xref: /openbmc/linux/arch/x86/kernel/uprobes.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * User-space Probes (UProbes) for x86
4  *
5  * Copyright (C) IBM Corporation, 2008-2011
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  */
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
15 
16 #include <linux/kdebug.h>
17 #include <asm/processor.h>
18 #include <asm/insn.h>
19 #include <asm/mmu_context.h>
20 
21 /* Post-execution fixups. */
22 
23 /* Adjust IP back to vicinity of actual insn */
24 #define UPROBE_FIX_IP		0x01
25 
26 /* Adjust the return address of a call insn */
27 #define UPROBE_FIX_CALL		0x02
28 
29 /* Instruction will modify TF, don't change it */
30 #define UPROBE_FIX_SETF		0x04
31 
32 #define UPROBE_FIX_RIP_SI	0x08
33 #define UPROBE_FIX_RIP_DI	0x10
34 #define UPROBE_FIX_RIP_BX	0x20
35 #define UPROBE_FIX_RIP_MASK	\
36 	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37 
38 #define	UPROBE_TRAP_NR		UINT_MAX
39 
40 /* Adaptations for mhiramat x86 decoder v14. */
41 #define OPCODE1(insn)		((insn)->opcode.bytes[0])
42 #define OPCODE2(insn)		((insn)->opcode.bytes[1])
43 #define OPCODE3(insn)		((insn)->opcode.bytes[2])
44 #define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
45 
46 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
48 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
49 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
50 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
51 	 << (row % 32))
52 
53 /*
54  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
55  * to keep gcc from statically optimizing it out, as variable_test_bit makes
56  * some versions of gcc to think only *(unsigned long*) is used.
57  *
58  * Opcodes we'll probably never support:
59  * 6c-6f - ins,outs. SEGVs if used in userspace
60  * e4-e7 - in,out imm. SEGVs if used in userspace
61  * ec-ef - in,out acc. SEGVs if used in userspace
62  * cc - int3. SIGTRAP if used in userspace
63  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64  *	(why we support bound (62) then? it's similar, and similarly unused...)
65  * f1 - int1. SIGTRAP if used in userspace
66  * f4 - hlt. SEGVs if used in userspace
67  * fa - cli. SEGVs if used in userspace
68  * fb - sti. SEGVs if used in userspace
69  *
70  * Opcodes which need some work to be supported:
71  * 07,17,1f - pop es/ss/ds
72  *	Normally not used in userspace, but would execute if used.
73  *	Can cause GP or stack exception if tries to load wrong segment descriptor.
74  *	We hesitate to run them under single step since kernel's handling
75  *	of userspace single-stepping (TF flag) is fragile.
76  *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77  *	on the same grounds that they are never used.
78  * cd - int N.
79  *	Used by userspace for "int 80" syscall entry. (Other "int N"
80  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81  *	Not supported since kernel's handling of userspace single-stepping
82  *	(TF flag) is fragile.
83  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84  */
85 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86 static volatile u32 good_insns_32[256 / 32] = {
87 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
88 	/*      ----------------------------------------------         */
89 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
105 	/*      ----------------------------------------------         */
106 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
107 };
108 #else
109 #define good_insns_32	NULL
110 #endif
111 
112 /* Good-instruction tables for 64-bit apps.
113  *
114  * Genuinely invalid opcodes:
115  * 06,07 - formerly push/pop es
116  * 0e - formerly push cs
117  * 16,17 - formerly push/pop ss
118  * 1e,1f - formerly push/pop ds
119  * 27,2f,37,3f - formerly daa/das/aaa/aas
120  * 60,61 - formerly pusha/popa
121  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122  * 82 - formerly redundant encoding of Group1
123  * 9a - formerly call seg:ofs
124  * ce - formerly into
125  * d4,d5 - formerly aam/aad
126  * d6 - formerly undocumented salc
127  * ea - formerly jmp seg:ofs
128  *
129  * Opcodes we'll probably never support:
130  * 6c-6f - ins,outs. SEGVs if used in userspace
131  * e4-e7 - in,out imm. SEGVs if used in userspace
132  * ec-ef - in,out acc. SEGVs if used in userspace
133  * cc - int3. SIGTRAP if used in userspace
134  * f1 - int1. SIGTRAP if used in userspace
135  * f4 - hlt. SEGVs if used in userspace
136  * fa - cli. SEGVs if used in userspace
137  * fb - sti. SEGVs if used in userspace
138  *
139  * Opcodes which need some work to be supported:
140  * cd - int N.
141  *	Used by userspace for "int 80" syscall entry. (Other "int N"
142  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143  *	Not supported since kernel's handling of userspace single-stepping
144  *	(TF flag) is fragile.
145  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146  */
147 #if defined(CONFIG_X86_64)
148 static volatile u32 good_insns_64[256 / 32] = {
149 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
150 	/*      ----------------------------------------------         */
151 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
167 	/*      ----------------------------------------------         */
168 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
169 };
170 #else
171 #define good_insns_64	NULL
172 #endif
173 
174 /* Using this for both 64-bit and 32-bit apps.
175  * Opcodes we don't support:
176  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178  *	Also encodes tons of other system insns if mod=11.
179  *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
180  * 0f 05 - syscall
181  * 0f 06 - clts (CPL0 insn)
182  * 0f 07 - sysret
183  * 0f 08 - invd (CPL0 insn)
184  * 0f 09 - wbinvd (CPL0 insn)
185  * 0f 0b - ud2
186  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187  * 0f 34 - sysenter
188  * 0f 35 - sysexit
189  * 0f 37 - getsec
190  * 0f 78 - vmread (Intel VMX. CPL0 insn)
191  * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192  *	Note: with prefixes, these two opcodes are
193  *	extrq/insertq/AVX512 convert vector ops.
194  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195  *	{rd,wr}{fs,gs}base,{s,l,m}fence.
196  *	Why? They are all user-executable.
197  */
198 static volatile u32 good_2byte_insns[256 / 32] = {
199 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
200 	/*      ----------------------------------------------         */
201 	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
217 	/*      ----------------------------------------------         */
218 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
219 };
220 #undef W
221 
222 /*
223  * opcodes we may need to refine support for:
224  *
225  *  0f - 2-byte instructions: For many of these instructions, the validity
226  *  depends on the prefix and/or the reg field.  On such instructions, we
227  *  just consider the opcode combination valid if it corresponds to any
228  *  valid instruction.
229  *
230  *  8f - Group 1 - only reg = 0 is OK
231  *  c6-c7 - Group 11 - only reg = 0 is OK
232  *  d9-df - fpu insns with some illegal encodings
233  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
234  *  certain floating-point instructions, such as addsd.
235  *
236  *  fe - Group 4 - only reg = 0 or 1 is OK
237  *  ff - Group 5 - only reg = 0-6 is OK
238  *
239  * others -- Do we need to support these?
240  *
241  *  0f - (floating-point?) prefetch instructions
242  *  07, 17, 1f - pop es, pop ss, pop ds
243  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
245  *  67 - addr16 prefix
246  *  ce - into
247  *  f0 - lock prefix
248  */
249 
250 /*
251  * TODO:
252  * - Where necessary, examine the modrm byte and allow only valid instructions
253  * in the different Groups and fpu instructions.
254  */
255 
256 static bool is_prefix_bad(struct insn *insn)
257 {
258 	int i;
259 
260 	for (i = 0; i < insn->prefixes.nbytes; i++) {
261 		insn_attr_t attr;
262 
263 		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
264 		switch (attr) {
265 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
266 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
267 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
268 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
269 		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
270 			return true;
271 		}
272 	}
273 	return false;
274 }
275 
276 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
277 {
278 	u32 volatile *good_insns;
279 
280 	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
281 	/* has the side-effect of processing the entire instruction */
282 	insn_get_length(insn);
283 	if (!insn_complete(insn))
284 		return -ENOEXEC;
285 
286 	if (is_prefix_bad(insn))
287 		return -ENOTSUPP;
288 
289 	/* We should not singlestep on the exception masking instructions */
290 	if (insn_masking_exception(insn))
291 		return -ENOTSUPP;
292 
293 	if (x86_64)
294 		good_insns = good_insns_64;
295 	else
296 		good_insns = good_insns_32;
297 
298 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
299 		return 0;
300 
301 	if (insn->opcode.nbytes == 2) {
302 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
303 			return 0;
304 	}
305 
306 	return -ENOTSUPP;
307 }
308 
309 #ifdef CONFIG_X86_64
310 /*
311  * If arch_uprobe->insn doesn't use rip-relative addressing, return
312  * immediately.  Otherwise, rewrite the instruction so that it accesses
313  * its memory operand indirectly through a scratch register.  Set
314  * defparam->fixups accordingly. (The contents of the scratch register
315  * will be saved before we single-step the modified instruction,
316  * and restored afterward).
317  *
318  * We do this because a rip-relative instruction can access only a
319  * relatively small area (+/- 2 GB from the instruction), and the XOL
320  * area typically lies beyond that area.  At least for instructions
321  * that store to memory, we can't execute the original instruction
322  * and "fix things up" later, because the misdirected store could be
323  * disastrous.
324  *
325  * Some useful facts about rip-relative instructions:
326  *
327  *  - There's always a modrm byte with bit layout "00 reg 101".
328  *  - There's never a SIB byte.
329  *  - The displacement is always 4 bytes.
330  *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
331  *    has no effect on rip-relative mode. It doesn't make modrm byte
332  *    with r/m=101 refer to register 1101 = R13.
333  */
334 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
335 {
336 	u8 *cursor;
337 	u8 reg;
338 	u8 reg2;
339 
340 	if (!insn_rip_relative(insn))
341 		return;
342 
343 	/*
344 	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
345 	 * Clear REX.b bit (extension of MODRM.rm field):
346 	 * we want to encode low numbered reg, not r8+.
347 	 */
348 	if (insn->rex_prefix.nbytes) {
349 		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
350 		/* REX byte has 0100wrxb layout, clearing REX.b bit */
351 		*cursor &= 0xfe;
352 	}
353 	/*
354 	 * Similar treatment for VEX3/EVEX prefix.
355 	 * TODO: add XOP treatment when insn decoder supports them
356 	 */
357 	if (insn->vex_prefix.nbytes >= 3) {
358 		/*
359 		 * vex2:     c5    rvvvvLpp   (has no b bit)
360 		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
361 		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
362 		 * Setting VEX3.b (setting because it has inverted meaning).
363 		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
364 		 * is the 4th bit of MODRM.rm, and needs the same treatment.
365 		 * For VEX3-encoded insns, VEX3.x value has no effect in
366 		 * non-SIB encoding, the change is superfluous but harmless.
367 		 */
368 		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
369 		*cursor |= 0x60;
370 	}
371 
372 	/*
373 	 * Convert from rip-relative addressing to register-relative addressing
374 	 * via a scratch register.
375 	 *
376 	 * This is tricky since there are insns with modrm byte
377 	 * which also use registers not encoded in modrm byte:
378 	 * [i]div/[i]mul: implicitly use dx:ax
379 	 * shift ops: implicitly use cx
380 	 * cmpxchg: implicitly uses ax
381 	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
382 	 *   Encoding: 0f c7/1 modrm
383 	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
384 	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
385 	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
386 	 *   Example where none of bx,cx,dx can be used as scratch reg:
387 	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
388 	 * [v]pcmpistri: implicitly uses cx, xmm0
389 	 * [v]pcmpistrm: implicitly uses xmm0
390 	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
391 	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
392 	 *   Evil SSE4.2 string comparison ops from hell.
393 	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
394 	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
395 	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
396 	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
397 	 *   and that it can have only register operands, not mem
398 	 *   (its modrm byte must have mode=11).
399 	 *   If these restrictions will ever be lifted,
400 	 *   we'll need code to prevent selection of di as scratch reg!
401 	 *
402 	 * Summary: I don't know any insns with modrm byte which
403 	 * use SI register implicitly. DI register is used only
404 	 * by one insn (maskmovq) and BX register is used
405 	 * only by one too (cmpxchg8b).
406 	 * BP is stack-segment based (may be a problem?).
407 	 * AX, DX, CX are off-limits (many implicit users).
408 	 * SP is unusable (it's stack pointer - think about "pop mem";
409 	 * also, rsp+disp32 needs sib encoding -> insn length change).
410 	 */
411 
412 	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
413 	reg2 = 0xff;		/* Fetch vex.vvvv */
414 	if (insn->vex_prefix.nbytes)
415 		reg2 = insn->vex_prefix.bytes[2];
416 	/*
417 	 * TODO: add XOP vvvv reading.
418 	 *
419 	 * vex.vvvv field is in bits 6-3, bits are inverted.
420 	 * But in 32-bit mode, high-order bit may be ignored.
421 	 * Therefore, let's consider only 3 low-order bits.
422 	 */
423 	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
424 	/*
425 	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
426 	 *
427 	 * Choose scratch reg. Order is important: must not select bx
428 	 * if we can use si (cmpxchg8b case!)
429 	 */
430 	if (reg != 6 && reg2 != 6) {
431 		reg2 = 6;
432 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
433 	} else if (reg != 7 && reg2 != 7) {
434 		reg2 = 7;
435 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
436 		/* TODO (paranoia): force maskmovq to not use di */
437 	} else {
438 		reg2 = 3;
439 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
440 	}
441 	/*
442 	 * Point cursor at the modrm byte.  The next 4 bytes are the
443 	 * displacement.  Beyond the displacement, for some instructions,
444 	 * is the immediate operand.
445 	 */
446 	cursor = auprobe->insn + insn_offset_modrm(insn);
447 	/*
448 	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
449 	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
450 	 * 89 86 disp32  mov %eax,disp32(%rsi)
451 	 */
452 	*cursor = 0x80 | (reg << 3) | reg2;
453 }
454 
455 static inline unsigned long *
456 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
457 {
458 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
459 		return &regs->si;
460 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
461 		return &regs->di;
462 	return &regs->bx;
463 }
464 
465 /*
466  * If we're emulating a rip-relative instruction, save the contents
467  * of the scratch register and store the target address in that register.
468  */
469 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
470 {
471 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
472 		struct uprobe_task *utask = current->utask;
473 		unsigned long *sr = scratch_reg(auprobe, regs);
474 
475 		utask->autask.saved_scratch_register = *sr;
476 		*sr = utask->vaddr + auprobe->defparam.ilen;
477 	}
478 }
479 
480 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
481 {
482 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
483 		struct uprobe_task *utask = current->utask;
484 		unsigned long *sr = scratch_reg(auprobe, regs);
485 
486 		*sr = utask->autask.saved_scratch_register;
487 	}
488 }
489 #else /* 32-bit: */
490 /*
491  * No RIP-relative addressing on 32-bit
492  */
493 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
494 {
495 }
496 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
497 {
498 }
499 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
500 {
501 }
502 #endif /* CONFIG_X86_64 */
503 
504 struct uprobe_xol_ops {
505 	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
506 	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
507 	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
508 	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
509 };
510 
511 static inline int sizeof_long(void)
512 {
513 	return in_ia32_syscall() ? 4 : 8;
514 }
515 
516 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
517 {
518 	riprel_pre_xol(auprobe, regs);
519 	return 0;
520 }
521 
522 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
523 {
524 	unsigned long new_sp = regs->sp - sizeof_long();
525 
526 	if (copy_to_user((void __user *)new_sp, &val, sizeof_long()))
527 		return -EFAULT;
528 
529 	regs->sp = new_sp;
530 	return 0;
531 }
532 
533 /*
534  * We have to fix things up as follows:
535  *
536  * Typically, the new ip is relative to the copied instruction.  We need
537  * to make it relative to the original instruction (FIX_IP).  Exceptions
538  * are return instructions and absolute or indirect jump or call instructions.
539  *
540  * If the single-stepped instruction was a call, the return address that
541  * is atop the stack is the address following the copied instruction.  We
542  * need to make it the address following the original instruction (FIX_CALL).
543  *
544  * If the original instruction was a rip-relative instruction such as
545  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
546  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
547  * We need to restore the contents of the scratch register
548  * (FIX_RIP_reg).
549  */
550 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
551 {
552 	struct uprobe_task *utask = current->utask;
553 
554 	riprel_post_xol(auprobe, regs);
555 	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
556 		long correction = utask->vaddr - utask->xol_vaddr;
557 		regs->ip += correction;
558 	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
559 		regs->sp += sizeof_long(); /* Pop incorrect return address */
560 		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
561 			return -ERESTART;
562 	}
563 	/* popf; tell the caller to not touch TF */
564 	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
565 		utask->autask.saved_tf = true;
566 
567 	return 0;
568 }
569 
570 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
571 {
572 	riprel_post_xol(auprobe, regs);
573 }
574 
575 static const struct uprobe_xol_ops default_xol_ops = {
576 	.pre_xol  = default_pre_xol_op,
577 	.post_xol = default_post_xol_op,
578 	.abort	  = default_abort_op,
579 };
580 
581 static bool branch_is_call(struct arch_uprobe *auprobe)
582 {
583 	return auprobe->branch.opc1 == 0xe8;
584 }
585 
586 #define CASE_COND					\
587 	COND(70, 71, XF(OF))				\
588 	COND(72, 73, XF(CF))				\
589 	COND(74, 75, XF(ZF))				\
590 	COND(78, 79, XF(SF))				\
591 	COND(7a, 7b, XF(PF))				\
592 	COND(76, 77, XF(CF) || XF(ZF))			\
593 	COND(7c, 7d, XF(SF) != XF(OF))			\
594 	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
595 
596 #define COND(op_y, op_n, expr)				\
597 	case 0x ## op_y: DO((expr) != 0)		\
598 	case 0x ## op_n: DO((expr) == 0)
599 
600 #define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
601 
602 static bool is_cond_jmp_opcode(u8 opcode)
603 {
604 	switch (opcode) {
605 	#define DO(expr)	\
606 		return true;
607 	CASE_COND
608 	#undef	DO
609 
610 	default:
611 		return false;
612 	}
613 }
614 
615 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
616 {
617 	unsigned long flags = regs->flags;
618 
619 	switch (auprobe->branch.opc1) {
620 	#define DO(expr)	\
621 		return expr;
622 	CASE_COND
623 	#undef	DO
624 
625 	default:	/* not a conditional jmp */
626 		return true;
627 	}
628 }
629 
630 #undef	XF
631 #undef	COND
632 #undef	CASE_COND
633 
634 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
635 {
636 	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
637 	unsigned long offs = (long)auprobe->branch.offs;
638 
639 	if (branch_is_call(auprobe)) {
640 		/*
641 		 * If it fails we execute this (mangled, see the comment in
642 		 * branch_clear_offset) insn out-of-line. In the likely case
643 		 * this should trigger the trap, and the probed application
644 		 * should die or restart the same insn after it handles the
645 		 * signal, arch_uprobe_post_xol() won't be even called.
646 		 *
647 		 * But there is corner case, see the comment in ->post_xol().
648 		 */
649 		if (emulate_push_stack(regs, new_ip))
650 			return false;
651 	} else if (!check_jmp_cond(auprobe, regs)) {
652 		offs = 0;
653 	}
654 
655 	regs->ip = new_ip + offs;
656 	return true;
657 }
658 
659 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
660 {
661 	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
662 
663 	if (emulate_push_stack(regs, *src_ptr))
664 		return false;
665 	regs->ip += auprobe->push.ilen;
666 	return true;
667 }
668 
669 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
670 {
671 	BUG_ON(!branch_is_call(auprobe));
672 	/*
673 	 * We can only get here if branch_emulate_op() failed to push the ret
674 	 * address _and_ another thread expanded our stack before the (mangled)
675 	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
676 	 * We could also restore ->ip and try to call branch_emulate_op() again.
677 	 */
678 	regs->sp += sizeof_long();
679 	return -ERESTART;
680 }
681 
682 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
683 {
684 	/*
685 	 * Turn this insn into "call 1f; 1:", this is what we will execute
686 	 * out-of-line if ->emulate() fails. We only need this to generate
687 	 * a trap, so that the probed task receives the correct signal with
688 	 * the properly filled siginfo.
689 	 *
690 	 * But see the comment in ->post_xol(), in the unlikely case it can
691 	 * succeed. So we need to ensure that the new ->ip can not fall into
692 	 * the non-canonical area and trigger #GP.
693 	 *
694 	 * We could turn it into (say) "pushf", but then we would need to
695 	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
696 	 * of ->insn[] for set_orig_insn().
697 	 */
698 	memset(auprobe->insn + insn_offset_immediate(insn),
699 		0, insn->immediate.nbytes);
700 }
701 
702 static const struct uprobe_xol_ops branch_xol_ops = {
703 	.emulate  = branch_emulate_op,
704 	.post_xol = branch_post_xol_op,
705 };
706 
707 static const struct uprobe_xol_ops push_xol_ops = {
708 	.emulate  = push_emulate_op,
709 };
710 
711 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
712 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
713 {
714 	u8 opc1 = OPCODE1(insn);
715 	int i;
716 
717 	switch (opc1) {
718 	case 0xeb:	/* jmp 8 */
719 	case 0xe9:	/* jmp 32 */
720 	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
721 		break;
722 
723 	case 0xe8:	/* call relative */
724 		branch_clear_offset(auprobe, insn);
725 		break;
726 
727 	case 0x0f:
728 		if (insn->opcode.nbytes != 2)
729 			return -ENOSYS;
730 		/*
731 		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
732 		 * OPCODE1() of the "short" jmp which checks the same condition.
733 		 */
734 		opc1 = OPCODE2(insn) - 0x10;
735 		/* fall through */
736 	default:
737 		if (!is_cond_jmp_opcode(opc1))
738 			return -ENOSYS;
739 	}
740 
741 	/*
742 	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
743 	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
744 	 * No one uses these insns, reject any branch insns with such prefix.
745 	 */
746 	for (i = 0; i < insn->prefixes.nbytes; i++) {
747 		if (insn->prefixes.bytes[i] == 0x66)
748 			return -ENOTSUPP;
749 	}
750 
751 	auprobe->branch.opc1 = opc1;
752 	auprobe->branch.ilen = insn->length;
753 	auprobe->branch.offs = insn->immediate.value;
754 
755 	auprobe->ops = &branch_xol_ops;
756 	return 0;
757 }
758 
759 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
760 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
761 {
762 	u8 opc1 = OPCODE1(insn), reg_offset = 0;
763 
764 	if (opc1 < 0x50 || opc1 > 0x57)
765 		return -ENOSYS;
766 
767 	if (insn->length > 2)
768 		return -ENOSYS;
769 	if (insn->length == 2) {
770 		/* only support rex_prefix 0x41 (x64 only) */
771 #ifdef CONFIG_X86_64
772 		if (insn->rex_prefix.nbytes != 1 ||
773 		    insn->rex_prefix.bytes[0] != 0x41)
774 			return -ENOSYS;
775 
776 		switch (opc1) {
777 		case 0x50:
778 			reg_offset = offsetof(struct pt_regs, r8);
779 			break;
780 		case 0x51:
781 			reg_offset = offsetof(struct pt_regs, r9);
782 			break;
783 		case 0x52:
784 			reg_offset = offsetof(struct pt_regs, r10);
785 			break;
786 		case 0x53:
787 			reg_offset = offsetof(struct pt_regs, r11);
788 			break;
789 		case 0x54:
790 			reg_offset = offsetof(struct pt_regs, r12);
791 			break;
792 		case 0x55:
793 			reg_offset = offsetof(struct pt_regs, r13);
794 			break;
795 		case 0x56:
796 			reg_offset = offsetof(struct pt_regs, r14);
797 			break;
798 		case 0x57:
799 			reg_offset = offsetof(struct pt_regs, r15);
800 			break;
801 		}
802 #else
803 		return -ENOSYS;
804 #endif
805 	} else {
806 		switch (opc1) {
807 		case 0x50:
808 			reg_offset = offsetof(struct pt_regs, ax);
809 			break;
810 		case 0x51:
811 			reg_offset = offsetof(struct pt_regs, cx);
812 			break;
813 		case 0x52:
814 			reg_offset = offsetof(struct pt_regs, dx);
815 			break;
816 		case 0x53:
817 			reg_offset = offsetof(struct pt_regs, bx);
818 			break;
819 		case 0x54:
820 			reg_offset = offsetof(struct pt_regs, sp);
821 			break;
822 		case 0x55:
823 			reg_offset = offsetof(struct pt_regs, bp);
824 			break;
825 		case 0x56:
826 			reg_offset = offsetof(struct pt_regs, si);
827 			break;
828 		case 0x57:
829 			reg_offset = offsetof(struct pt_regs, di);
830 			break;
831 		}
832 	}
833 
834 	auprobe->push.reg_offset = reg_offset;
835 	auprobe->push.ilen = insn->length;
836 	auprobe->ops = &push_xol_ops;
837 	return 0;
838 }
839 
840 /**
841  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
842  * @mm: the probed address space.
843  * @arch_uprobe: the probepoint information.
844  * @addr: virtual address at which to install the probepoint
845  * Return 0 on success or a -ve number on error.
846  */
847 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
848 {
849 	struct insn insn;
850 	u8 fix_ip_or_call = UPROBE_FIX_IP;
851 	int ret;
852 
853 	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
854 	if (ret)
855 		return ret;
856 
857 	ret = branch_setup_xol_ops(auprobe, &insn);
858 	if (ret != -ENOSYS)
859 		return ret;
860 
861 	ret = push_setup_xol_ops(auprobe, &insn);
862 	if (ret != -ENOSYS)
863 		return ret;
864 
865 	/*
866 	 * Figure out which fixups default_post_xol_op() will need to perform,
867 	 * and annotate defparam->fixups accordingly.
868 	 */
869 	switch (OPCODE1(&insn)) {
870 	case 0x9d:		/* popf */
871 		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
872 		break;
873 	case 0xc3:		/* ret or lret -- ip is correct */
874 	case 0xcb:
875 	case 0xc2:
876 	case 0xca:
877 	case 0xea:		/* jmp absolute -- ip is correct */
878 		fix_ip_or_call = 0;
879 		break;
880 	case 0x9a:		/* call absolute - Fix return addr, not ip */
881 		fix_ip_or_call = UPROBE_FIX_CALL;
882 		break;
883 	case 0xff:
884 		switch (MODRM_REG(&insn)) {
885 		case 2: case 3:			/* call or lcall, indirect */
886 			fix_ip_or_call = UPROBE_FIX_CALL;
887 			break;
888 		case 4: case 5:			/* jmp or ljmp, indirect */
889 			fix_ip_or_call = 0;
890 			break;
891 		}
892 		/* fall through */
893 	default:
894 		riprel_analyze(auprobe, &insn);
895 	}
896 
897 	auprobe->defparam.ilen = insn.length;
898 	auprobe->defparam.fixups |= fix_ip_or_call;
899 
900 	auprobe->ops = &default_xol_ops;
901 	return 0;
902 }
903 
904 /*
905  * arch_uprobe_pre_xol - prepare to execute out of line.
906  * @auprobe: the probepoint information.
907  * @regs: reflects the saved user state of current task.
908  */
909 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
910 {
911 	struct uprobe_task *utask = current->utask;
912 
913 	if (auprobe->ops->pre_xol) {
914 		int err = auprobe->ops->pre_xol(auprobe, regs);
915 		if (err)
916 			return err;
917 	}
918 
919 	regs->ip = utask->xol_vaddr;
920 	utask->autask.saved_trap_nr = current->thread.trap_nr;
921 	current->thread.trap_nr = UPROBE_TRAP_NR;
922 
923 	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
924 	regs->flags |= X86_EFLAGS_TF;
925 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
926 		set_task_blockstep(current, false);
927 
928 	return 0;
929 }
930 
931 /*
932  * If xol insn itself traps and generates a signal(Say,
933  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
934  * instruction jumps back to its own address. It is assumed that anything
935  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
936  *
937  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
938  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
939  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
940  */
941 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
942 {
943 	if (t->thread.trap_nr != UPROBE_TRAP_NR)
944 		return true;
945 
946 	return false;
947 }
948 
949 /*
950  * Called after single-stepping. To avoid the SMP problems that can
951  * occur when we temporarily put back the original opcode to
952  * single-step, we single-stepped a copy of the instruction.
953  *
954  * This function prepares to resume execution after the single-step.
955  */
956 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
957 {
958 	struct uprobe_task *utask = current->utask;
959 	bool send_sigtrap = utask->autask.saved_tf;
960 	int err = 0;
961 
962 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
963 	current->thread.trap_nr = utask->autask.saved_trap_nr;
964 
965 	if (auprobe->ops->post_xol) {
966 		err = auprobe->ops->post_xol(auprobe, regs);
967 		if (err) {
968 			/*
969 			 * Restore ->ip for restart or post mortem analysis.
970 			 * ->post_xol() must not return -ERESTART unless this
971 			 * is really possible.
972 			 */
973 			regs->ip = utask->vaddr;
974 			if (err == -ERESTART)
975 				err = 0;
976 			send_sigtrap = false;
977 		}
978 	}
979 	/*
980 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
981 	 * so we can get an extra SIGTRAP if we do not clear TF. We need
982 	 * to examine the opcode to make it right.
983 	 */
984 	if (send_sigtrap)
985 		send_sig(SIGTRAP, current, 0);
986 
987 	if (!utask->autask.saved_tf)
988 		regs->flags &= ~X86_EFLAGS_TF;
989 
990 	return err;
991 }
992 
993 /* callback routine for handling exceptions. */
994 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
995 {
996 	struct die_args *args = data;
997 	struct pt_regs *regs = args->regs;
998 	int ret = NOTIFY_DONE;
999 
1000 	/* We are only interested in userspace traps */
1001 	if (regs && !user_mode(regs))
1002 		return NOTIFY_DONE;
1003 
1004 	switch (val) {
1005 	case DIE_INT3:
1006 		if (uprobe_pre_sstep_notifier(regs))
1007 			ret = NOTIFY_STOP;
1008 
1009 		break;
1010 
1011 	case DIE_DEBUG:
1012 		if (uprobe_post_sstep_notifier(regs))
1013 			ret = NOTIFY_STOP;
1014 
1015 	default:
1016 		break;
1017 	}
1018 
1019 	return ret;
1020 }
1021 
1022 /*
1023  * This function gets called when XOL instruction either gets trapped or
1024  * the thread has a fatal signal. Reset the instruction pointer to its
1025  * probed address for the potential restart or for post mortem analysis.
1026  */
1027 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1028 {
1029 	struct uprobe_task *utask = current->utask;
1030 
1031 	if (auprobe->ops->abort)
1032 		auprobe->ops->abort(auprobe, regs);
1033 
1034 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1035 	regs->ip = utask->vaddr;
1036 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1037 	if (!utask->autask.saved_tf)
1038 		regs->flags &= ~X86_EFLAGS_TF;
1039 }
1040 
1041 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1042 {
1043 	if (auprobe->ops->emulate)
1044 		return auprobe->ops->emulate(auprobe, regs);
1045 	return false;
1046 }
1047 
1048 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1049 {
1050 	bool ret = __skip_sstep(auprobe, regs);
1051 	if (ret && (regs->flags & X86_EFLAGS_TF))
1052 		send_sig(SIGTRAP, current, 0);
1053 	return ret;
1054 }
1055 
1056 unsigned long
1057 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1058 {
1059 	int rasize = sizeof_long(), nleft;
1060 	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1061 
1062 	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1063 		return -1;
1064 
1065 	/* check whether address has been already hijacked */
1066 	if (orig_ret_vaddr == trampoline_vaddr)
1067 		return orig_ret_vaddr;
1068 
1069 	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1070 	if (likely(!nleft))
1071 		return orig_ret_vaddr;
1072 
1073 	if (nleft != rasize) {
1074 		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1075 		       current->pid, regs->sp, regs->ip);
1076 
1077 		force_sig(SIGSEGV, current);
1078 	}
1079 
1080 	return -1;
1081 }
1082 
1083 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1084 				struct pt_regs *regs)
1085 {
1086 	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1087 		return regs->sp < ret->stack;
1088 	else
1089 		return regs->sp <= ret->stack;
1090 }
1091