1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86 5 * stack - Manfred Spraul <manfred@colorfullife.com> 6 * 7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle 8 * them correctly. Now the emulation will be in a 9 * consistent state after stackfaults - Kasper Dupont 10 * <kasperd@daimi.au.dk> 11 * 12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont 13 * <kasperd@daimi.au.dk> 14 * 15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault 16 * caused by Kasper Dupont's changes - Stas Sergeev 17 * 18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes. 19 * Kasper Dupont <kasperd@daimi.au.dk> 20 * 21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault. 22 * Kasper Dupont <kasperd@daimi.au.dk> 23 * 24 * 9 apr 2002 - Changed stack access macros to jump to a label 25 * instead of returning to userspace. This simplifies 26 * do_int, and is needed by handle_vm6_fault. Kasper 27 * Dupont <kasperd@daimi.au.dk> 28 * 29 */ 30 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/interrupt.h> 34 #include <linux/sched.h> 35 #include <linux/kernel.h> 36 #include <linux/signal.h> 37 #include <linux/string.h> 38 #include <linux/mm.h> 39 #include <linux/smp.h> 40 #include <linux/highmem.h> 41 #include <linux/ptrace.h> 42 #include <linux/audit.h> 43 #include <linux/stddef.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/io.h> 47 #include <asm/tlbflush.h> 48 #include <asm/irq.h> 49 50 /* 51 * Known problems: 52 * 53 * Interrupt handling is not guaranteed: 54 * - a real x86 will disable all interrupts for one instruction 55 * after a "mov ss,xx" to make stack handling atomic even without 56 * the 'lss' instruction. We can't guarantee this in v86 mode, 57 * as the next instruction might result in a page fault or similar. 58 * - a real x86 will have interrupts disabled for one instruction 59 * past the 'sti' that enables them. We don't bother with all the 60 * details yet. 61 * 62 * Let's hope these problems do not actually matter for anything. 63 */ 64 65 66 #define KVM86 ((struct kernel_vm86_struct *)regs) 67 #define VMPI KVM86->vm86plus 68 69 70 /* 71 * 8- and 16-bit register defines.. 72 */ 73 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0]) 74 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1]) 75 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip)) 76 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp)) 77 78 /* 79 * virtual flags (16 and 32-bit versions) 80 */ 81 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags)) 82 #define VEFLAGS (current->thread.v86flags) 83 84 #define set_flags(X,new,mask) \ 85 ((X) = ((X) & ~(mask)) | ((new) & (mask))) 86 87 #define SAFE_MASK (0xDD5) 88 #define RETURN_MASK (0xDFF) 89 90 /* convert kernel_vm86_regs to vm86_regs */ 91 static int copy_vm86_regs_to_user(struct vm86_regs __user *user, 92 const struct kernel_vm86_regs *regs) 93 { 94 int ret = 0; 95 96 /* kernel_vm86_regs is missing gs, so copy everything up to 97 (but not including) orig_eax, and then rest including orig_eax. */ 98 ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax)); 99 ret += copy_to_user(&user->orig_eax, ®s->pt.orig_ax, 100 sizeof(struct kernel_vm86_regs) - 101 offsetof(struct kernel_vm86_regs, pt.orig_ax)); 102 103 return ret; 104 } 105 106 /* convert vm86_regs to kernel_vm86_regs */ 107 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs, 108 const struct vm86_regs __user *user, 109 unsigned extra) 110 { 111 int ret = 0; 112 113 /* copy ax-fs inclusive */ 114 ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax)); 115 /* copy orig_ax-__gsh+extra */ 116 ret += copy_from_user(®s->pt.orig_ax, &user->orig_eax, 117 sizeof(struct kernel_vm86_regs) - 118 offsetof(struct kernel_vm86_regs, pt.orig_ax) + 119 extra); 120 return ret; 121 } 122 123 struct pt_regs * save_v86_state(struct kernel_vm86_regs * regs) 124 { 125 struct tss_struct *tss; 126 struct pt_regs *ret; 127 unsigned long tmp; 128 129 /* 130 * This gets called from entry.S with interrupts disabled, but 131 * from process context. Enable interrupts here, before trying 132 * to access user space. 133 */ 134 local_irq_enable(); 135 136 if (!current->thread.vm86_info) { 137 printk("no vm86_info: BAD\n"); 138 do_exit(SIGSEGV); 139 } 140 set_flags(regs->pt.flags, VEFLAGS, VIF_MASK | current->thread.v86mask); 141 tmp = copy_vm86_regs_to_user(¤t->thread.vm86_info->regs,regs); 142 tmp += put_user(current->thread.screen_bitmap,¤t->thread.vm86_info->screen_bitmap); 143 if (tmp) { 144 printk("vm86: could not access userspace vm86_info\n"); 145 do_exit(SIGSEGV); 146 } 147 148 tss = &per_cpu(init_tss, get_cpu()); 149 current->thread.sp0 = current->thread.saved_sp0; 150 current->thread.sysenter_cs = __KERNEL_CS; 151 load_sp0(tss, ¤t->thread); 152 current->thread.saved_sp0 = 0; 153 put_cpu(); 154 155 ret = KVM86->regs32; 156 157 ret->fs = current->thread.saved_fs; 158 loadsegment(gs, current->thread.saved_gs); 159 160 return ret; 161 } 162 163 static void mark_screen_rdonly(struct mm_struct *mm) 164 { 165 pgd_t *pgd; 166 pud_t *pud; 167 pmd_t *pmd; 168 pte_t *pte; 169 spinlock_t *ptl; 170 int i; 171 172 pgd = pgd_offset(mm, 0xA0000); 173 if (pgd_none_or_clear_bad(pgd)) 174 goto out; 175 pud = pud_offset(pgd, 0xA0000); 176 if (pud_none_or_clear_bad(pud)) 177 goto out; 178 pmd = pmd_offset(pud, 0xA0000); 179 if (pmd_none_or_clear_bad(pmd)) 180 goto out; 181 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl); 182 for (i = 0; i < 32; i++) { 183 if (pte_present(*pte)) 184 set_pte(pte, pte_wrprotect(*pte)); 185 pte++; 186 } 187 pte_unmap_unlock(pte, ptl); 188 out: 189 flush_tlb(); 190 } 191 192 193 194 static int do_vm86_irq_handling(int subfunction, int irqnumber); 195 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk); 196 197 asmlinkage int sys_vm86old(struct pt_regs regs) 198 { 199 struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx; 200 struct kernel_vm86_struct info; /* declare this _on top_, 201 * this avoids wasting of stack space. 202 * This remains on the stack until we 203 * return to 32 bit user space. 204 */ 205 struct task_struct *tsk; 206 int tmp, ret = -EPERM; 207 208 tsk = current; 209 if (tsk->thread.saved_sp0) 210 goto out; 211 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs, 212 offsetof(struct kernel_vm86_struct, vm86plus) - 213 sizeof(info.regs)); 214 ret = -EFAULT; 215 if (tmp) 216 goto out; 217 memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus); 218 info.regs32 = ®s; 219 tsk->thread.vm86_info = v86; 220 do_sys_vm86(&info, tsk); 221 ret = 0; /* we never return here */ 222 out: 223 return ret; 224 } 225 226 227 asmlinkage int sys_vm86(struct pt_regs regs) 228 { 229 struct kernel_vm86_struct info; /* declare this _on top_, 230 * this avoids wasting of stack space. 231 * This remains on the stack until we 232 * return to 32 bit user space. 233 */ 234 struct task_struct *tsk; 235 int tmp, ret; 236 struct vm86plus_struct __user *v86; 237 238 tsk = current; 239 switch (regs.bx) { 240 case VM86_REQUEST_IRQ: 241 case VM86_FREE_IRQ: 242 case VM86_GET_IRQ_BITS: 243 case VM86_GET_AND_RESET_IRQ: 244 ret = do_vm86_irq_handling(regs.bx, (int)regs.cx); 245 goto out; 246 case VM86_PLUS_INSTALL_CHECK: 247 /* NOTE: on old vm86 stuff this will return the error 248 from access_ok(), because the subfunction is 249 interpreted as (invalid) address to vm86_struct. 250 So the installation check works. 251 */ 252 ret = 0; 253 goto out; 254 } 255 256 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */ 257 ret = -EPERM; 258 if (tsk->thread.saved_sp0) 259 goto out; 260 v86 = (struct vm86plus_struct __user *)regs.cx; 261 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs, 262 offsetof(struct kernel_vm86_struct, regs32) - 263 sizeof(info.regs)); 264 ret = -EFAULT; 265 if (tmp) 266 goto out; 267 info.regs32 = ®s; 268 info.vm86plus.is_vm86pus = 1; 269 tsk->thread.vm86_info = (struct vm86_struct __user *)v86; 270 do_sys_vm86(&info, tsk); 271 ret = 0; /* we never return here */ 272 out: 273 return ret; 274 } 275 276 277 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk) 278 { 279 struct tss_struct *tss; 280 /* 281 * make sure the vm86() system call doesn't try to do anything silly 282 */ 283 info->regs.pt.ds = 0; 284 info->regs.pt.es = 0; 285 info->regs.pt.fs = 0; 286 287 /* we are clearing gs later just before "jmp resume_userspace", 288 * because it is not saved/restored. 289 */ 290 291 /* 292 * The flags register is also special: we cannot trust that the user 293 * has set it up safely, so this makes sure interrupt etc flags are 294 * inherited from protected mode. 295 */ 296 VEFLAGS = info->regs.pt.flags; 297 info->regs.pt.flags &= SAFE_MASK; 298 info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK; 299 info->regs.pt.flags |= VM_MASK; 300 301 switch (info->cpu_type) { 302 case CPU_286: 303 tsk->thread.v86mask = 0; 304 break; 305 case CPU_386: 306 tsk->thread.v86mask = NT_MASK | IOPL_MASK; 307 break; 308 case CPU_486: 309 tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK; 310 break; 311 default: 312 tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK; 313 break; 314 } 315 316 /* 317 * Save old state, set default return value (%ax) to 0 318 */ 319 info->regs32->ax = 0; 320 tsk->thread.saved_sp0 = tsk->thread.sp0; 321 tsk->thread.saved_fs = info->regs32->fs; 322 savesegment(gs, tsk->thread.saved_gs); 323 324 tss = &per_cpu(init_tss, get_cpu()); 325 tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0; 326 if (cpu_has_sep) 327 tsk->thread.sysenter_cs = 0; 328 load_sp0(tss, &tsk->thread); 329 put_cpu(); 330 331 tsk->thread.screen_bitmap = info->screen_bitmap; 332 if (info->flags & VM86_SCREEN_BITMAP) 333 mark_screen_rdonly(tsk->mm); 334 335 /*call audit_syscall_exit since we do not exit via the normal paths */ 336 if (unlikely(current->audit_context)) 337 audit_syscall_exit(AUDITSC_RESULT(0), 0); 338 339 __asm__ __volatile__( 340 "movl %0,%%esp\n\t" 341 "movl %1,%%ebp\n\t" 342 "mov %2, %%gs\n\t" 343 "jmp resume_userspace" 344 : /* no outputs */ 345 :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0)); 346 /* we never return here */ 347 } 348 349 static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval) 350 { 351 struct pt_regs * regs32; 352 353 regs32 = save_v86_state(regs16); 354 regs32->ax = retval; 355 __asm__ __volatile__("movl %0,%%esp\n\t" 356 "movl %1,%%ebp\n\t" 357 "jmp resume_userspace" 358 : : "r" (regs32), "r" (current_thread_info())); 359 } 360 361 static inline void set_IF(struct kernel_vm86_regs * regs) 362 { 363 VEFLAGS |= VIF_MASK; 364 if (VEFLAGS & VIP_MASK) 365 return_to_32bit(regs, VM86_STI); 366 } 367 368 static inline void clear_IF(struct kernel_vm86_regs * regs) 369 { 370 VEFLAGS &= ~VIF_MASK; 371 } 372 373 static inline void clear_TF(struct kernel_vm86_regs * regs) 374 { 375 regs->pt.flags &= ~TF_MASK; 376 } 377 378 static inline void clear_AC(struct kernel_vm86_regs * regs) 379 { 380 regs->pt.flags &= ~AC_MASK; 381 } 382 383 /* It is correct to call set_IF(regs) from the set_vflags_* 384 * functions. However someone forgot to call clear_IF(regs) 385 * in the opposite case. 386 * After the command sequence CLI PUSHF STI POPF you should 387 * end up with interrupts disabled, but you ended up with 388 * interrupts enabled. 389 * ( I was testing my own changes, but the only bug I 390 * could find was in a function I had not changed. ) 391 * [KD] 392 */ 393 394 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs * regs) 395 { 396 set_flags(VEFLAGS, flags, current->thread.v86mask); 397 set_flags(regs->pt.flags, flags, SAFE_MASK); 398 if (flags & IF_MASK) 399 set_IF(regs); 400 else 401 clear_IF(regs); 402 } 403 404 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs) 405 { 406 set_flags(VFLAGS, flags, current->thread.v86mask); 407 set_flags(regs->pt.flags, flags, SAFE_MASK); 408 if (flags & IF_MASK) 409 set_IF(regs); 410 else 411 clear_IF(regs); 412 } 413 414 static inline unsigned long get_vflags(struct kernel_vm86_regs * regs) 415 { 416 unsigned long flags = regs->pt.flags & RETURN_MASK; 417 418 if (VEFLAGS & VIF_MASK) 419 flags |= IF_MASK; 420 flags |= IOPL_MASK; 421 return flags | (VEFLAGS & current->thread.v86mask); 422 } 423 424 static inline int is_revectored(int nr, struct revectored_struct * bitmap) 425 { 426 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0" 427 :"=r" (nr) 428 :"m" (*bitmap),"r" (nr)); 429 return nr; 430 } 431 432 #define val_byte(val, n) (((__u8 *)&val)[n]) 433 434 #define pushb(base, ptr, val, err_label) \ 435 do { \ 436 __u8 __val = val; \ 437 ptr--; \ 438 if (put_user(__val, base + ptr) < 0) \ 439 goto err_label; \ 440 } while(0) 441 442 #define pushw(base, ptr, val, err_label) \ 443 do { \ 444 __u16 __val = val; \ 445 ptr--; \ 446 if (put_user(val_byte(__val, 1), base + ptr) < 0) \ 447 goto err_label; \ 448 ptr--; \ 449 if (put_user(val_byte(__val, 0), base + ptr) < 0) \ 450 goto err_label; \ 451 } while(0) 452 453 #define pushl(base, ptr, val, err_label) \ 454 do { \ 455 __u32 __val = val; \ 456 ptr--; \ 457 if (put_user(val_byte(__val, 3), base + ptr) < 0) \ 458 goto err_label; \ 459 ptr--; \ 460 if (put_user(val_byte(__val, 2), base + ptr) < 0) \ 461 goto err_label; \ 462 ptr--; \ 463 if (put_user(val_byte(__val, 1), base + ptr) < 0) \ 464 goto err_label; \ 465 ptr--; \ 466 if (put_user(val_byte(__val, 0), base + ptr) < 0) \ 467 goto err_label; \ 468 } while(0) 469 470 #define popb(base, ptr, err_label) \ 471 ({ \ 472 __u8 __res; \ 473 if (get_user(__res, base + ptr) < 0) \ 474 goto err_label; \ 475 ptr++; \ 476 __res; \ 477 }) 478 479 #define popw(base, ptr, err_label) \ 480 ({ \ 481 __u16 __res; \ 482 if (get_user(val_byte(__res, 0), base + ptr) < 0) \ 483 goto err_label; \ 484 ptr++; \ 485 if (get_user(val_byte(__res, 1), base + ptr) < 0) \ 486 goto err_label; \ 487 ptr++; \ 488 __res; \ 489 }) 490 491 #define popl(base, ptr, err_label) \ 492 ({ \ 493 __u32 __res; \ 494 if (get_user(val_byte(__res, 0), base + ptr) < 0) \ 495 goto err_label; \ 496 ptr++; \ 497 if (get_user(val_byte(__res, 1), base + ptr) < 0) \ 498 goto err_label; \ 499 ptr++; \ 500 if (get_user(val_byte(__res, 2), base + ptr) < 0) \ 501 goto err_label; \ 502 ptr++; \ 503 if (get_user(val_byte(__res, 3), base + ptr) < 0) \ 504 goto err_label; \ 505 ptr++; \ 506 __res; \ 507 }) 508 509 /* There are so many possible reasons for this function to return 510 * VM86_INTx, so adding another doesn't bother me. We can expect 511 * userspace programs to be able to handle it. (Getting a problem 512 * in userspace is always better than an Oops anyway.) [KD] 513 */ 514 static void do_int(struct kernel_vm86_regs *regs, int i, 515 unsigned char __user * ssp, unsigned short sp) 516 { 517 unsigned long __user *intr_ptr; 518 unsigned long segoffs; 519 520 if (regs->pt.cs == BIOSSEG) 521 goto cannot_handle; 522 if (is_revectored(i, &KVM86->int_revectored)) 523 goto cannot_handle; 524 if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored)) 525 goto cannot_handle; 526 intr_ptr = (unsigned long __user *) (i << 2); 527 if (get_user(segoffs, intr_ptr)) 528 goto cannot_handle; 529 if ((segoffs >> 16) == BIOSSEG) 530 goto cannot_handle; 531 pushw(ssp, sp, get_vflags(regs), cannot_handle); 532 pushw(ssp, sp, regs->pt.cs, cannot_handle); 533 pushw(ssp, sp, IP(regs), cannot_handle); 534 regs->pt.cs = segoffs >> 16; 535 SP(regs) -= 6; 536 IP(regs) = segoffs & 0xffff; 537 clear_TF(regs); 538 clear_IF(regs); 539 clear_AC(regs); 540 return; 541 542 cannot_handle: 543 return_to_32bit(regs, VM86_INTx + (i << 8)); 544 } 545 546 int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno) 547 { 548 if (VMPI.is_vm86pus) { 549 if ( (trapno==3) || (trapno==1) ) 550 return_to_32bit(regs, VM86_TRAP + (trapno << 8)); 551 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs)); 552 return 0; 553 } 554 if (trapno !=1) 555 return 1; /* we let this handle by the calling routine */ 556 if (current->ptrace & PT_PTRACED) { 557 unsigned long flags; 558 spin_lock_irqsave(¤t->sighand->siglock, flags); 559 sigdelset(¤t->blocked, SIGTRAP); 560 recalc_sigpending(); 561 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 562 } 563 send_sig(SIGTRAP, current, 1); 564 current->thread.trap_no = trapno; 565 current->thread.error_code = error_code; 566 return 0; 567 } 568 569 void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code) 570 { 571 unsigned char opcode; 572 unsigned char __user *csp; 573 unsigned char __user *ssp; 574 unsigned short ip, sp, orig_flags; 575 int data32, pref_done; 576 577 #define CHECK_IF_IN_TRAP \ 578 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \ 579 newflags |= TF_MASK 580 #define VM86_FAULT_RETURN do { \ 581 if (VMPI.force_return_for_pic && (VEFLAGS & (IF_MASK | VIF_MASK))) \ 582 return_to_32bit(regs, VM86_PICRETURN); \ 583 if (orig_flags & TF_MASK) \ 584 handle_vm86_trap(regs, 0, 1); \ 585 return; } while (0) 586 587 orig_flags = *(unsigned short *)®s->pt.flags; 588 589 csp = (unsigned char __user *) (regs->pt.cs << 4); 590 ssp = (unsigned char __user *) (regs->pt.ss << 4); 591 sp = SP(regs); 592 ip = IP(regs); 593 594 data32 = 0; 595 pref_done = 0; 596 do { 597 switch (opcode = popb(csp, ip, simulate_sigsegv)) { 598 case 0x66: /* 32-bit data */ data32=1; break; 599 case 0x67: /* 32-bit address */ break; 600 case 0x2e: /* CS */ break; 601 case 0x3e: /* DS */ break; 602 case 0x26: /* ES */ break; 603 case 0x36: /* SS */ break; 604 case 0x65: /* GS */ break; 605 case 0x64: /* FS */ break; 606 case 0xf2: /* repnz */ break; 607 case 0xf3: /* rep */ break; 608 default: pref_done = 1; 609 } 610 } while (!pref_done); 611 612 switch (opcode) { 613 614 /* pushf */ 615 case 0x9c: 616 if (data32) { 617 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv); 618 SP(regs) -= 4; 619 } else { 620 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv); 621 SP(regs) -= 2; 622 } 623 IP(regs) = ip; 624 VM86_FAULT_RETURN; 625 626 /* popf */ 627 case 0x9d: 628 { 629 unsigned long newflags; 630 if (data32) { 631 newflags=popl(ssp, sp, simulate_sigsegv); 632 SP(regs) += 4; 633 } else { 634 newflags = popw(ssp, sp, simulate_sigsegv); 635 SP(regs) += 2; 636 } 637 IP(regs) = ip; 638 CHECK_IF_IN_TRAP; 639 if (data32) { 640 set_vflags_long(newflags, regs); 641 } else { 642 set_vflags_short(newflags, regs); 643 } 644 VM86_FAULT_RETURN; 645 } 646 647 /* int xx */ 648 case 0xcd: { 649 int intno=popb(csp, ip, simulate_sigsegv); 650 IP(regs) = ip; 651 if (VMPI.vm86dbg_active) { 652 if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] ) 653 return_to_32bit(regs, VM86_INTx + (intno << 8)); 654 } 655 do_int(regs, intno, ssp, sp); 656 return; 657 } 658 659 /* iret */ 660 case 0xcf: 661 { 662 unsigned long newip; 663 unsigned long newcs; 664 unsigned long newflags; 665 if (data32) { 666 newip=popl(ssp, sp, simulate_sigsegv); 667 newcs=popl(ssp, sp, simulate_sigsegv); 668 newflags=popl(ssp, sp, simulate_sigsegv); 669 SP(regs) += 12; 670 } else { 671 newip = popw(ssp, sp, simulate_sigsegv); 672 newcs = popw(ssp, sp, simulate_sigsegv); 673 newflags = popw(ssp, sp, simulate_sigsegv); 674 SP(regs) += 6; 675 } 676 IP(regs) = newip; 677 regs->pt.cs = newcs; 678 CHECK_IF_IN_TRAP; 679 if (data32) { 680 set_vflags_long(newflags, regs); 681 } else { 682 set_vflags_short(newflags, regs); 683 } 684 VM86_FAULT_RETURN; 685 } 686 687 /* cli */ 688 case 0xfa: 689 IP(regs) = ip; 690 clear_IF(regs); 691 VM86_FAULT_RETURN; 692 693 /* sti */ 694 /* 695 * Damn. This is incorrect: the 'sti' instruction should actually 696 * enable interrupts after the /next/ instruction. Not good. 697 * 698 * Probably needs some horsing around with the TF flag. Aiee.. 699 */ 700 case 0xfb: 701 IP(regs) = ip; 702 set_IF(regs); 703 VM86_FAULT_RETURN; 704 705 default: 706 return_to_32bit(regs, VM86_UNKNOWN); 707 } 708 709 return; 710 711 simulate_sigsegv: 712 /* FIXME: After a long discussion with Stas we finally 713 * agreed, that this is wrong. Here we should 714 * really send a SIGSEGV to the user program. 715 * But how do we create the correct context? We 716 * are inside a general protection fault handler 717 * and has just returned from a page fault handler. 718 * The correct context for the signal handler 719 * should be a mixture of the two, but how do we 720 * get the information? [KD] 721 */ 722 return_to_32bit(regs, VM86_UNKNOWN); 723 } 724 725 /* ---------------- vm86 special IRQ passing stuff ----------------- */ 726 727 #define VM86_IRQNAME "vm86irq" 728 729 static struct vm86_irqs { 730 struct task_struct *tsk; 731 int sig; 732 } vm86_irqs[16]; 733 734 static DEFINE_SPINLOCK(irqbits_lock); 735 static int irqbits; 736 737 #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \ 738 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \ 739 | (1 << SIGUNUSED) ) 740 741 static irqreturn_t irq_handler(int intno, void *dev_id) 742 { 743 int irq_bit; 744 unsigned long flags; 745 746 spin_lock_irqsave(&irqbits_lock, flags); 747 irq_bit = 1 << intno; 748 if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk) 749 goto out; 750 irqbits |= irq_bit; 751 if (vm86_irqs[intno].sig) 752 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1); 753 /* 754 * IRQ will be re-enabled when user asks for the irq (whether 755 * polling or as a result of the signal) 756 */ 757 disable_irq_nosync(intno); 758 spin_unlock_irqrestore(&irqbits_lock, flags); 759 return IRQ_HANDLED; 760 761 out: 762 spin_unlock_irqrestore(&irqbits_lock, flags); 763 return IRQ_NONE; 764 } 765 766 static inline void free_vm86_irq(int irqnumber) 767 { 768 unsigned long flags; 769 770 free_irq(irqnumber, NULL); 771 vm86_irqs[irqnumber].tsk = NULL; 772 773 spin_lock_irqsave(&irqbits_lock, flags); 774 irqbits &= ~(1 << irqnumber); 775 spin_unlock_irqrestore(&irqbits_lock, flags); 776 } 777 778 void release_vm86_irqs(struct task_struct *task) 779 { 780 int i; 781 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++) 782 if (vm86_irqs[i].tsk == task) 783 free_vm86_irq(i); 784 } 785 786 static inline int get_and_reset_irq(int irqnumber) 787 { 788 int bit; 789 unsigned long flags; 790 int ret = 0; 791 792 if (invalid_vm86_irq(irqnumber)) return 0; 793 if (vm86_irqs[irqnumber].tsk != current) return 0; 794 spin_lock_irqsave(&irqbits_lock, flags); 795 bit = irqbits & (1 << irqnumber); 796 irqbits &= ~bit; 797 if (bit) { 798 enable_irq(irqnumber); 799 ret = 1; 800 } 801 802 spin_unlock_irqrestore(&irqbits_lock, flags); 803 return ret; 804 } 805 806 807 static int do_vm86_irq_handling(int subfunction, int irqnumber) 808 { 809 int ret; 810 switch (subfunction) { 811 case VM86_GET_AND_RESET_IRQ: { 812 return get_and_reset_irq(irqnumber); 813 } 814 case VM86_GET_IRQ_BITS: { 815 return irqbits; 816 } 817 case VM86_REQUEST_IRQ: { 818 int sig = irqnumber >> 8; 819 int irq = irqnumber & 255; 820 if (!capable(CAP_SYS_ADMIN)) return -EPERM; 821 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM; 822 if (invalid_vm86_irq(irq)) return -EPERM; 823 if (vm86_irqs[irq].tsk) return -EPERM; 824 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL); 825 if (ret) return ret; 826 vm86_irqs[irq].sig = sig; 827 vm86_irqs[irq].tsk = current; 828 return irq; 829 } 830 case VM86_FREE_IRQ: { 831 if (invalid_vm86_irq(irqnumber)) return -EPERM; 832 if (!vm86_irqs[irqnumber].tsk) return 0; 833 if (vm86_irqs[irqnumber].tsk != current) return -EPERM; 834 free_vm86_irq(irqnumber); 835 return 0; 836 } 837 } 838 return -EINVAL; 839 } 840 841