xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision 46f5a10a)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/sched/task_stack.h>
39 #include <linux/kernel.h>
40 #include <linux/signal.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/smp.h>
44 #include <linux/highmem.h>
45 #include <linux/ptrace.h>
46 #include <linux/audit.h>
47 #include <linux/stddef.h>
48 #include <linux/slab.h>
49 #include <linux/security.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/io.h>
53 #include <asm/tlbflush.h>
54 #include <asm/irq.h>
55 #include <asm/traps.h>
56 #include <asm/vm86.h>
57 #include <asm/switch_to.h>
58 
59 /*
60  * Known problems:
61  *
62  * Interrupt handling is not guaranteed:
63  * - a real x86 will disable all interrupts for one instruction
64  *   after a "mov ss,xx" to make stack handling atomic even without
65  *   the 'lss' instruction. We can't guarantee this in v86 mode,
66  *   as the next instruction might result in a page fault or similar.
67  * - a real x86 will have interrupts disabled for one instruction
68  *   past the 'sti' that enables them. We don't bother with all the
69  *   details yet.
70  *
71  * Let's hope these problems do not actually matter for anything.
72  */
73 
74 
75 /*
76  * 8- and 16-bit register defines..
77  */
78 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
79 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
80 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
81 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
82 
83 /*
84  * virtual flags (16 and 32-bit versions)
85  */
86 #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
87 #define VEFLAGS	(current->thread.vm86->veflags)
88 
89 #define set_flags(X, new, mask) \
90 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
91 
92 #define SAFE_MASK	(0xDD5)
93 #define RETURN_MASK	(0xDFF)
94 
95 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
96 {
97 	struct task_struct *tsk = current;
98 	struct vm86plus_struct __user *user;
99 	struct vm86 *vm86 = current->thread.vm86;
100 	long err = 0;
101 
102 	/*
103 	 * This gets called from entry.S with interrupts disabled, but
104 	 * from process context. Enable interrupts here, before trying
105 	 * to access user space.
106 	 */
107 	local_irq_enable();
108 
109 	if (!vm86 || !vm86->user_vm86) {
110 		pr_alert("no user_vm86: BAD\n");
111 		do_exit(SIGSEGV);
112 	}
113 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
114 	user = vm86->user_vm86;
115 
116 	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
117 		       sizeof(struct vm86plus_struct) :
118 		       sizeof(struct vm86_struct))) {
119 		pr_alert("could not access userspace vm86 info\n");
120 		do_exit(SIGSEGV);
121 	}
122 
123 	put_user_try {
124 		put_user_ex(regs->pt.bx, &user->regs.ebx);
125 		put_user_ex(regs->pt.cx, &user->regs.ecx);
126 		put_user_ex(regs->pt.dx, &user->regs.edx);
127 		put_user_ex(regs->pt.si, &user->regs.esi);
128 		put_user_ex(regs->pt.di, &user->regs.edi);
129 		put_user_ex(regs->pt.bp, &user->regs.ebp);
130 		put_user_ex(regs->pt.ax, &user->regs.eax);
131 		put_user_ex(regs->pt.ip, &user->regs.eip);
132 		put_user_ex(regs->pt.cs, &user->regs.cs);
133 		put_user_ex(regs->pt.flags, &user->regs.eflags);
134 		put_user_ex(regs->pt.sp, &user->regs.esp);
135 		put_user_ex(regs->pt.ss, &user->regs.ss);
136 		put_user_ex(regs->es, &user->regs.es);
137 		put_user_ex(regs->ds, &user->regs.ds);
138 		put_user_ex(regs->fs, &user->regs.fs);
139 		put_user_ex(regs->gs, &user->regs.gs);
140 
141 		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
142 	} put_user_catch(err);
143 	if (err) {
144 		pr_alert("could not access userspace vm86 info\n");
145 		do_exit(SIGSEGV);
146 	}
147 
148 	preempt_disable();
149 	tsk->thread.sp0 = vm86->saved_sp0;
150 	tsk->thread.sysenter_cs = __KERNEL_CS;
151 	update_sp0(tsk);
152 	refresh_sysenter_cs(&tsk->thread);
153 	vm86->saved_sp0 = 0;
154 	preempt_enable();
155 
156 	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
157 
158 	lazy_load_gs(vm86->regs32.gs);
159 
160 	regs->pt.ax = retval;
161 }
162 
163 static void mark_screen_rdonly(struct mm_struct *mm)
164 {
165 	struct vm_area_struct *vma;
166 	spinlock_t *ptl;
167 	pgd_t *pgd;
168 	p4d_t *p4d;
169 	pud_t *pud;
170 	pmd_t *pmd;
171 	pte_t *pte;
172 	int i;
173 
174 	down_write(&mm->mmap_sem);
175 	pgd = pgd_offset(mm, 0xA0000);
176 	if (pgd_none_or_clear_bad(pgd))
177 		goto out;
178 	p4d = p4d_offset(pgd, 0xA0000);
179 	if (p4d_none_or_clear_bad(p4d))
180 		goto out;
181 	pud = pud_offset(p4d, 0xA0000);
182 	if (pud_none_or_clear_bad(pud))
183 		goto out;
184 	pmd = pmd_offset(pud, 0xA0000);
185 
186 	if (pmd_trans_huge(*pmd)) {
187 		vma = find_vma(mm, 0xA0000);
188 		split_huge_pmd(vma, pmd, 0xA0000);
189 	}
190 	if (pmd_none_or_clear_bad(pmd))
191 		goto out;
192 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
193 	for (i = 0; i < 32; i++) {
194 		if (pte_present(*pte))
195 			set_pte(pte, pte_wrprotect(*pte));
196 		pte++;
197 	}
198 	pte_unmap_unlock(pte, ptl);
199 out:
200 	up_write(&mm->mmap_sem);
201 	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
202 }
203 
204 
205 
206 static int do_vm86_irq_handling(int subfunction, int irqnumber);
207 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
208 
209 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
210 {
211 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
212 }
213 
214 
215 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
216 {
217 	switch (cmd) {
218 	case VM86_REQUEST_IRQ:
219 	case VM86_FREE_IRQ:
220 	case VM86_GET_IRQ_BITS:
221 	case VM86_GET_AND_RESET_IRQ:
222 		return do_vm86_irq_handling(cmd, (int)arg);
223 	case VM86_PLUS_INSTALL_CHECK:
224 		/*
225 		 * NOTE: on old vm86 stuff this will return the error
226 		 *  from access_ok(), because the subfunction is
227 		 *  interpreted as (invalid) address to vm86_struct.
228 		 *  So the installation check works.
229 		 */
230 		return 0;
231 	}
232 
233 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
234 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
235 }
236 
237 
238 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
239 {
240 	struct task_struct *tsk = current;
241 	struct vm86 *vm86 = tsk->thread.vm86;
242 	struct kernel_vm86_regs vm86regs;
243 	struct pt_regs *regs = current_pt_regs();
244 	unsigned long err = 0;
245 
246 	err = security_mmap_addr(0);
247 	if (err) {
248 		/*
249 		 * vm86 cannot virtualize the address space, so vm86 users
250 		 * need to manage the low 1MB themselves using mmap.  Given
251 		 * that BIOS places important data in the first page, vm86
252 		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
253 		 * for example, won't even bother trying to use vm86 if it
254 		 * can't map a page at virtual address 0.
255 		 *
256 		 * To reduce the available kernel attack surface, simply
257 		 * disallow vm86(old) for users who cannot mmap at va 0.
258 		 *
259 		 * The implementation of security_mmap_addr will allow
260 		 * suitably privileged users to map va 0 even if
261 		 * vm.mmap_min_addr is set above 0, and we want this
262 		 * behavior for vm86 as well, as it ensures that legacy
263 		 * tools like vbetool will not fail just because of
264 		 * vm.mmap_min_addr.
265 		 */
266 		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
267 			     current->comm, task_pid_nr(current),
268 			     from_kuid_munged(&init_user_ns, current_uid()));
269 		return -EPERM;
270 	}
271 
272 	if (!vm86) {
273 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
274 			return -ENOMEM;
275 		tsk->thread.vm86 = vm86;
276 	}
277 	if (vm86->saved_sp0)
278 		return -EPERM;
279 
280 	if (!access_ok(VERIFY_READ, user_vm86, plus ?
281 		       sizeof(struct vm86_struct) :
282 		       sizeof(struct vm86plus_struct)))
283 		return -EFAULT;
284 
285 	memset(&vm86regs, 0, sizeof(vm86regs));
286 	get_user_try {
287 		unsigned short seg;
288 		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
289 		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
290 		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
291 		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
292 		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
293 		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
294 		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
295 		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
296 		get_user_ex(seg, &user_vm86->regs.cs);
297 		vm86regs.pt.cs = seg;
298 		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
299 		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
300 		get_user_ex(seg, &user_vm86->regs.ss);
301 		vm86regs.pt.ss = seg;
302 		get_user_ex(vm86regs.es, &user_vm86->regs.es);
303 		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
304 		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
305 		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
306 
307 		get_user_ex(vm86->flags, &user_vm86->flags);
308 		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
309 		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
310 	} get_user_catch(err);
311 	if (err)
312 		return err;
313 
314 	if (copy_from_user(&vm86->int_revectored,
315 			   &user_vm86->int_revectored,
316 			   sizeof(struct revectored_struct)))
317 		return -EFAULT;
318 	if (copy_from_user(&vm86->int21_revectored,
319 			   &user_vm86->int21_revectored,
320 			   sizeof(struct revectored_struct)))
321 		return -EFAULT;
322 	if (plus) {
323 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
324 				   sizeof(struct vm86plus_info_struct)))
325 			return -EFAULT;
326 		vm86->vm86plus.is_vm86pus = 1;
327 	} else
328 		memset(&vm86->vm86plus, 0,
329 		       sizeof(struct vm86plus_info_struct));
330 
331 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
332 	vm86->user_vm86 = user_vm86;
333 
334 /*
335  * The flags register is also special: we cannot trust that the user
336  * has set it up safely, so this makes sure interrupt etc flags are
337  * inherited from protected mode.
338  */
339 	VEFLAGS = vm86regs.pt.flags;
340 	vm86regs.pt.flags &= SAFE_MASK;
341 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
342 	vm86regs.pt.flags |= X86_VM_MASK;
343 
344 	vm86regs.pt.orig_ax = regs->orig_ax;
345 
346 	switch (vm86->cpu_type) {
347 	case CPU_286:
348 		vm86->veflags_mask = 0;
349 		break;
350 	case CPU_386:
351 		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352 		break;
353 	case CPU_486:
354 		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
355 		break;
356 	default:
357 		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
358 		break;
359 	}
360 
361 /*
362  * Save old state
363  */
364 	vm86->saved_sp0 = tsk->thread.sp0;
365 	lazy_save_gs(vm86->regs32.gs);
366 
367 	/* make room for real-mode segments */
368 	preempt_disable();
369 	tsk->thread.sp0 += 16;
370 
371 	if (static_cpu_has(X86_FEATURE_SEP)) {
372 		tsk->thread.sysenter_cs = 0;
373 		refresh_sysenter_cs(&tsk->thread);
374 	}
375 
376 	update_sp0(tsk);
377 	preempt_enable();
378 
379 	if (vm86->flags & VM86_SCREEN_BITMAP)
380 		mark_screen_rdonly(tsk->mm);
381 
382 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
383 	force_iret();
384 	return regs->ax;
385 }
386 
387 static inline void set_IF(struct kernel_vm86_regs *regs)
388 {
389 	VEFLAGS |= X86_EFLAGS_VIF;
390 }
391 
392 static inline void clear_IF(struct kernel_vm86_regs *regs)
393 {
394 	VEFLAGS &= ~X86_EFLAGS_VIF;
395 }
396 
397 static inline void clear_TF(struct kernel_vm86_regs *regs)
398 {
399 	regs->pt.flags &= ~X86_EFLAGS_TF;
400 }
401 
402 static inline void clear_AC(struct kernel_vm86_regs *regs)
403 {
404 	regs->pt.flags &= ~X86_EFLAGS_AC;
405 }
406 
407 /*
408  * It is correct to call set_IF(regs) from the set_vflags_*
409  * functions. However someone forgot to call clear_IF(regs)
410  * in the opposite case.
411  * After the command sequence CLI PUSHF STI POPF you should
412  * end up with interrupts disabled, but you ended up with
413  * interrupts enabled.
414  *  ( I was testing my own changes, but the only bug I
415  *    could find was in a function I had not changed. )
416  * [KD]
417  */
418 
419 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
420 {
421 	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
422 	set_flags(regs->pt.flags, flags, SAFE_MASK);
423 	if (flags & X86_EFLAGS_IF)
424 		set_IF(regs);
425 	else
426 		clear_IF(regs);
427 }
428 
429 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
430 {
431 	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
432 	set_flags(regs->pt.flags, flags, SAFE_MASK);
433 	if (flags & X86_EFLAGS_IF)
434 		set_IF(regs);
435 	else
436 		clear_IF(regs);
437 }
438 
439 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
440 {
441 	unsigned long flags = regs->pt.flags & RETURN_MASK;
442 
443 	if (VEFLAGS & X86_EFLAGS_VIF)
444 		flags |= X86_EFLAGS_IF;
445 	flags |= X86_EFLAGS_IOPL;
446 	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
447 }
448 
449 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
450 {
451 	return test_bit(nr, bitmap->__map);
452 }
453 
454 #define val_byte(val, n) (((__u8 *)&val)[n])
455 
456 #define pushb(base, ptr, val, err_label) \
457 	do { \
458 		__u8 __val = val; \
459 		ptr--; \
460 		if (put_user(__val, base + ptr) < 0) \
461 			goto err_label; \
462 	} while (0)
463 
464 #define pushw(base, ptr, val, err_label) \
465 	do { \
466 		__u16 __val = val; \
467 		ptr--; \
468 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
469 			goto err_label; \
470 		ptr--; \
471 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
472 			goto err_label; \
473 	} while (0)
474 
475 #define pushl(base, ptr, val, err_label) \
476 	do { \
477 		__u32 __val = val; \
478 		ptr--; \
479 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
480 			goto err_label; \
481 		ptr--; \
482 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
483 			goto err_label; \
484 		ptr--; \
485 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
486 			goto err_label; \
487 		ptr--; \
488 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
489 			goto err_label; \
490 	} while (0)
491 
492 #define popb(base, ptr, err_label) \
493 	({ \
494 		__u8 __res; \
495 		if (get_user(__res, base + ptr) < 0) \
496 			goto err_label; \
497 		ptr++; \
498 		__res; \
499 	})
500 
501 #define popw(base, ptr, err_label) \
502 	({ \
503 		__u16 __res; \
504 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
505 			goto err_label; \
506 		ptr++; \
507 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
508 			goto err_label; \
509 		ptr++; \
510 		__res; \
511 	})
512 
513 #define popl(base, ptr, err_label) \
514 	({ \
515 		__u32 __res; \
516 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
517 			goto err_label; \
518 		ptr++; \
519 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
520 			goto err_label; \
521 		ptr++; \
522 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
523 			goto err_label; \
524 		ptr++; \
525 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
526 			goto err_label; \
527 		ptr++; \
528 		__res; \
529 	})
530 
531 /* There are so many possible reasons for this function to return
532  * VM86_INTx, so adding another doesn't bother me. We can expect
533  * userspace programs to be able to handle it. (Getting a problem
534  * in userspace is always better than an Oops anyway.) [KD]
535  */
536 static void do_int(struct kernel_vm86_regs *regs, int i,
537     unsigned char __user *ssp, unsigned short sp)
538 {
539 	unsigned long __user *intr_ptr;
540 	unsigned long segoffs;
541 	struct vm86 *vm86 = current->thread.vm86;
542 
543 	if (regs->pt.cs == BIOSSEG)
544 		goto cannot_handle;
545 	if (is_revectored(i, &vm86->int_revectored))
546 		goto cannot_handle;
547 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
548 		goto cannot_handle;
549 	intr_ptr = (unsigned long __user *) (i << 2);
550 	if (get_user(segoffs, intr_ptr))
551 		goto cannot_handle;
552 	if ((segoffs >> 16) == BIOSSEG)
553 		goto cannot_handle;
554 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
555 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
556 	pushw(ssp, sp, IP(regs), cannot_handle);
557 	regs->pt.cs = segoffs >> 16;
558 	SP(regs) -= 6;
559 	IP(regs) = segoffs & 0xffff;
560 	clear_TF(regs);
561 	clear_IF(regs);
562 	clear_AC(regs);
563 	return;
564 
565 cannot_handle:
566 	save_v86_state(regs, VM86_INTx + (i << 8));
567 }
568 
569 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
570 {
571 	struct vm86 *vm86 = current->thread.vm86;
572 
573 	if (vm86->vm86plus.is_vm86pus) {
574 		if ((trapno == 3) || (trapno == 1)) {
575 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
576 			return 0;
577 		}
578 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
579 		return 0;
580 	}
581 	if (trapno != 1)
582 		return 1; /* we let this handle by the calling routine */
583 	current->thread.trap_nr = trapno;
584 	current->thread.error_code = error_code;
585 	force_sig(SIGTRAP, current);
586 	return 0;
587 }
588 
589 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
590 {
591 	unsigned char opcode;
592 	unsigned char __user *csp;
593 	unsigned char __user *ssp;
594 	unsigned short ip, sp, orig_flags;
595 	int data32, pref_done;
596 	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
597 
598 #define CHECK_IF_IN_TRAP \
599 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
600 		newflags |= X86_EFLAGS_TF
601 
602 	orig_flags = *(unsigned short *)&regs->pt.flags;
603 
604 	csp = (unsigned char __user *) (regs->pt.cs << 4);
605 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
606 	sp = SP(regs);
607 	ip = IP(regs);
608 
609 	data32 = 0;
610 	pref_done = 0;
611 	do {
612 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
613 		case 0x66:      /* 32-bit data */     data32 = 1; break;
614 		case 0x67:      /* 32-bit address */  break;
615 		case 0x2e:      /* CS */              break;
616 		case 0x3e:      /* DS */              break;
617 		case 0x26:      /* ES */              break;
618 		case 0x36:      /* SS */              break;
619 		case 0x65:      /* GS */              break;
620 		case 0x64:      /* FS */              break;
621 		case 0xf2:      /* repnz */       break;
622 		case 0xf3:      /* rep */             break;
623 		default: pref_done = 1;
624 		}
625 	} while (!pref_done);
626 
627 	switch (opcode) {
628 
629 	/* pushf */
630 	case 0x9c:
631 		if (data32) {
632 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
633 			SP(regs) -= 4;
634 		} else {
635 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
636 			SP(regs) -= 2;
637 		}
638 		IP(regs) = ip;
639 		goto vm86_fault_return;
640 
641 	/* popf */
642 	case 0x9d:
643 		{
644 		unsigned long newflags;
645 		if (data32) {
646 			newflags = popl(ssp, sp, simulate_sigsegv);
647 			SP(regs) += 4;
648 		} else {
649 			newflags = popw(ssp, sp, simulate_sigsegv);
650 			SP(regs) += 2;
651 		}
652 		IP(regs) = ip;
653 		CHECK_IF_IN_TRAP;
654 		if (data32)
655 			set_vflags_long(newflags, regs);
656 		else
657 			set_vflags_short(newflags, regs);
658 
659 		goto check_vip;
660 		}
661 
662 	/* int xx */
663 	case 0xcd: {
664 		int intno = popb(csp, ip, simulate_sigsegv);
665 		IP(regs) = ip;
666 		if (vmpi->vm86dbg_active) {
667 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
668 				save_v86_state(regs, VM86_INTx + (intno << 8));
669 				return;
670 			}
671 		}
672 		do_int(regs, intno, ssp, sp);
673 		return;
674 	}
675 
676 	/* iret */
677 	case 0xcf:
678 		{
679 		unsigned long newip;
680 		unsigned long newcs;
681 		unsigned long newflags;
682 		if (data32) {
683 			newip = popl(ssp, sp, simulate_sigsegv);
684 			newcs = popl(ssp, sp, simulate_sigsegv);
685 			newflags = popl(ssp, sp, simulate_sigsegv);
686 			SP(regs) += 12;
687 		} else {
688 			newip = popw(ssp, sp, simulate_sigsegv);
689 			newcs = popw(ssp, sp, simulate_sigsegv);
690 			newflags = popw(ssp, sp, simulate_sigsegv);
691 			SP(regs) += 6;
692 		}
693 		IP(regs) = newip;
694 		regs->pt.cs = newcs;
695 		CHECK_IF_IN_TRAP;
696 		if (data32) {
697 			set_vflags_long(newflags, regs);
698 		} else {
699 			set_vflags_short(newflags, regs);
700 		}
701 		goto check_vip;
702 		}
703 
704 	/* cli */
705 	case 0xfa:
706 		IP(regs) = ip;
707 		clear_IF(regs);
708 		goto vm86_fault_return;
709 
710 	/* sti */
711 	/*
712 	 * Damn. This is incorrect: the 'sti' instruction should actually
713 	 * enable interrupts after the /next/ instruction. Not good.
714 	 *
715 	 * Probably needs some horsing around with the TF flag. Aiee..
716 	 */
717 	case 0xfb:
718 		IP(regs) = ip;
719 		set_IF(regs);
720 		goto check_vip;
721 
722 	default:
723 		save_v86_state(regs, VM86_UNKNOWN);
724 	}
725 
726 	return;
727 
728 check_vip:
729 	if (VEFLAGS & X86_EFLAGS_VIP) {
730 		save_v86_state(regs, VM86_STI);
731 		return;
732 	}
733 
734 vm86_fault_return:
735 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
736 		save_v86_state(regs, VM86_PICRETURN);
737 		return;
738 	}
739 	if (orig_flags & X86_EFLAGS_TF)
740 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
741 	return;
742 
743 simulate_sigsegv:
744 	/* FIXME: After a long discussion with Stas we finally
745 	 *        agreed, that this is wrong. Here we should
746 	 *        really send a SIGSEGV to the user program.
747 	 *        But how do we create the correct context? We
748 	 *        are inside a general protection fault handler
749 	 *        and has just returned from a page fault handler.
750 	 *        The correct context for the signal handler
751 	 *        should be a mixture of the two, but how do we
752 	 *        get the information? [KD]
753 	 */
754 	save_v86_state(regs, VM86_UNKNOWN);
755 }
756 
757 /* ---------------- vm86 special IRQ passing stuff ----------------- */
758 
759 #define VM86_IRQNAME		"vm86irq"
760 
761 static struct vm86_irqs {
762 	struct task_struct *tsk;
763 	int sig;
764 } vm86_irqs[16];
765 
766 static DEFINE_SPINLOCK(irqbits_lock);
767 static int irqbits;
768 
769 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
770 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
771 	| (1 << SIGUNUSED))
772 
773 static irqreturn_t irq_handler(int intno, void *dev_id)
774 {
775 	int irq_bit;
776 	unsigned long flags;
777 
778 	spin_lock_irqsave(&irqbits_lock, flags);
779 	irq_bit = 1 << intno;
780 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
781 		goto out;
782 	irqbits |= irq_bit;
783 	if (vm86_irqs[intno].sig)
784 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
785 	/*
786 	 * IRQ will be re-enabled when user asks for the irq (whether
787 	 * polling or as a result of the signal)
788 	 */
789 	disable_irq_nosync(intno);
790 	spin_unlock_irqrestore(&irqbits_lock, flags);
791 	return IRQ_HANDLED;
792 
793 out:
794 	spin_unlock_irqrestore(&irqbits_lock, flags);
795 	return IRQ_NONE;
796 }
797 
798 static inline void free_vm86_irq(int irqnumber)
799 {
800 	unsigned long flags;
801 
802 	free_irq(irqnumber, NULL);
803 	vm86_irqs[irqnumber].tsk = NULL;
804 
805 	spin_lock_irqsave(&irqbits_lock, flags);
806 	irqbits &= ~(1 << irqnumber);
807 	spin_unlock_irqrestore(&irqbits_lock, flags);
808 }
809 
810 void release_vm86_irqs(struct task_struct *task)
811 {
812 	int i;
813 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
814 	    if (vm86_irqs[i].tsk == task)
815 		free_vm86_irq(i);
816 }
817 
818 static inline int get_and_reset_irq(int irqnumber)
819 {
820 	int bit;
821 	unsigned long flags;
822 	int ret = 0;
823 
824 	if (invalid_vm86_irq(irqnumber)) return 0;
825 	if (vm86_irqs[irqnumber].tsk != current) return 0;
826 	spin_lock_irqsave(&irqbits_lock, flags);
827 	bit = irqbits & (1 << irqnumber);
828 	irqbits &= ~bit;
829 	if (bit) {
830 		enable_irq(irqnumber);
831 		ret = 1;
832 	}
833 
834 	spin_unlock_irqrestore(&irqbits_lock, flags);
835 	return ret;
836 }
837 
838 
839 static int do_vm86_irq_handling(int subfunction, int irqnumber)
840 {
841 	int ret;
842 	switch (subfunction) {
843 		case VM86_GET_AND_RESET_IRQ: {
844 			return get_and_reset_irq(irqnumber);
845 		}
846 		case VM86_GET_IRQ_BITS: {
847 			return irqbits;
848 		}
849 		case VM86_REQUEST_IRQ: {
850 			int sig = irqnumber >> 8;
851 			int irq = irqnumber & 255;
852 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
853 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
854 			if (invalid_vm86_irq(irq)) return -EPERM;
855 			if (vm86_irqs[irq].tsk) return -EPERM;
856 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
857 			if (ret) return ret;
858 			vm86_irqs[irq].sig = sig;
859 			vm86_irqs[irq].tsk = current;
860 			return irq;
861 		}
862 		case  VM86_FREE_IRQ: {
863 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
864 			if (!vm86_irqs[irqnumber].tsk) return 0;
865 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
866 			free_vm86_irq(irqnumber);
867 			return 0;
868 		}
869 	}
870 	return -EINVAL;
871 }
872 
873