xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision 545e4006)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
49 
50 /*
51  * Known problems:
52  *
53  * Interrupt handling is not guaranteed:
54  * - a real x86 will disable all interrupts for one instruction
55  *   after a "mov ss,xx" to make stack handling atomic even without
56  *   the 'lss' instruction. We can't guarantee this in v86 mode,
57  *   as the next instruction might result in a page fault or similar.
58  * - a real x86 will have interrupts disabled for one instruction
59  *   past the 'sti' that enables them. We don't bother with all the
60  *   details yet.
61  *
62  * Let's hope these problems do not actually matter for anything.
63  */
64 
65 
66 #define KVM86	((struct kernel_vm86_struct *)regs)
67 #define VMPI	KVM86->vm86plus
68 
69 
70 /*
71  * 8- and 16-bit register defines..
72  */
73 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
74 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
75 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
76 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
77 
78 /*
79  * virtual flags (16 and 32-bit versions)
80  */
81 #define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
82 #define VEFLAGS	(current->thread.v86flags)
83 
84 #define set_flags(X, new, mask) \
85 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
86 
87 #define SAFE_MASK	(0xDD5)
88 #define RETURN_MASK	(0xDFF)
89 
90 /* convert kernel_vm86_regs to vm86_regs */
91 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
92 				  const struct kernel_vm86_regs *regs)
93 {
94 	int ret = 0;
95 
96 	/*
97 	 * kernel_vm86_regs is missing gs, so copy everything up to
98 	 * (but not including) orig_eax, and then rest including orig_eax.
99 	 */
100 	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
101 	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
102 			    sizeof(struct kernel_vm86_regs) -
103 			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
104 
105 	return ret;
106 }
107 
108 /* convert vm86_regs to kernel_vm86_regs */
109 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
110 				    const struct vm86_regs __user *user,
111 				    unsigned extra)
112 {
113 	int ret = 0;
114 
115 	/* copy ax-fs inclusive */
116 	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
117 	/* copy orig_ax-__gsh+extra */
118 	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
119 			      sizeof(struct kernel_vm86_regs) -
120 			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
121 			      extra);
122 	return ret;
123 }
124 
125 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
126 {
127 	struct tss_struct *tss;
128 	struct pt_regs *ret;
129 	unsigned long tmp;
130 
131 	/*
132 	 * This gets called from entry.S with interrupts disabled, but
133 	 * from process context. Enable interrupts here, before trying
134 	 * to access user space.
135 	 */
136 	local_irq_enable();
137 
138 	if (!current->thread.vm86_info) {
139 		printk("no vm86_info: BAD\n");
140 		do_exit(SIGSEGV);
141 	}
142 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
143 	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
144 	tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
145 	if (tmp) {
146 		printk("vm86: could not access userspace vm86_info\n");
147 		do_exit(SIGSEGV);
148 	}
149 
150 	tss = &per_cpu(init_tss, get_cpu());
151 	current->thread.sp0 = current->thread.saved_sp0;
152 	current->thread.sysenter_cs = __KERNEL_CS;
153 	load_sp0(tss, &current->thread);
154 	current->thread.saved_sp0 = 0;
155 	put_cpu();
156 
157 	ret = KVM86->regs32;
158 
159 	ret->fs = current->thread.saved_fs;
160 	loadsegment(gs, current->thread.saved_gs);
161 
162 	return ret;
163 }
164 
165 static void mark_screen_rdonly(struct mm_struct *mm)
166 {
167 	pgd_t *pgd;
168 	pud_t *pud;
169 	pmd_t *pmd;
170 	pte_t *pte;
171 	spinlock_t *ptl;
172 	int i;
173 
174 	pgd = pgd_offset(mm, 0xA0000);
175 	if (pgd_none_or_clear_bad(pgd))
176 		goto out;
177 	pud = pud_offset(pgd, 0xA0000);
178 	if (pud_none_or_clear_bad(pud))
179 		goto out;
180 	pmd = pmd_offset(pud, 0xA0000);
181 	if (pmd_none_or_clear_bad(pmd))
182 		goto out;
183 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
184 	for (i = 0; i < 32; i++) {
185 		if (pte_present(*pte))
186 			set_pte(pte, pte_wrprotect(*pte));
187 		pte++;
188 	}
189 	pte_unmap_unlock(pte, ptl);
190 out:
191 	flush_tlb();
192 }
193 
194 
195 
196 static int do_vm86_irq_handling(int subfunction, int irqnumber);
197 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
198 
199 asmlinkage int sys_vm86old(struct pt_regs regs)
200 {
201 	struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx;
202 	struct kernel_vm86_struct info; /* declare this _on top_,
203 					 * this avoids wasting of stack space.
204 					 * This remains on the stack until we
205 					 * return to 32 bit user space.
206 					 */
207 	struct task_struct *tsk;
208 	int tmp, ret = -EPERM;
209 
210 	tsk = current;
211 	if (tsk->thread.saved_sp0)
212 		goto out;
213 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
214 				       offsetof(struct kernel_vm86_struct, vm86plus) -
215 				       sizeof(info.regs));
216 	ret = -EFAULT;
217 	if (tmp)
218 		goto out;
219 	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
220 	info.regs32 = &regs;
221 	tsk->thread.vm86_info = v86;
222 	do_sys_vm86(&info, tsk);
223 	ret = 0;	/* we never return here */
224 out:
225 	return ret;
226 }
227 
228 
229 asmlinkage int sys_vm86(struct pt_regs regs)
230 {
231 	struct kernel_vm86_struct info; /* declare this _on top_,
232 					 * this avoids wasting of stack space.
233 					 * This remains on the stack until we
234 					 * return to 32 bit user space.
235 					 */
236 	struct task_struct *tsk;
237 	int tmp, ret;
238 	struct vm86plus_struct __user *v86;
239 
240 	tsk = current;
241 	switch (regs.bx) {
242 	case VM86_REQUEST_IRQ:
243 	case VM86_FREE_IRQ:
244 	case VM86_GET_IRQ_BITS:
245 	case VM86_GET_AND_RESET_IRQ:
246 		ret = do_vm86_irq_handling(regs.bx, (int)regs.cx);
247 		goto out;
248 	case VM86_PLUS_INSTALL_CHECK:
249 		/*
250 		 * NOTE: on old vm86 stuff this will return the error
251 		 *  from access_ok(), because the subfunction is
252 		 *  interpreted as (invalid) address to vm86_struct.
253 		 *  So the installation check works.
254 		 */
255 		ret = 0;
256 		goto out;
257 	}
258 
259 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
260 	ret = -EPERM;
261 	if (tsk->thread.saved_sp0)
262 		goto out;
263 	v86 = (struct vm86plus_struct __user *)regs.cx;
264 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
265 				       offsetof(struct kernel_vm86_struct, regs32) -
266 				       sizeof(info.regs));
267 	ret = -EFAULT;
268 	if (tmp)
269 		goto out;
270 	info.regs32 = &regs;
271 	info.vm86plus.is_vm86pus = 1;
272 	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
273 	do_sys_vm86(&info, tsk);
274 	ret = 0;	/* we never return here */
275 out:
276 	return ret;
277 }
278 
279 
280 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
281 {
282 	struct tss_struct *tss;
283 /*
284  * make sure the vm86() system call doesn't try to do anything silly
285  */
286 	info->regs.pt.ds = 0;
287 	info->regs.pt.es = 0;
288 	info->regs.pt.fs = 0;
289 
290 /* we are clearing gs later just before "jmp resume_userspace",
291  * because it is not saved/restored.
292  */
293 
294 /*
295  * The flags register is also special: we cannot trust that the user
296  * has set it up safely, so this makes sure interrupt etc flags are
297  * inherited from protected mode.
298  */
299 	VEFLAGS = info->regs.pt.flags;
300 	info->regs.pt.flags &= SAFE_MASK;
301 	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
302 	info->regs.pt.flags |= X86_VM_MASK;
303 
304 	switch (info->cpu_type) {
305 	case CPU_286:
306 		tsk->thread.v86mask = 0;
307 		break;
308 	case CPU_386:
309 		tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
310 		break;
311 	case CPU_486:
312 		tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
313 		break;
314 	default:
315 		tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
316 		break;
317 	}
318 
319 /*
320  * Save old state, set default return value (%ax) to 0
321  */
322 	info->regs32->ax = 0;
323 	tsk->thread.saved_sp0 = tsk->thread.sp0;
324 	tsk->thread.saved_fs = info->regs32->fs;
325 	savesegment(gs, tsk->thread.saved_gs);
326 
327 	tss = &per_cpu(init_tss, get_cpu());
328 	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
329 	if (cpu_has_sep)
330 		tsk->thread.sysenter_cs = 0;
331 	load_sp0(tss, &tsk->thread);
332 	put_cpu();
333 
334 	tsk->thread.screen_bitmap = info->screen_bitmap;
335 	if (info->flags & VM86_SCREEN_BITMAP)
336 		mark_screen_rdonly(tsk->mm);
337 
338 	/*call audit_syscall_exit since we do not exit via the normal paths */
339 	if (unlikely(current->audit_context))
340 		audit_syscall_exit(AUDITSC_RESULT(0), 0);
341 
342 	__asm__ __volatile__(
343 		"movl %0,%%esp\n\t"
344 		"movl %1,%%ebp\n\t"
345 		"mov  %2, %%gs\n\t"
346 		"jmp resume_userspace"
347 		: /* no outputs */
348 		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
349 	/* we never return here */
350 }
351 
352 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
353 {
354 	struct pt_regs *regs32;
355 
356 	regs32 = save_v86_state(regs16);
357 	regs32->ax = retval;
358 	__asm__ __volatile__("movl %0,%%esp\n\t"
359 		"movl %1,%%ebp\n\t"
360 		"jmp resume_userspace"
361 		: : "r" (regs32), "r" (current_thread_info()));
362 }
363 
364 static inline void set_IF(struct kernel_vm86_regs *regs)
365 {
366 	VEFLAGS |= X86_EFLAGS_VIF;
367 	if (VEFLAGS & X86_EFLAGS_VIP)
368 		return_to_32bit(regs, VM86_STI);
369 }
370 
371 static inline void clear_IF(struct kernel_vm86_regs *regs)
372 {
373 	VEFLAGS &= ~X86_EFLAGS_VIF;
374 }
375 
376 static inline void clear_TF(struct kernel_vm86_regs *regs)
377 {
378 	regs->pt.flags &= ~X86_EFLAGS_TF;
379 }
380 
381 static inline void clear_AC(struct kernel_vm86_regs *regs)
382 {
383 	regs->pt.flags &= ~X86_EFLAGS_AC;
384 }
385 
386 /*
387  * It is correct to call set_IF(regs) from the set_vflags_*
388  * functions. However someone forgot to call clear_IF(regs)
389  * in the opposite case.
390  * After the command sequence CLI PUSHF STI POPF you should
391  * end up with interrupts disabled, but you ended up with
392  * interrupts enabled.
393  *  ( I was testing my own changes, but the only bug I
394  *    could find was in a function I had not changed. )
395  * [KD]
396  */
397 
398 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
399 {
400 	set_flags(VEFLAGS, flags, current->thread.v86mask);
401 	set_flags(regs->pt.flags, flags, SAFE_MASK);
402 	if (flags & X86_EFLAGS_IF)
403 		set_IF(regs);
404 	else
405 		clear_IF(regs);
406 }
407 
408 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
409 {
410 	set_flags(VFLAGS, flags, current->thread.v86mask);
411 	set_flags(regs->pt.flags, flags, SAFE_MASK);
412 	if (flags & X86_EFLAGS_IF)
413 		set_IF(regs);
414 	else
415 		clear_IF(regs);
416 }
417 
418 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
419 {
420 	unsigned long flags = regs->pt.flags & RETURN_MASK;
421 
422 	if (VEFLAGS & X86_EFLAGS_VIF)
423 		flags |= X86_EFLAGS_IF;
424 	flags |= X86_EFLAGS_IOPL;
425 	return flags | (VEFLAGS & current->thread.v86mask);
426 }
427 
428 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
429 {
430 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
431 		:"=r" (nr)
432 		:"m" (*bitmap), "r" (nr));
433 	return nr;
434 }
435 
436 #define val_byte(val, n) (((__u8 *)&val)[n])
437 
438 #define pushb(base, ptr, val, err_label) \
439 	do { \
440 		__u8 __val = val; \
441 		ptr--; \
442 		if (put_user(__val, base + ptr) < 0) \
443 			goto err_label; \
444 	} while (0)
445 
446 #define pushw(base, ptr, val, err_label) \
447 	do { \
448 		__u16 __val = val; \
449 		ptr--; \
450 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
451 			goto err_label; \
452 		ptr--; \
453 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
454 			goto err_label; \
455 	} while (0)
456 
457 #define pushl(base, ptr, val, err_label) \
458 	do { \
459 		__u32 __val = val; \
460 		ptr--; \
461 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
462 			goto err_label; \
463 		ptr--; \
464 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
465 			goto err_label; \
466 		ptr--; \
467 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
468 			goto err_label; \
469 		ptr--; \
470 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
471 			goto err_label; \
472 	} while (0)
473 
474 #define popb(base, ptr, err_label) \
475 	({ \
476 		__u8 __res; \
477 		if (get_user(__res, base + ptr) < 0) \
478 			goto err_label; \
479 		ptr++; \
480 		__res; \
481 	})
482 
483 #define popw(base, ptr, err_label) \
484 	({ \
485 		__u16 __res; \
486 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
487 			goto err_label; \
488 		ptr++; \
489 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
490 			goto err_label; \
491 		ptr++; \
492 		__res; \
493 	})
494 
495 #define popl(base, ptr, err_label) \
496 	({ \
497 		__u32 __res; \
498 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
499 			goto err_label; \
500 		ptr++; \
501 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
502 			goto err_label; \
503 		ptr++; \
504 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
505 			goto err_label; \
506 		ptr++; \
507 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
508 			goto err_label; \
509 		ptr++; \
510 		__res; \
511 	})
512 
513 /* There are so many possible reasons for this function to return
514  * VM86_INTx, so adding another doesn't bother me. We can expect
515  * userspace programs to be able to handle it. (Getting a problem
516  * in userspace is always better than an Oops anyway.) [KD]
517  */
518 static void do_int(struct kernel_vm86_regs *regs, int i,
519     unsigned char __user *ssp, unsigned short sp)
520 {
521 	unsigned long __user *intr_ptr;
522 	unsigned long segoffs;
523 
524 	if (regs->pt.cs == BIOSSEG)
525 		goto cannot_handle;
526 	if (is_revectored(i, &KVM86->int_revectored))
527 		goto cannot_handle;
528 	if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
529 		goto cannot_handle;
530 	intr_ptr = (unsigned long __user *) (i << 2);
531 	if (get_user(segoffs, intr_ptr))
532 		goto cannot_handle;
533 	if ((segoffs >> 16) == BIOSSEG)
534 		goto cannot_handle;
535 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
536 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
537 	pushw(ssp, sp, IP(regs), cannot_handle);
538 	regs->pt.cs = segoffs >> 16;
539 	SP(regs) -= 6;
540 	IP(regs) = segoffs & 0xffff;
541 	clear_TF(regs);
542 	clear_IF(regs);
543 	clear_AC(regs);
544 	return;
545 
546 cannot_handle:
547 	return_to_32bit(regs, VM86_INTx + (i << 8));
548 }
549 
550 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
551 {
552 	if (VMPI.is_vm86pus) {
553 		if ((trapno == 3) || (trapno == 1))
554 			return_to_32bit(regs, VM86_TRAP + (trapno << 8));
555 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
556 		return 0;
557 	}
558 	if (trapno != 1)
559 		return 1; /* we let this handle by the calling routine */
560 	current->thread.trap_no = trapno;
561 	current->thread.error_code = error_code;
562 	force_sig(SIGTRAP, current);
563 	return 0;
564 }
565 
566 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
567 {
568 	unsigned char opcode;
569 	unsigned char __user *csp;
570 	unsigned char __user *ssp;
571 	unsigned short ip, sp, orig_flags;
572 	int data32, pref_done;
573 
574 #define CHECK_IF_IN_TRAP \
575 	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
576 		newflags |= X86_EFLAGS_TF
577 #define VM86_FAULT_RETURN do { \
578 	if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
579 		return_to_32bit(regs, VM86_PICRETURN); \
580 	if (orig_flags & X86_EFLAGS_TF) \
581 		handle_vm86_trap(regs, 0, 1); \
582 	return; } while (0)
583 
584 	orig_flags = *(unsigned short *)&regs->pt.flags;
585 
586 	csp = (unsigned char __user *) (regs->pt.cs << 4);
587 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
588 	sp = SP(regs);
589 	ip = IP(regs);
590 
591 	data32 = 0;
592 	pref_done = 0;
593 	do {
594 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
595 		case 0x66:      /* 32-bit data */     data32 = 1; break;
596 		case 0x67:      /* 32-bit address */  break;
597 		case 0x2e:      /* CS */              break;
598 		case 0x3e:      /* DS */              break;
599 		case 0x26:      /* ES */              break;
600 		case 0x36:      /* SS */              break;
601 		case 0x65:      /* GS */              break;
602 		case 0x64:      /* FS */              break;
603 		case 0xf2:      /* repnz */       break;
604 		case 0xf3:      /* rep */             break;
605 		default: pref_done = 1;
606 		}
607 	} while (!pref_done);
608 
609 	switch (opcode) {
610 
611 	/* pushf */
612 	case 0x9c:
613 		if (data32) {
614 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
615 			SP(regs) -= 4;
616 		} else {
617 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
618 			SP(regs) -= 2;
619 		}
620 		IP(regs) = ip;
621 		VM86_FAULT_RETURN;
622 
623 	/* popf */
624 	case 0x9d:
625 		{
626 		unsigned long newflags;
627 		if (data32) {
628 			newflags = popl(ssp, sp, simulate_sigsegv);
629 			SP(regs) += 4;
630 		} else {
631 			newflags = popw(ssp, sp, simulate_sigsegv);
632 			SP(regs) += 2;
633 		}
634 		IP(regs) = ip;
635 		CHECK_IF_IN_TRAP;
636 		if (data32)
637 			set_vflags_long(newflags, regs);
638 		else
639 			set_vflags_short(newflags, regs);
640 
641 		VM86_FAULT_RETURN;
642 		}
643 
644 	/* int xx */
645 	case 0xcd: {
646 		int intno = popb(csp, ip, simulate_sigsegv);
647 		IP(regs) = ip;
648 		if (VMPI.vm86dbg_active) {
649 			if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
650 				return_to_32bit(regs, VM86_INTx + (intno << 8));
651 		}
652 		do_int(regs, intno, ssp, sp);
653 		return;
654 	}
655 
656 	/* iret */
657 	case 0xcf:
658 		{
659 		unsigned long newip;
660 		unsigned long newcs;
661 		unsigned long newflags;
662 		if (data32) {
663 			newip = popl(ssp, sp, simulate_sigsegv);
664 			newcs = popl(ssp, sp, simulate_sigsegv);
665 			newflags = popl(ssp, sp, simulate_sigsegv);
666 			SP(regs) += 12;
667 		} else {
668 			newip = popw(ssp, sp, simulate_sigsegv);
669 			newcs = popw(ssp, sp, simulate_sigsegv);
670 			newflags = popw(ssp, sp, simulate_sigsegv);
671 			SP(regs) += 6;
672 		}
673 		IP(regs) = newip;
674 		regs->pt.cs = newcs;
675 		CHECK_IF_IN_TRAP;
676 		if (data32) {
677 			set_vflags_long(newflags, regs);
678 		} else {
679 			set_vflags_short(newflags, regs);
680 		}
681 		VM86_FAULT_RETURN;
682 		}
683 
684 	/* cli */
685 	case 0xfa:
686 		IP(regs) = ip;
687 		clear_IF(regs);
688 		VM86_FAULT_RETURN;
689 
690 	/* sti */
691 	/*
692 	 * Damn. This is incorrect: the 'sti' instruction should actually
693 	 * enable interrupts after the /next/ instruction. Not good.
694 	 *
695 	 * Probably needs some horsing around with the TF flag. Aiee..
696 	 */
697 	case 0xfb:
698 		IP(regs) = ip;
699 		set_IF(regs);
700 		VM86_FAULT_RETURN;
701 
702 	default:
703 		return_to_32bit(regs, VM86_UNKNOWN);
704 	}
705 
706 	return;
707 
708 simulate_sigsegv:
709 	/* FIXME: After a long discussion with Stas we finally
710 	 *        agreed, that this is wrong. Here we should
711 	 *        really send a SIGSEGV to the user program.
712 	 *        But how do we create the correct context? We
713 	 *        are inside a general protection fault handler
714 	 *        and has just returned from a page fault handler.
715 	 *        The correct context for the signal handler
716 	 *        should be a mixture of the two, but how do we
717 	 *        get the information? [KD]
718 	 */
719 	return_to_32bit(regs, VM86_UNKNOWN);
720 }
721 
722 /* ---------------- vm86 special IRQ passing stuff ----------------- */
723 
724 #define VM86_IRQNAME		"vm86irq"
725 
726 static struct vm86_irqs {
727 	struct task_struct *tsk;
728 	int sig;
729 } vm86_irqs[16];
730 
731 static DEFINE_SPINLOCK(irqbits_lock);
732 static int irqbits;
733 
734 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
735 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
736 	| (1 << SIGUNUSED))
737 
738 static irqreturn_t irq_handler(int intno, void *dev_id)
739 {
740 	int irq_bit;
741 	unsigned long flags;
742 
743 	spin_lock_irqsave(&irqbits_lock, flags);
744 	irq_bit = 1 << intno;
745 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
746 		goto out;
747 	irqbits |= irq_bit;
748 	if (vm86_irqs[intno].sig)
749 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
750 	/*
751 	 * IRQ will be re-enabled when user asks for the irq (whether
752 	 * polling or as a result of the signal)
753 	 */
754 	disable_irq_nosync(intno);
755 	spin_unlock_irqrestore(&irqbits_lock, flags);
756 	return IRQ_HANDLED;
757 
758 out:
759 	spin_unlock_irqrestore(&irqbits_lock, flags);
760 	return IRQ_NONE;
761 }
762 
763 static inline void free_vm86_irq(int irqnumber)
764 {
765 	unsigned long flags;
766 
767 	free_irq(irqnumber, NULL);
768 	vm86_irqs[irqnumber].tsk = NULL;
769 
770 	spin_lock_irqsave(&irqbits_lock, flags);
771 	irqbits &= ~(1 << irqnumber);
772 	spin_unlock_irqrestore(&irqbits_lock, flags);
773 }
774 
775 void release_vm86_irqs(struct task_struct *task)
776 {
777 	int i;
778 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
779 	    if (vm86_irqs[i].tsk == task)
780 		free_vm86_irq(i);
781 }
782 
783 static inline int get_and_reset_irq(int irqnumber)
784 {
785 	int bit;
786 	unsigned long flags;
787 	int ret = 0;
788 
789 	if (invalid_vm86_irq(irqnumber)) return 0;
790 	if (vm86_irqs[irqnumber].tsk != current) return 0;
791 	spin_lock_irqsave(&irqbits_lock, flags);
792 	bit = irqbits & (1 << irqnumber);
793 	irqbits &= ~bit;
794 	if (bit) {
795 		enable_irq(irqnumber);
796 		ret = 1;
797 	}
798 
799 	spin_unlock_irqrestore(&irqbits_lock, flags);
800 	return ret;
801 }
802 
803 
804 static int do_vm86_irq_handling(int subfunction, int irqnumber)
805 {
806 	int ret;
807 	switch (subfunction) {
808 		case VM86_GET_AND_RESET_IRQ: {
809 			return get_and_reset_irq(irqnumber);
810 		}
811 		case VM86_GET_IRQ_BITS: {
812 			return irqbits;
813 		}
814 		case VM86_REQUEST_IRQ: {
815 			int sig = irqnumber >> 8;
816 			int irq = irqnumber & 255;
817 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
818 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
819 			if (invalid_vm86_irq(irq)) return -EPERM;
820 			if (vm86_irqs[irq].tsk) return -EPERM;
821 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
822 			if (ret) return ret;
823 			vm86_irqs[irq].sig = sig;
824 			vm86_irqs[irq].tsk = current;
825 			return irq;
826 		}
827 		case  VM86_FREE_IRQ: {
828 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
829 			if (!vm86_irqs[irqnumber].tsk) return 0;
830 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
831 			free_vm86_irq(irqnumber);
832 			return 0;
833 		}
834 	}
835 	return -EINVAL;
836 }
837 
838