the irq (whether
755 	 * polling or as a result of the signal)
756 	 */
757 	disable_irq_nosync(intno);
758 	spin_unlock_irqrestore(&irqbits_lock, flags);
759 	return IRQ_HANDLED;
760 
761 out:
762 	spin_unlock_irqrestore(&irqbits_lock, flags);
763 	return IRQ_NONE;
764 }
765 
766 static inline void free_vm86_irq(int irqnumber)
767 {
768 	unsigned long flags;
769 
770 	free_irq(irqnumber, NULL);
771 	vm86_irqs[irqnumber].tsk = NULL;
772 
773 	spin_lock_irqsave(&irqbits_lock, flags);
774 	irqbits &= ~(1 << irqnumber);
775 	spin_unlock_irqrestore(&irqbits_lock, flags);
776 }
777 
778 void release_vm86_irqs(struct task_struct *task)
779 {
780 	int i;
781 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
782 	    if (vm86_irqs[i].tsk == task)
783 		free_vm86_irq(i);
784 }
785 
786 static inline int get_and_reset_irq(int irqnumber)
787 {
788 	int bit;
789 	unsigned long flags;
790 	int ret = 0;
791 
792 	if (invalid_vm86_irq(irqnumber)) return 0;
793 	if (vm86_irqs[irqnumber].tsk != current) return 0;
794 	spin_lock_irqsave(&irqbits_lock, flags);
795 	bit = irqbits & (1 << irqnumber);
796 	irqbits &= ~bit;
797 	if (bit) {
798 		enable_irq(irqnumber);
799 		ret = 1;
800 	}
801 
802 	spin_unlock_irqrestore(&irqbits_lock, flags);
803 	return ret;
804 }
805 
806 
807 static int do_vm86_irq_handling(int subfunction, int irqnumber)
808 {
809 	int ret;
810 	switch (subfunction) {
811 		case VM86_GET_AND_RESET_IRQ: {
812 			return get_and_reset_irq(irqnumber);
813 		}
814 		case VM86_GET_IRQ_BITS: {
815 			return irqbits;
816 		}
817 		case VM86_REQUEST_IRQ: {
818 			int sig = irqnumber >> 8;
819 			int irq = irqnumber & 255;
820 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
821 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
822 			if (invalid_vm86_irq(irq)) return -EPERM;
823 			if (vm86_irqs[irq].tsk) return -EPERM;
824 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
825 			if (ret) return ret;
826 			vm86_irqs[irq].sig = sig;
827 			vm86_irqs[irq].tsk = current;
828 			return irq;
829 		}
830 		case  VM86_FREE_IRQ: {
831 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
832 			if (!vm86_irqs[irqnumber].tsk) return 0;
833 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
834 			free_vm86_irq(irqnumber);
835 			return 0;
836 		}
837 	}
838 	return -EINVAL;
839 }
840 
841