xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision 256ac037)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/sched/task_stack.h>
39 #include <linux/kernel.h>
40 #include <linux/signal.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/smp.h>
44 #include <linux/highmem.h>
45 #include <linux/ptrace.h>
46 #include <linux/audit.h>
47 #include <linux/stddef.h>
48 #include <linux/slab.h>
49 #include <linux/security.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/io.h>
53 #include <asm/tlbflush.h>
54 #include <asm/irq.h>
55 #include <asm/traps.h>
56 #include <asm/vm86.h>
57 
58 /*
59  * Known problems:
60  *
61  * Interrupt handling is not guaranteed:
62  * - a real x86 will disable all interrupts for one instruction
63  *   after a "mov ss,xx" to make stack handling atomic even without
64  *   the 'lss' instruction. We can't guarantee this in v86 mode,
65  *   as the next instruction might result in a page fault or similar.
66  * - a real x86 will have interrupts disabled for one instruction
67  *   past the 'sti' that enables them. We don't bother with all the
68  *   details yet.
69  *
70  * Let's hope these problems do not actually matter for anything.
71  */
72 
73 
74 /*
75  * 8- and 16-bit register defines..
76  */
77 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
78 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
79 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
80 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
81 
82 /*
83  * virtual flags (16 and 32-bit versions)
84  */
85 #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
86 #define VEFLAGS	(current->thread.vm86->veflags)
87 
88 #define set_flags(X, new, mask) \
89 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
90 
91 #define SAFE_MASK	(0xDD5)
92 #define RETURN_MASK	(0xDFF)
93 
94 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
95 {
96 	struct tss_struct *tss;
97 	struct task_struct *tsk = current;
98 	struct vm86plus_struct __user *user;
99 	struct vm86 *vm86 = current->thread.vm86;
100 	long err = 0;
101 
102 	/*
103 	 * This gets called from entry.S with interrupts disabled, but
104 	 * from process context. Enable interrupts here, before trying
105 	 * to access user space.
106 	 */
107 	local_irq_enable();
108 
109 	if (!vm86 || !vm86->user_vm86) {
110 		pr_alert("no user_vm86: BAD\n");
111 		do_exit(SIGSEGV);
112 	}
113 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
114 	user = vm86->user_vm86;
115 
116 	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
117 		       sizeof(struct vm86plus_struct) :
118 		       sizeof(struct vm86_struct))) {
119 		pr_alert("could not access userspace vm86 info\n");
120 		do_exit(SIGSEGV);
121 	}
122 
123 	put_user_try {
124 		put_user_ex(regs->pt.bx, &user->regs.ebx);
125 		put_user_ex(regs->pt.cx, &user->regs.ecx);
126 		put_user_ex(regs->pt.dx, &user->regs.edx);
127 		put_user_ex(regs->pt.si, &user->regs.esi);
128 		put_user_ex(regs->pt.di, &user->regs.edi);
129 		put_user_ex(regs->pt.bp, &user->regs.ebp);
130 		put_user_ex(regs->pt.ax, &user->regs.eax);
131 		put_user_ex(regs->pt.ip, &user->regs.eip);
132 		put_user_ex(regs->pt.cs, &user->regs.cs);
133 		put_user_ex(regs->pt.flags, &user->regs.eflags);
134 		put_user_ex(regs->pt.sp, &user->regs.esp);
135 		put_user_ex(regs->pt.ss, &user->regs.ss);
136 		put_user_ex(regs->es, &user->regs.es);
137 		put_user_ex(regs->ds, &user->regs.ds);
138 		put_user_ex(regs->fs, &user->regs.fs);
139 		put_user_ex(regs->gs, &user->regs.gs);
140 
141 		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
142 	} put_user_catch(err);
143 	if (err) {
144 		pr_alert("could not access userspace vm86 info\n");
145 		do_exit(SIGSEGV);
146 	}
147 
148 	tss = &per_cpu(cpu_tss, get_cpu());
149 	tsk->thread.sp0 = vm86->saved_sp0;
150 	tsk->thread.sysenter_cs = __KERNEL_CS;
151 	load_sp0(tss, &tsk->thread);
152 	vm86->saved_sp0 = 0;
153 	put_cpu();
154 
155 	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
156 
157 	lazy_load_gs(vm86->regs32.gs);
158 
159 	regs->pt.ax = retval;
160 }
161 
162 static void mark_screen_rdonly(struct mm_struct *mm)
163 {
164 	struct vm_area_struct *vma;
165 	spinlock_t *ptl;
166 	pgd_t *pgd;
167 	p4d_t *p4d;
168 	pud_t *pud;
169 	pmd_t *pmd;
170 	pte_t *pte;
171 	int i;
172 
173 	down_write(&mm->mmap_sem);
174 	pgd = pgd_offset(mm, 0xA0000);
175 	if (pgd_none_or_clear_bad(pgd))
176 		goto out;
177 	p4d = p4d_offset(pgd, 0xA0000);
178 	if (p4d_none_or_clear_bad(p4d))
179 		goto out;
180 	pud = pud_offset(p4d, 0xA0000);
181 	if (pud_none_or_clear_bad(pud))
182 		goto out;
183 	pmd = pmd_offset(pud, 0xA0000);
184 
185 	if (pmd_trans_huge(*pmd)) {
186 		vma = find_vma(mm, 0xA0000);
187 		split_huge_pmd(vma, pmd, 0xA0000);
188 	}
189 	if (pmd_none_or_clear_bad(pmd))
190 		goto out;
191 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
192 	for (i = 0; i < 32; i++) {
193 		if (pte_present(*pte))
194 			set_pte(pte, pte_wrprotect(*pte));
195 		pte++;
196 	}
197 	pte_unmap_unlock(pte, ptl);
198 out:
199 	up_write(&mm->mmap_sem);
200 	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
201 }
202 
203 
204 
205 static int do_vm86_irq_handling(int subfunction, int irqnumber);
206 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
207 
208 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
209 {
210 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
211 }
212 
213 
214 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
215 {
216 	switch (cmd) {
217 	case VM86_REQUEST_IRQ:
218 	case VM86_FREE_IRQ:
219 	case VM86_GET_IRQ_BITS:
220 	case VM86_GET_AND_RESET_IRQ:
221 		return do_vm86_irq_handling(cmd, (int)arg);
222 	case VM86_PLUS_INSTALL_CHECK:
223 		/*
224 		 * NOTE: on old vm86 stuff this will return the error
225 		 *  from access_ok(), because the subfunction is
226 		 *  interpreted as (invalid) address to vm86_struct.
227 		 *  So the installation check works.
228 		 */
229 		return 0;
230 	}
231 
232 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
233 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
234 }
235 
236 
237 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
238 {
239 	struct tss_struct *tss;
240 	struct task_struct *tsk = current;
241 	struct vm86 *vm86 = tsk->thread.vm86;
242 	struct kernel_vm86_regs vm86regs;
243 	struct pt_regs *regs = current_pt_regs();
244 	unsigned long err = 0;
245 
246 	err = security_mmap_addr(0);
247 	if (err) {
248 		/*
249 		 * vm86 cannot virtualize the address space, so vm86 users
250 		 * need to manage the low 1MB themselves using mmap.  Given
251 		 * that BIOS places important data in the first page, vm86
252 		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
253 		 * for example, won't even bother trying to use vm86 if it
254 		 * can't map a page at virtual address 0.
255 		 *
256 		 * To reduce the available kernel attack surface, simply
257 		 * disallow vm86(old) for users who cannot mmap at va 0.
258 		 *
259 		 * The implementation of security_mmap_addr will allow
260 		 * suitably privileged users to map va 0 even if
261 		 * vm.mmap_min_addr is set above 0, and we want this
262 		 * behavior for vm86 as well, as it ensures that legacy
263 		 * tools like vbetool will not fail just because of
264 		 * vm.mmap_min_addr.
265 		 */
266 		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
267 			     current->comm, task_pid_nr(current),
268 			     from_kuid_munged(&init_user_ns, current_uid()));
269 		return -EPERM;
270 	}
271 
272 	if (!vm86) {
273 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
274 			return -ENOMEM;
275 		tsk->thread.vm86 = vm86;
276 	}
277 	if (vm86->saved_sp0)
278 		return -EPERM;
279 
280 	if (!access_ok(VERIFY_READ, user_vm86, plus ?
281 		       sizeof(struct vm86_struct) :
282 		       sizeof(struct vm86plus_struct)))
283 		return -EFAULT;
284 
285 	memset(&vm86regs, 0, sizeof(vm86regs));
286 	get_user_try {
287 		unsigned short seg;
288 		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
289 		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
290 		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
291 		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
292 		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
293 		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
294 		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
295 		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
296 		get_user_ex(seg, &user_vm86->regs.cs);
297 		vm86regs.pt.cs = seg;
298 		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
299 		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
300 		get_user_ex(seg, &user_vm86->regs.ss);
301 		vm86regs.pt.ss = seg;
302 		get_user_ex(vm86regs.es, &user_vm86->regs.es);
303 		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
304 		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
305 		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
306 
307 		get_user_ex(vm86->flags, &user_vm86->flags);
308 		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
309 		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
310 	} get_user_catch(err);
311 	if (err)
312 		return err;
313 
314 	if (copy_from_user(&vm86->int_revectored,
315 			   &user_vm86->int_revectored,
316 			   sizeof(struct revectored_struct)))
317 		return -EFAULT;
318 	if (copy_from_user(&vm86->int21_revectored,
319 			   &user_vm86->int21_revectored,
320 			   sizeof(struct revectored_struct)))
321 		return -EFAULT;
322 	if (plus) {
323 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
324 				   sizeof(struct vm86plus_info_struct)))
325 			return -EFAULT;
326 		vm86->vm86plus.is_vm86pus = 1;
327 	} else
328 		memset(&vm86->vm86plus, 0,
329 		       sizeof(struct vm86plus_info_struct));
330 
331 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
332 	vm86->user_vm86 = user_vm86;
333 
334 /*
335  * The flags register is also special: we cannot trust that the user
336  * has set it up safely, so this makes sure interrupt etc flags are
337  * inherited from protected mode.
338  */
339 	VEFLAGS = vm86regs.pt.flags;
340 	vm86regs.pt.flags &= SAFE_MASK;
341 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
342 	vm86regs.pt.flags |= X86_VM_MASK;
343 
344 	vm86regs.pt.orig_ax = regs->orig_ax;
345 
346 	switch (vm86->cpu_type) {
347 	case CPU_286:
348 		vm86->veflags_mask = 0;
349 		break;
350 	case CPU_386:
351 		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352 		break;
353 	case CPU_486:
354 		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
355 		break;
356 	default:
357 		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
358 		break;
359 	}
360 
361 /*
362  * Save old state
363  */
364 	vm86->saved_sp0 = tsk->thread.sp0;
365 	lazy_save_gs(vm86->regs32.gs);
366 
367 	tss = &per_cpu(cpu_tss, get_cpu());
368 	/* make room for real-mode segments */
369 	tsk->thread.sp0 += 16;
370 
371 	if (static_cpu_has(X86_FEATURE_SEP))
372 		tsk->thread.sysenter_cs = 0;
373 
374 	load_sp0(tss, &tsk->thread);
375 	put_cpu();
376 
377 	if (vm86->flags & VM86_SCREEN_BITMAP)
378 		mark_screen_rdonly(tsk->mm);
379 
380 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
381 	force_iret();
382 	return regs->ax;
383 }
384 
385 static inline void set_IF(struct kernel_vm86_regs *regs)
386 {
387 	VEFLAGS |= X86_EFLAGS_VIF;
388 }
389 
390 static inline void clear_IF(struct kernel_vm86_regs *regs)
391 {
392 	VEFLAGS &= ~X86_EFLAGS_VIF;
393 }
394 
395 static inline void clear_TF(struct kernel_vm86_regs *regs)
396 {
397 	regs->pt.flags &= ~X86_EFLAGS_TF;
398 }
399 
400 static inline void clear_AC(struct kernel_vm86_regs *regs)
401 {
402 	regs->pt.flags &= ~X86_EFLAGS_AC;
403 }
404 
405 /*
406  * It is correct to call set_IF(regs) from the set_vflags_*
407  * functions. However someone forgot to call clear_IF(regs)
408  * in the opposite case.
409  * After the command sequence CLI PUSHF STI POPF you should
410  * end up with interrupts disabled, but you ended up with
411  * interrupts enabled.
412  *  ( I was testing my own changes, but the only bug I
413  *    could find was in a function I had not changed. )
414  * [KD]
415  */
416 
417 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
418 {
419 	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
420 	set_flags(regs->pt.flags, flags, SAFE_MASK);
421 	if (flags & X86_EFLAGS_IF)
422 		set_IF(regs);
423 	else
424 		clear_IF(regs);
425 }
426 
427 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
428 {
429 	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
430 	set_flags(regs->pt.flags, flags, SAFE_MASK);
431 	if (flags & X86_EFLAGS_IF)
432 		set_IF(regs);
433 	else
434 		clear_IF(regs);
435 }
436 
437 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
438 {
439 	unsigned long flags = regs->pt.flags & RETURN_MASK;
440 
441 	if (VEFLAGS & X86_EFLAGS_VIF)
442 		flags |= X86_EFLAGS_IF;
443 	flags |= X86_EFLAGS_IOPL;
444 	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
445 }
446 
447 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
448 {
449 	return test_bit(nr, bitmap->__map);
450 }
451 
452 #define val_byte(val, n) (((__u8 *)&val)[n])
453 
454 #define pushb(base, ptr, val, err_label) \
455 	do { \
456 		__u8 __val = val; \
457 		ptr--; \
458 		if (put_user(__val, base + ptr) < 0) \
459 			goto err_label; \
460 	} while (0)
461 
462 #define pushw(base, ptr, val, err_label) \
463 	do { \
464 		__u16 __val = val; \
465 		ptr--; \
466 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
467 			goto err_label; \
468 		ptr--; \
469 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
470 			goto err_label; \
471 	} while (0)
472 
473 #define pushl(base, ptr, val, err_label) \
474 	do { \
475 		__u32 __val = val; \
476 		ptr--; \
477 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
478 			goto err_label; \
479 		ptr--; \
480 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
481 			goto err_label; \
482 		ptr--; \
483 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
484 			goto err_label; \
485 		ptr--; \
486 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
487 			goto err_label; \
488 	} while (0)
489 
490 #define popb(base, ptr, err_label) \
491 	({ \
492 		__u8 __res; \
493 		if (get_user(__res, base + ptr) < 0) \
494 			goto err_label; \
495 		ptr++; \
496 		__res; \
497 	})
498 
499 #define popw(base, ptr, err_label) \
500 	({ \
501 		__u16 __res; \
502 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
503 			goto err_label; \
504 		ptr++; \
505 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
506 			goto err_label; \
507 		ptr++; \
508 		__res; \
509 	})
510 
511 #define popl(base, ptr, err_label) \
512 	({ \
513 		__u32 __res; \
514 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
515 			goto err_label; \
516 		ptr++; \
517 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
518 			goto err_label; \
519 		ptr++; \
520 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
521 			goto err_label; \
522 		ptr++; \
523 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
524 			goto err_label; \
525 		ptr++; \
526 		__res; \
527 	})
528 
529 /* There are so many possible reasons for this function to return
530  * VM86_INTx, so adding another doesn't bother me. We can expect
531  * userspace programs to be able to handle it. (Getting a problem
532  * in userspace is always better than an Oops anyway.) [KD]
533  */
534 static void do_int(struct kernel_vm86_regs *regs, int i,
535     unsigned char __user *ssp, unsigned short sp)
536 {
537 	unsigned long __user *intr_ptr;
538 	unsigned long segoffs;
539 	struct vm86 *vm86 = current->thread.vm86;
540 
541 	if (regs->pt.cs == BIOSSEG)
542 		goto cannot_handle;
543 	if (is_revectored(i, &vm86->int_revectored))
544 		goto cannot_handle;
545 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
546 		goto cannot_handle;
547 	intr_ptr = (unsigned long __user *) (i << 2);
548 	if (get_user(segoffs, intr_ptr))
549 		goto cannot_handle;
550 	if ((segoffs >> 16) == BIOSSEG)
551 		goto cannot_handle;
552 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
553 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
554 	pushw(ssp, sp, IP(regs), cannot_handle);
555 	regs->pt.cs = segoffs >> 16;
556 	SP(regs) -= 6;
557 	IP(regs) = segoffs & 0xffff;
558 	clear_TF(regs);
559 	clear_IF(regs);
560 	clear_AC(regs);
561 	return;
562 
563 cannot_handle:
564 	save_v86_state(regs, VM86_INTx + (i << 8));
565 }
566 
567 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
568 {
569 	struct vm86 *vm86 = current->thread.vm86;
570 
571 	if (vm86->vm86plus.is_vm86pus) {
572 		if ((trapno == 3) || (trapno == 1)) {
573 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
574 			return 0;
575 		}
576 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
577 		return 0;
578 	}
579 	if (trapno != 1)
580 		return 1; /* we let this handle by the calling routine */
581 	current->thread.trap_nr = trapno;
582 	current->thread.error_code = error_code;
583 	force_sig(SIGTRAP, current);
584 	return 0;
585 }
586 
587 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
588 {
589 	unsigned char opcode;
590 	unsigned char __user *csp;
591 	unsigned char __user *ssp;
592 	unsigned short ip, sp, orig_flags;
593 	int data32, pref_done;
594 	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
595 
596 #define CHECK_IF_IN_TRAP \
597 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
598 		newflags |= X86_EFLAGS_TF
599 
600 	orig_flags = *(unsigned short *)&regs->pt.flags;
601 
602 	csp = (unsigned char __user *) (regs->pt.cs << 4);
603 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
604 	sp = SP(regs);
605 	ip = IP(regs);
606 
607 	data32 = 0;
608 	pref_done = 0;
609 	do {
610 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
611 		case 0x66:      /* 32-bit data */     data32 = 1; break;
612 		case 0x67:      /* 32-bit address */  break;
613 		case 0x2e:      /* CS */              break;
614 		case 0x3e:      /* DS */              break;
615 		case 0x26:      /* ES */              break;
616 		case 0x36:      /* SS */              break;
617 		case 0x65:      /* GS */              break;
618 		case 0x64:      /* FS */              break;
619 		case 0xf2:      /* repnz */       break;
620 		case 0xf3:      /* rep */             break;
621 		default: pref_done = 1;
622 		}
623 	} while (!pref_done);
624 
625 	switch (opcode) {
626 
627 	/* pushf */
628 	case 0x9c:
629 		if (data32) {
630 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
631 			SP(regs) -= 4;
632 		} else {
633 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
634 			SP(regs) -= 2;
635 		}
636 		IP(regs) = ip;
637 		goto vm86_fault_return;
638 
639 	/* popf */
640 	case 0x9d:
641 		{
642 		unsigned long newflags;
643 		if (data32) {
644 			newflags = popl(ssp, sp, simulate_sigsegv);
645 			SP(regs) += 4;
646 		} else {
647 			newflags = popw(ssp, sp, simulate_sigsegv);
648 			SP(regs) += 2;
649 		}
650 		IP(regs) = ip;
651 		CHECK_IF_IN_TRAP;
652 		if (data32)
653 			set_vflags_long(newflags, regs);
654 		else
655 			set_vflags_short(newflags, regs);
656 
657 		goto check_vip;
658 		}
659 
660 	/* int xx */
661 	case 0xcd: {
662 		int intno = popb(csp, ip, simulate_sigsegv);
663 		IP(regs) = ip;
664 		if (vmpi->vm86dbg_active) {
665 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
666 				save_v86_state(regs, VM86_INTx + (intno << 8));
667 				return;
668 			}
669 		}
670 		do_int(regs, intno, ssp, sp);
671 		return;
672 	}
673 
674 	/* iret */
675 	case 0xcf:
676 		{
677 		unsigned long newip;
678 		unsigned long newcs;
679 		unsigned long newflags;
680 		if (data32) {
681 			newip = popl(ssp, sp, simulate_sigsegv);
682 			newcs = popl(ssp, sp, simulate_sigsegv);
683 			newflags = popl(ssp, sp, simulate_sigsegv);
684 			SP(regs) += 12;
685 		} else {
686 			newip = popw(ssp, sp, simulate_sigsegv);
687 			newcs = popw(ssp, sp, simulate_sigsegv);
688 			newflags = popw(ssp, sp, simulate_sigsegv);
689 			SP(regs) += 6;
690 		}
691 		IP(regs) = newip;
692 		regs->pt.cs = newcs;
693 		CHECK_IF_IN_TRAP;
694 		if (data32) {
695 			set_vflags_long(newflags, regs);
696 		} else {
697 			set_vflags_short(newflags, regs);
698 		}
699 		goto check_vip;
700 		}
701 
702 	/* cli */
703 	case 0xfa:
704 		IP(regs) = ip;
705 		clear_IF(regs);
706 		goto vm86_fault_return;
707 
708 	/* sti */
709 	/*
710 	 * Damn. This is incorrect: the 'sti' instruction should actually
711 	 * enable interrupts after the /next/ instruction. Not good.
712 	 *
713 	 * Probably needs some horsing around with the TF flag. Aiee..
714 	 */
715 	case 0xfb:
716 		IP(regs) = ip;
717 		set_IF(regs);
718 		goto check_vip;
719 
720 	default:
721 		save_v86_state(regs, VM86_UNKNOWN);
722 	}
723 
724 	return;
725 
726 check_vip:
727 	if (VEFLAGS & X86_EFLAGS_VIP) {
728 		save_v86_state(regs, VM86_STI);
729 		return;
730 	}
731 
732 vm86_fault_return:
733 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
734 		save_v86_state(regs, VM86_PICRETURN);
735 		return;
736 	}
737 	if (orig_flags & X86_EFLAGS_TF)
738 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
739 	return;
740 
741 simulate_sigsegv:
742 	/* FIXME: After a long discussion with Stas we finally
743 	 *        agreed, that this is wrong. Here we should
744 	 *        really send a SIGSEGV to the user program.
745 	 *        But how do we create the correct context? We
746 	 *        are inside a general protection fault handler
747 	 *        and has just returned from a page fault handler.
748 	 *        The correct context for the signal handler
749 	 *        should be a mixture of the two, but how do we
750 	 *        get the information? [KD]
751 	 */
752 	save_v86_state(regs, VM86_UNKNOWN);
753 }
754 
755 /* ---------------- vm86 special IRQ passing stuff ----------------- */
756 
757 #define VM86_IRQNAME		"vm86irq"
758 
759 static struct vm86_irqs {
760 	struct task_struct *tsk;
761 	int sig;
762 } vm86_irqs[16];
763 
764 static DEFINE_SPINLOCK(irqbits_lock);
765 static int irqbits;
766 
767 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
768 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
769 	| (1 << SIGUNUSED))
770 
771 static irqreturn_t irq_handler(int intno, void *dev_id)
772 {
773 	int irq_bit;
774 	unsigned long flags;
775 
776 	spin_lock_irqsave(&irqbits_lock, flags);
777 	irq_bit = 1 << intno;
778 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
779 		goto out;
780 	irqbits |= irq_bit;
781 	if (vm86_irqs[intno].sig)
782 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
783 	/*
784 	 * IRQ will be re-enabled when user asks for the irq (whether
785 	 * polling or as a result of the signal)
786 	 */
787 	disable_irq_nosync(intno);
788 	spin_unlock_irqrestore(&irqbits_lock, flags);
789 	return IRQ_HANDLED;
790 
791 out:
792 	spin_unlock_irqrestore(&irqbits_lock, flags);
793 	return IRQ_NONE;
794 }
795 
796 static inline void free_vm86_irq(int irqnumber)
797 {
798 	unsigned long flags;
799 
800 	free_irq(irqnumber, NULL);
801 	vm86_irqs[irqnumber].tsk = NULL;
802 
803 	spin_lock_irqsave(&irqbits_lock, flags);
804 	irqbits &= ~(1 << irqnumber);
805 	spin_unlock_irqrestore(&irqbits_lock, flags);
806 }
807 
808 void release_vm86_irqs(struct task_struct *task)
809 {
810 	int i;
811 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
812 	    if (vm86_irqs[i].tsk == task)
813 		free_vm86_irq(i);
814 }
815 
816 static inline int get_and_reset_irq(int irqnumber)
817 {
818 	int bit;
819 	unsigned long flags;
820 	int ret = 0;
821 
822 	if (invalid_vm86_irq(irqnumber)) return 0;
823 	if (vm86_irqs[irqnumber].tsk != current) return 0;
824 	spin_lock_irqsave(&irqbits_lock, flags);
825 	bit = irqbits & (1 << irqnumber);
826 	irqbits &= ~bit;
827 	if (bit) {
828 		enable_irq(irqnumber);
829 		ret = 1;
830 	}
831 
832 	spin_unlock_irqrestore(&irqbits_lock, flags);
833 	return ret;
834 }
835 
836 
837 static int do_vm86_irq_handling(int subfunction, int irqnumber)
838 {
839 	int ret;
840 	switch (subfunction) {
841 		case VM86_GET_AND_RESET_IRQ: {
842 			return get_and_reset_irq(irqnumber);
843 		}
844 		case VM86_GET_IRQ_BITS: {
845 			return irqbits;
846 		}
847 		case VM86_REQUEST_IRQ: {
848 			int sig = irqnumber >> 8;
849 			int irq = irqnumber & 255;
850 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
851 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
852 			if (invalid_vm86_irq(irq)) return -EPERM;
853 			if (vm86_irqs[irq].tsk) return -EPERM;
854 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
855 			if (ret) return ret;
856 			vm86_irqs[irq].sig = sig;
857 			vm86_irqs[irq].tsk = current;
858 			return irq;
859 		}
860 		case  VM86_FREE_IRQ: {
861 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
862 			if (!vm86_irqs[irqnumber].tsk) return 0;
863 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
864 			free_vm86_irq(irqnumber);
865 			return 0;
866 		}
867 	}
868 	return -EINVAL;
869 }
870 
871