xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision 2b8232ce)
1 /*
2  *  linux/kernel/vm86.c
3  *
4  *  Copyright (C) 1994  Linus Torvalds
5  *
6  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
7  *                stack - Manfred Spraul <manfred@colorfullife.com>
8  *
9  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
10  *                them correctly. Now the emulation will be in a
11  *                consistent state after stackfaults - Kasper Dupont
12  *                <kasperd@daimi.au.dk>
13  *
14  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
15  *                <kasperd@daimi.au.dk>
16  *
17  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
18  *                caused by Kasper Dupont's changes - Stas Sergeev
19  *
20  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
21  *                Kasper Dupont <kasperd@daimi.au.dk>
22  *
23  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
24  *                Kasper Dupont <kasperd@daimi.au.dk>
25  *
26  *   9 apr 2002 - Changed stack access macros to jump to a label
27  *                instead of returning to userspace. This simplifies
28  *                do_int, and is needed by handle_vm6_fault. Kasper
29  *                Dupont <kasperd@daimi.au.dk>
30  *
31  */
32 
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/signal.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/smp.h>
42 #include <linux/highmem.h>
43 #include <linux/ptrace.h>
44 #include <linux/audit.h>
45 #include <linux/stddef.h>
46 
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/tlbflush.h>
50 #include <asm/irq.h>
51 
52 /*
53  * Known problems:
54  *
55  * Interrupt handling is not guaranteed:
56  * - a real x86 will disable all interrupts for one instruction
57  *   after a "mov ss,xx" to make stack handling atomic even without
58  *   the 'lss' instruction. We can't guarantee this in v86 mode,
59  *   as the next instruction might result in a page fault or similar.
60  * - a real x86 will have interrupts disabled for one instruction
61  *   past the 'sti' that enables them. We don't bother with all the
62  *   details yet.
63  *
64  * Let's hope these problems do not actually matter for anything.
65  */
66 
67 
68 #define KVM86	((struct kernel_vm86_struct *)regs)
69 #define VMPI 	KVM86->vm86plus
70 
71 
72 /*
73  * 8- and 16-bit register defines..
74  */
75 #define AL(regs)	(((unsigned char *)&((regs)->pt.eax))[0])
76 #define AH(regs)	(((unsigned char *)&((regs)->pt.eax))[1])
77 #define IP(regs)	(*(unsigned short *)&((regs)->pt.eip))
78 #define SP(regs)	(*(unsigned short *)&((regs)->pt.esp))
79 
80 /*
81  * virtual flags (16 and 32-bit versions)
82  */
83 #define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
84 #define VEFLAGS	(current->thread.v86flags)
85 
86 #define set_flags(X,new,mask) \
87 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
88 
89 #define SAFE_MASK	(0xDD5)
90 #define RETURN_MASK	(0xDFF)
91 
92 /* convert kernel_vm86_regs to vm86_regs */
93 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
94 				  const struct kernel_vm86_regs *regs)
95 {
96 	int ret = 0;
97 
98 	/* kernel_vm86_regs is missing xgs, so copy everything up to
99 	   (but not including) orig_eax, and then rest including orig_eax. */
100 	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_eax));
101 	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_eax,
102 			    sizeof(struct kernel_vm86_regs) -
103 			    offsetof(struct kernel_vm86_regs, pt.orig_eax));
104 
105 	return ret;
106 }
107 
108 /* convert vm86_regs to kernel_vm86_regs */
109 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
110 				    const struct vm86_regs __user *user,
111 				    unsigned extra)
112 {
113 	int ret = 0;
114 
115 	/* copy eax-xfs inclusive */
116 	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_eax));
117 	/* copy orig_eax-__gsh+extra */
118 	ret += copy_from_user(&regs->pt.orig_eax, &user->orig_eax,
119 			      sizeof(struct kernel_vm86_regs) -
120 			      offsetof(struct kernel_vm86_regs, pt.orig_eax) +
121 			      extra);
122 	return ret;
123 }
124 
125 struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
126 struct pt_regs * fastcall save_v86_state(struct kernel_vm86_regs * regs)
127 {
128 	struct tss_struct *tss;
129 	struct pt_regs *ret;
130 	unsigned long tmp;
131 
132 	/*
133 	 * This gets called from entry.S with interrupts disabled, but
134 	 * from process context. Enable interrupts here, before trying
135 	 * to access user space.
136 	 */
137 	local_irq_enable();
138 
139 	if (!current->thread.vm86_info) {
140 		printk("no vm86_info: BAD\n");
141 		do_exit(SIGSEGV);
142 	}
143 	set_flags(regs->pt.eflags, VEFLAGS, VIF_MASK | current->thread.v86mask);
144 	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
145 	tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
146 	if (tmp) {
147 		printk("vm86: could not access userspace vm86_info\n");
148 		do_exit(SIGSEGV);
149 	}
150 
151 	tss = &per_cpu(init_tss, get_cpu());
152 	current->thread.esp0 = current->thread.saved_esp0;
153 	current->thread.sysenter_cs = __KERNEL_CS;
154 	load_esp0(tss, &current->thread);
155 	current->thread.saved_esp0 = 0;
156 	put_cpu();
157 
158 	ret = KVM86->regs32;
159 
160 	ret->xfs = current->thread.saved_fs;
161 	loadsegment(gs, current->thread.saved_gs);
162 
163 	return ret;
164 }
165 
166 static void mark_screen_rdonly(struct mm_struct *mm)
167 {
168 	pgd_t *pgd;
169 	pud_t *pud;
170 	pmd_t *pmd;
171 	pte_t *pte;
172 	spinlock_t *ptl;
173 	int i;
174 
175 	pgd = pgd_offset(mm, 0xA0000);
176 	if (pgd_none_or_clear_bad(pgd))
177 		goto out;
178 	pud = pud_offset(pgd, 0xA0000);
179 	if (pud_none_or_clear_bad(pud))
180 		goto out;
181 	pmd = pmd_offset(pud, 0xA0000);
182 	if (pmd_none_or_clear_bad(pmd))
183 		goto out;
184 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
185 	for (i = 0; i < 32; i++) {
186 		if (pte_present(*pte))
187 			set_pte(pte, pte_wrprotect(*pte));
188 		pte++;
189 	}
190 	pte_unmap_unlock(pte, ptl);
191 out:
192 	flush_tlb();
193 }
194 
195 
196 
197 static int do_vm86_irq_handling(int subfunction, int irqnumber);
198 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
199 
200 asmlinkage int sys_vm86old(struct pt_regs regs)
201 {
202 	struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.ebx;
203 	struct kernel_vm86_struct info; /* declare this _on top_,
204 					 * this avoids wasting of stack space.
205 					 * This remains on the stack until we
206 					 * return to 32 bit user space.
207 					 */
208 	struct task_struct *tsk;
209 	int tmp, ret = -EPERM;
210 
211 	tsk = current;
212 	if (tsk->thread.saved_esp0)
213 		goto out;
214 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
215 				       offsetof(struct kernel_vm86_struct, vm86plus) -
216 				       sizeof(info.regs));
217 	ret = -EFAULT;
218 	if (tmp)
219 		goto out;
220 	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
221 	info.regs32 = &regs;
222 	tsk->thread.vm86_info = v86;
223 	do_sys_vm86(&info, tsk);
224 	ret = 0;	/* we never return here */
225 out:
226 	return ret;
227 }
228 
229 
230 asmlinkage int sys_vm86(struct pt_regs regs)
231 {
232 	struct kernel_vm86_struct info; /* declare this _on top_,
233 					 * this avoids wasting of stack space.
234 					 * This remains on the stack until we
235 					 * return to 32 bit user space.
236 					 */
237 	struct task_struct *tsk;
238 	int tmp, ret;
239 	struct vm86plus_struct __user *v86;
240 
241 	tsk = current;
242 	switch (regs.ebx) {
243 		case VM86_REQUEST_IRQ:
244 		case VM86_FREE_IRQ:
245 		case VM86_GET_IRQ_BITS:
246 		case VM86_GET_AND_RESET_IRQ:
247 			ret = do_vm86_irq_handling(regs.ebx, (int)regs.ecx);
248 			goto out;
249 		case VM86_PLUS_INSTALL_CHECK:
250 			/* NOTE: on old vm86 stuff this will return the error
251 			   from access_ok(), because the subfunction is
252 			   interpreted as (invalid) address to vm86_struct.
253 			   So the installation check works.
254 			 */
255 			ret = 0;
256 			goto out;
257 	}
258 
259 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
260 	ret = -EPERM;
261 	if (tsk->thread.saved_esp0)
262 		goto out;
263 	v86 = (struct vm86plus_struct __user *)regs.ecx;
264 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
265 				       offsetof(struct kernel_vm86_struct, regs32) -
266 				       sizeof(info.regs));
267 	ret = -EFAULT;
268 	if (tmp)
269 		goto out;
270 	info.regs32 = &regs;
271 	info.vm86plus.is_vm86pus = 1;
272 	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
273 	do_sys_vm86(&info, tsk);
274 	ret = 0;	/* we never return here */
275 out:
276 	return ret;
277 }
278 
279 
280 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
281 {
282 	struct tss_struct *tss;
283 /*
284  * make sure the vm86() system call doesn't try to do anything silly
285  */
286 	info->regs.pt.xds = 0;
287 	info->regs.pt.xes = 0;
288 	info->regs.pt.xfs = 0;
289 
290 /* we are clearing gs later just before "jmp resume_userspace",
291  * because it is not saved/restored.
292  */
293 
294 /*
295  * The eflags register is also special: we cannot trust that the user
296  * has set it up safely, so this makes sure interrupt etc flags are
297  * inherited from protected mode.
298  */
299  	VEFLAGS = info->regs.pt.eflags;
300 	info->regs.pt.eflags &= SAFE_MASK;
301 	info->regs.pt.eflags |= info->regs32->eflags & ~SAFE_MASK;
302 	info->regs.pt.eflags |= VM_MASK;
303 
304 	switch (info->cpu_type) {
305 		case CPU_286:
306 			tsk->thread.v86mask = 0;
307 			break;
308 		case CPU_386:
309 			tsk->thread.v86mask = NT_MASK | IOPL_MASK;
310 			break;
311 		case CPU_486:
312 			tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
313 			break;
314 		default:
315 			tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
316 			break;
317 	}
318 
319 /*
320  * Save old state, set default return value (%eax) to 0
321  */
322 	info->regs32->eax = 0;
323 	tsk->thread.saved_esp0 = tsk->thread.esp0;
324 	tsk->thread.saved_fs = info->regs32->xfs;
325 	savesegment(gs, tsk->thread.saved_gs);
326 
327 	tss = &per_cpu(init_tss, get_cpu());
328 	tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
329 	if (cpu_has_sep)
330 		tsk->thread.sysenter_cs = 0;
331 	load_esp0(tss, &tsk->thread);
332 	put_cpu();
333 
334 	tsk->thread.screen_bitmap = info->screen_bitmap;
335 	if (info->flags & VM86_SCREEN_BITMAP)
336 		mark_screen_rdonly(tsk->mm);
337 
338 	/*call audit_syscall_exit since we do not exit via the normal paths */
339 	if (unlikely(current->audit_context))
340 		audit_syscall_exit(AUDITSC_RESULT(0), 0);
341 
342 	__asm__ __volatile__(
343 		"movl %0,%%esp\n\t"
344 		"movl %1,%%ebp\n\t"
345 		"mov  %2, %%gs\n\t"
346 		"jmp resume_userspace"
347 		: /* no outputs */
348 		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
349 	/* we never return here */
350 }
351 
352 static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
353 {
354 	struct pt_regs * regs32;
355 
356 	regs32 = save_v86_state(regs16);
357 	regs32->eax = retval;
358 	__asm__ __volatile__("movl %0,%%esp\n\t"
359 		"movl %1,%%ebp\n\t"
360 		"jmp resume_userspace"
361 		: : "r" (regs32), "r" (current_thread_info()));
362 }
363 
364 static inline void set_IF(struct kernel_vm86_regs * regs)
365 {
366 	VEFLAGS |= VIF_MASK;
367 	if (VEFLAGS & VIP_MASK)
368 		return_to_32bit(regs, VM86_STI);
369 }
370 
371 static inline void clear_IF(struct kernel_vm86_regs * regs)
372 {
373 	VEFLAGS &= ~VIF_MASK;
374 }
375 
376 static inline void clear_TF(struct kernel_vm86_regs * regs)
377 {
378 	regs->pt.eflags &= ~TF_MASK;
379 }
380 
381 static inline void clear_AC(struct kernel_vm86_regs * regs)
382 {
383 	regs->pt.eflags &= ~AC_MASK;
384 }
385 
386 /* It is correct to call set_IF(regs) from the set_vflags_*
387  * functions. However someone forgot to call clear_IF(regs)
388  * in the opposite case.
389  * After the command sequence CLI PUSHF STI POPF you should
390  * end up with interrups disabled, but you ended up with
391  * interrupts enabled.
392  *  ( I was testing my own changes, but the only bug I
393  *    could find was in a function I had not changed. )
394  * [KD]
395  */
396 
397 static inline void set_vflags_long(unsigned long eflags, struct kernel_vm86_regs * regs)
398 {
399 	set_flags(VEFLAGS, eflags, current->thread.v86mask);
400 	set_flags(regs->pt.eflags, eflags, SAFE_MASK);
401 	if (eflags & IF_MASK)
402 		set_IF(regs);
403 	else
404 		clear_IF(regs);
405 }
406 
407 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
408 {
409 	set_flags(VFLAGS, flags, current->thread.v86mask);
410 	set_flags(regs->pt.eflags, flags, SAFE_MASK);
411 	if (flags & IF_MASK)
412 		set_IF(regs);
413 	else
414 		clear_IF(regs);
415 }
416 
417 static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
418 {
419 	unsigned long flags = regs->pt.eflags & RETURN_MASK;
420 
421 	if (VEFLAGS & VIF_MASK)
422 		flags |= IF_MASK;
423 	flags |= IOPL_MASK;
424 	return flags | (VEFLAGS & current->thread.v86mask);
425 }
426 
427 static inline int is_revectored(int nr, struct revectored_struct * bitmap)
428 {
429 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
430 		:"=r" (nr)
431 		:"m" (*bitmap),"r" (nr));
432 	return nr;
433 }
434 
435 #define val_byte(val, n) (((__u8 *)&val)[n])
436 
437 #define pushb(base, ptr, val, err_label) \
438 	do { \
439 		__u8 __val = val; \
440 		ptr--; \
441 		if (put_user(__val, base + ptr) < 0) \
442 			goto err_label; \
443 	} while(0)
444 
445 #define pushw(base, ptr, val, err_label) \
446 	do { \
447 		__u16 __val = val; \
448 		ptr--; \
449 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
450 			goto err_label; \
451 		ptr--; \
452 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
453 			goto err_label; \
454 	} while(0)
455 
456 #define pushl(base, ptr, val, err_label) \
457 	do { \
458 		__u32 __val = val; \
459 		ptr--; \
460 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
461 			goto err_label; \
462 		ptr--; \
463 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
464 			goto err_label; \
465 		ptr--; \
466 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
467 			goto err_label; \
468 		ptr--; \
469 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
470 			goto err_label; \
471 	} while(0)
472 
473 #define popb(base, ptr, err_label) \
474 	({ \
475 		__u8 __res; \
476 		if (get_user(__res, base + ptr) < 0) \
477 			goto err_label; \
478 		ptr++; \
479 		__res; \
480 	})
481 
482 #define popw(base, ptr, err_label) \
483 	({ \
484 		__u16 __res; \
485 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
486 			goto err_label; \
487 		ptr++; \
488 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
489 			goto err_label; \
490 		ptr++; \
491 		__res; \
492 	})
493 
494 #define popl(base, ptr, err_label) \
495 	({ \
496 		__u32 __res; \
497 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
498 			goto err_label; \
499 		ptr++; \
500 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
501 			goto err_label; \
502 		ptr++; \
503 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
504 			goto err_label; \
505 		ptr++; \
506 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
507 			goto err_label; \
508 		ptr++; \
509 		__res; \
510 	})
511 
512 /* There are so many possible reasons for this function to return
513  * VM86_INTx, so adding another doesn't bother me. We can expect
514  * userspace programs to be able to handle it. (Getting a problem
515  * in userspace is always better than an Oops anyway.) [KD]
516  */
517 static void do_int(struct kernel_vm86_regs *regs, int i,
518     unsigned char __user * ssp, unsigned short sp)
519 {
520 	unsigned long __user *intr_ptr;
521 	unsigned long segoffs;
522 
523 	if (regs->pt.xcs == BIOSSEG)
524 		goto cannot_handle;
525 	if (is_revectored(i, &KVM86->int_revectored))
526 		goto cannot_handle;
527 	if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
528 		goto cannot_handle;
529 	intr_ptr = (unsigned long __user *) (i << 2);
530 	if (get_user(segoffs, intr_ptr))
531 		goto cannot_handle;
532 	if ((segoffs >> 16) == BIOSSEG)
533 		goto cannot_handle;
534 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
535 	pushw(ssp, sp, regs->pt.xcs, cannot_handle);
536 	pushw(ssp, sp, IP(regs), cannot_handle);
537 	regs->pt.xcs = segoffs >> 16;
538 	SP(regs) -= 6;
539 	IP(regs) = segoffs & 0xffff;
540 	clear_TF(regs);
541 	clear_IF(regs);
542 	clear_AC(regs);
543 	return;
544 
545 cannot_handle:
546 	return_to_32bit(regs, VM86_INTx + (i << 8));
547 }
548 
549 int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
550 {
551 	if (VMPI.is_vm86pus) {
552 		if ( (trapno==3) || (trapno==1) )
553 			return_to_32bit(regs, VM86_TRAP + (trapno << 8));
554 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.xss << 4), SP(regs));
555 		return 0;
556 	}
557 	if (trapno !=1)
558 		return 1; /* we let this handle by the calling routine */
559 	if (current->ptrace & PT_PTRACED) {
560 		unsigned long flags;
561 		spin_lock_irqsave(&current->sighand->siglock, flags);
562 		sigdelset(&current->blocked, SIGTRAP);
563 		recalc_sigpending();
564 		spin_unlock_irqrestore(&current->sighand->siglock, flags);
565 	}
566 	send_sig(SIGTRAP, current, 1);
567 	current->thread.trap_no = trapno;
568 	current->thread.error_code = error_code;
569 	return 0;
570 }
571 
572 void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
573 {
574 	unsigned char opcode;
575 	unsigned char __user *csp;
576 	unsigned char __user *ssp;
577 	unsigned short ip, sp, orig_flags;
578 	int data32, pref_done;
579 
580 #define CHECK_IF_IN_TRAP \
581 	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
582 		newflags |= TF_MASK
583 #define VM86_FAULT_RETURN do { \
584 	if (VMPI.force_return_for_pic  && (VEFLAGS & (IF_MASK | VIF_MASK))) \
585 		return_to_32bit(regs, VM86_PICRETURN); \
586 	if (orig_flags & TF_MASK) \
587 		handle_vm86_trap(regs, 0, 1); \
588 	return; } while (0)
589 
590 	orig_flags = *(unsigned short *)&regs->pt.eflags;
591 
592 	csp = (unsigned char __user *) (regs->pt.xcs << 4);
593 	ssp = (unsigned char __user *) (regs->pt.xss << 4);
594 	sp = SP(regs);
595 	ip = IP(regs);
596 
597 	data32 = 0;
598 	pref_done = 0;
599 	do {
600 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
601 			case 0x66:      /* 32-bit data */     data32=1; break;
602 			case 0x67:      /* 32-bit address */  break;
603 			case 0x2e:      /* CS */              break;
604 			case 0x3e:      /* DS */              break;
605 			case 0x26:      /* ES */              break;
606 			case 0x36:      /* SS */              break;
607 			case 0x65:      /* GS */              break;
608 			case 0x64:      /* FS */              break;
609 			case 0xf2:      /* repnz */       break;
610 			case 0xf3:      /* rep */             break;
611 			default: pref_done = 1;
612 		}
613 	} while (!pref_done);
614 
615 	switch (opcode) {
616 
617 	/* pushf */
618 	case 0x9c:
619 		if (data32) {
620 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
621 			SP(regs) -= 4;
622 		} else {
623 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
624 			SP(regs) -= 2;
625 		}
626 		IP(regs) = ip;
627 		VM86_FAULT_RETURN;
628 
629 	/* popf */
630 	case 0x9d:
631 		{
632 		unsigned long newflags;
633 		if (data32) {
634 			newflags=popl(ssp, sp, simulate_sigsegv);
635 			SP(regs) += 4;
636 		} else {
637 			newflags = popw(ssp, sp, simulate_sigsegv);
638 			SP(regs) += 2;
639 		}
640 		IP(regs) = ip;
641 		CHECK_IF_IN_TRAP;
642 		if (data32) {
643 			set_vflags_long(newflags, regs);
644 		} else {
645 			set_vflags_short(newflags, regs);
646 		}
647 		VM86_FAULT_RETURN;
648 		}
649 
650 	/* int xx */
651 	case 0xcd: {
652 		int intno=popb(csp, ip, simulate_sigsegv);
653 		IP(regs) = ip;
654 		if (VMPI.vm86dbg_active) {
655 			if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
656 				return_to_32bit(regs, VM86_INTx + (intno << 8));
657 		}
658 		do_int(regs, intno, ssp, sp);
659 		return;
660 	}
661 
662 	/* iret */
663 	case 0xcf:
664 		{
665 		unsigned long newip;
666 		unsigned long newcs;
667 		unsigned long newflags;
668 		if (data32) {
669 			newip=popl(ssp, sp, simulate_sigsegv);
670 			newcs=popl(ssp, sp, simulate_sigsegv);
671 			newflags=popl(ssp, sp, simulate_sigsegv);
672 			SP(regs) += 12;
673 		} else {
674 			newip = popw(ssp, sp, simulate_sigsegv);
675 			newcs = popw(ssp, sp, simulate_sigsegv);
676 			newflags = popw(ssp, sp, simulate_sigsegv);
677 			SP(regs) += 6;
678 		}
679 		IP(regs) = newip;
680 		regs->pt.xcs = newcs;
681 		CHECK_IF_IN_TRAP;
682 		if (data32) {
683 			set_vflags_long(newflags, regs);
684 		} else {
685 			set_vflags_short(newflags, regs);
686 		}
687 		VM86_FAULT_RETURN;
688 		}
689 
690 	/* cli */
691 	case 0xfa:
692 		IP(regs) = ip;
693 		clear_IF(regs);
694 		VM86_FAULT_RETURN;
695 
696 	/* sti */
697 	/*
698 	 * Damn. This is incorrect: the 'sti' instruction should actually
699 	 * enable interrupts after the /next/ instruction. Not good.
700 	 *
701 	 * Probably needs some horsing around with the TF flag. Aiee..
702 	 */
703 	case 0xfb:
704 		IP(regs) = ip;
705 		set_IF(regs);
706 		VM86_FAULT_RETURN;
707 
708 	default:
709 		return_to_32bit(regs, VM86_UNKNOWN);
710 	}
711 
712 	return;
713 
714 simulate_sigsegv:
715 	/* FIXME: After a long discussion with Stas we finally
716 	 *        agreed, that this is wrong. Here we should
717 	 *        really send a SIGSEGV to the user program.
718 	 *        But how do we create the correct context? We
719 	 *        are inside a general protection fault handler
720 	 *        and has just returned from a page fault handler.
721 	 *        The correct context for the signal handler
722 	 *        should be a mixture of the two, but how do we
723 	 *        get the information? [KD]
724 	 */
725 	return_to_32bit(regs, VM86_UNKNOWN);
726 }
727 
728 /* ---------------- vm86 special IRQ passing stuff ----------------- */
729 
730 #define VM86_IRQNAME		"vm86irq"
731 
732 static struct vm86_irqs {
733 	struct task_struct *tsk;
734 	int sig;
735 } vm86_irqs[16];
736 
737 static DEFINE_SPINLOCK(irqbits_lock);
738 static int irqbits;
739 
740 #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
741 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
742 	| (1 << SIGUNUSED) )
743 
744 static irqreturn_t irq_handler(int intno, void *dev_id)
745 {
746 	int irq_bit;
747 	unsigned long flags;
748 
749 	spin_lock_irqsave(&irqbits_lock, flags);
750 	irq_bit = 1 << intno;
751 	if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
752 		goto out;
753 	irqbits |= irq_bit;
754 	if (vm86_irqs[intno].sig)
755 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
756 	/*
757 	 * IRQ will be re-enabled when user asks for the irq (whether
758 	 * polling or as a result of the signal)
759 	 */
760 	disable_irq_nosync(intno);
761 	spin_unlock_irqrestore(&irqbits_lock, flags);
762 	return IRQ_HANDLED;
763 
764 out:
765 	spin_unlock_irqrestore(&irqbits_lock, flags);
766 	return IRQ_NONE;
767 }
768 
769 static inline void free_vm86_irq(int irqnumber)
770 {
771 	unsigned long flags;
772 
773 	free_irq(irqnumber, NULL);
774 	vm86_irqs[irqnumber].tsk = NULL;
775 
776 	spin_lock_irqsave(&irqbits_lock, flags);
777 	irqbits &= ~(1 << irqnumber);
778 	spin_unlock_irqrestore(&irqbits_lock, flags);
779 }
780 
781 void release_vm86_irqs(struct task_struct *task)
782 {
783 	int i;
784 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
785 	    if (vm86_irqs[i].tsk == task)
786 		free_vm86_irq(i);
787 }
788 
789 static inline int get_and_reset_irq(int irqnumber)
790 {
791 	int bit;
792 	unsigned long flags;
793 	int ret = 0;
794 
795 	if (invalid_vm86_irq(irqnumber)) return 0;
796 	if (vm86_irqs[irqnumber].tsk != current) return 0;
797 	spin_lock_irqsave(&irqbits_lock, flags);
798 	bit = irqbits & (1 << irqnumber);
799 	irqbits &= ~bit;
800 	if (bit) {
801 		enable_irq(irqnumber);
802 		ret = 1;
803 	}
804 
805 	spin_unlock_irqrestore(&irqbits_lock, flags);
806 	return ret;
807 }
808 
809 
810 static int do_vm86_irq_handling(int subfunction, int irqnumber)
811 {
812 	int ret;
813 	switch (subfunction) {
814 		case VM86_GET_AND_RESET_IRQ: {
815 			return get_and_reset_irq(irqnumber);
816 		}
817 		case VM86_GET_IRQ_BITS: {
818 			return irqbits;
819 		}
820 		case VM86_REQUEST_IRQ: {
821 			int sig = irqnumber >> 8;
822 			int irq = irqnumber & 255;
823 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
824 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
825 			if (invalid_vm86_irq(irq)) return -EPERM;
826 			if (vm86_irqs[irq].tsk) return -EPERM;
827 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
828 			if (ret) return ret;
829 			vm86_irqs[irq].sig = sig;
830 			vm86_irqs[irq].tsk = current;
831 			return irq;
832 		}
833 		case  VM86_FREE_IRQ: {
834 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
835 			if (!vm86_irqs[irqnumber].tsk) return 0;
836 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
837 			free_vm86_irq(irqnumber);
838 			return 0;
839 		}
840 	}
841 	return -EINVAL;
842 }
843 
844