xref: /openbmc/linux/arch/x86/kernel/uprobes.c (revision a8c5cb99)
1 /*
2  * User-space Probes (UProbes) for x86
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2011
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  */
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
28 
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
31 #include <asm/insn.h>
32 #include <asm/mmu_context.h>
33 
34 /* Post-execution fixups. */
35 
36 /* Adjust IP back to vicinity of actual insn */
37 #define UPROBE_FIX_IP		0x01
38 
39 /* Adjust the return address of a call insn */
40 #define UPROBE_FIX_CALL		0x02
41 
42 /* Instruction will modify TF, don't change it */
43 #define UPROBE_FIX_SETF		0x04
44 
45 #define UPROBE_FIX_RIP_SI	0x08
46 #define UPROBE_FIX_RIP_DI	0x10
47 #define UPROBE_FIX_RIP_BX	0x20
48 #define UPROBE_FIX_RIP_MASK	\
49 	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
50 
51 #define	UPROBE_TRAP_NR		UINT_MAX
52 
53 /* Adaptations for mhiramat x86 decoder v14. */
54 #define OPCODE1(insn)		((insn)->opcode.bytes[0])
55 #define OPCODE2(insn)		((insn)->opcode.bytes[1])
56 #define OPCODE3(insn)		((insn)->opcode.bytes[2])
57 #define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
58 
59 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
60 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
61 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
62 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
63 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
64 	 << (row % 32))
65 
66 /*
67  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
68  * to keep gcc from statically optimizing it out, as variable_test_bit makes
69  * some versions of gcc to think only *(unsigned long*) is used.
70  *
71  * Opcodes we'll probably never support:
72  * 6c-6f - ins,outs. SEGVs if used in userspace
73  * e4-e7 - in,out imm. SEGVs if used in userspace
74  * ec-ef - in,out acc. SEGVs if used in userspace
75  * cc - int3. SIGTRAP if used in userspace
76  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
77  *	(why we support bound (62) then? it's similar, and similarly unused...)
78  * f1 - int1. SIGTRAP if used in userspace
79  * f4 - hlt. SEGVs if used in userspace
80  * fa - cli. SEGVs if used in userspace
81  * fb - sti. SEGVs if used in userspace
82  *
83  * Opcodes which need some work to be supported:
84  * 07,17,1f - pop es/ss/ds
85  *	Normally not used in userspace, but would execute if used.
86  *	Can cause GP or stack exception if tries to load wrong segment descriptor.
87  *	We hesitate to run them under single step since kernel's handling
88  *	of userspace single-stepping (TF flag) is fragile.
89  *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
90  *	on the same grounds that they are never used.
91  * cd - int N.
92  *	Used by userspace for "int 80" syscall entry. (Other "int N"
93  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
94  *	Not supported since kernel's handling of userspace single-stepping
95  *	(TF flag) is fragile.
96  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
97  */
98 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
99 static volatile u32 good_insns_32[256 / 32] = {
100 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
101 	/*      ----------------------------------------------         */
102 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
103 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
104 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
105 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
106 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
107 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
108 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
109 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
110 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
111 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
112 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
113 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
114 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
115 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
116 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
117 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
118 	/*      ----------------------------------------------         */
119 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
120 };
121 #else
122 #define good_insns_32	NULL
123 #endif
124 
125 /* Good-instruction tables for 64-bit apps.
126  *
127  * Genuinely invalid opcodes:
128  * 06,07 - formerly push/pop es
129  * 0e - formerly push cs
130  * 16,17 - formerly push/pop ss
131  * 1e,1f - formerly push/pop ds
132  * 27,2f,37,3f - formerly daa/das/aaa/aas
133  * 60,61 - formerly pusha/popa
134  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
135  * 82 - formerly redundant encoding of Group1
136  * 9a - formerly call seg:ofs
137  * ce - formerly into
138  * d4,d5 - formerly aam/aad
139  * d6 - formerly undocumented salc
140  * ea - formerly jmp seg:ofs
141  *
142  * Opcodes we'll probably never support:
143  * 6c-6f - ins,outs. SEGVs if used in userspace
144  * e4-e7 - in,out imm. SEGVs if used in userspace
145  * ec-ef - in,out acc. SEGVs if used in userspace
146  * cc - int3. SIGTRAP if used in userspace
147  * f1 - int1. SIGTRAP if used in userspace
148  * f4 - hlt. SEGVs if used in userspace
149  * fa - cli. SEGVs if used in userspace
150  * fb - sti. SEGVs if used in userspace
151  *
152  * Opcodes which need some work to be supported:
153  * cd - int N.
154  *	Used by userspace for "int 80" syscall entry. (Other "int N"
155  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
156  *	Not supported since kernel's handling of userspace single-stepping
157  *	(TF flag) is fragile.
158  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
159  */
160 #if defined(CONFIG_X86_64)
161 static volatile u32 good_insns_64[256 / 32] = {
162 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
163 	/*      ----------------------------------------------         */
164 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
165 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
166 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
167 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
168 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
169 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
170 	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
171 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
172 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
173 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
174 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
175 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
176 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
177 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
178 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
179 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
180 	/*      ----------------------------------------------         */
181 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
182 };
183 #else
184 #define good_insns_64	NULL
185 #endif
186 
187 /* Using this for both 64-bit and 32-bit apps.
188  * Opcodes we don't support:
189  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
190  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
191  *	Also encodes tons of other system insns if mod=11.
192  *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
193  * 0f 05 - syscall
194  * 0f 06 - clts (CPL0 insn)
195  * 0f 07 - sysret
196  * 0f 08 - invd (CPL0 insn)
197  * 0f 09 - wbinvd (CPL0 insn)
198  * 0f 0b - ud2
199  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
200  * 0f 34 - sysenter
201  * 0f 35 - sysexit
202  * 0f 37 - getsec
203  * 0f 78 - vmread (Intel VMX. CPL0 insn)
204  * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
205  *	Note: with prefixes, these two opcodes are
206  *	extrq/insertq/AVX512 convert vector ops.
207  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
208  *	{rd,wr}{fs,gs}base,{s,l,m}fence.
209  *	Why? They are all user-executable.
210  */
211 static volatile u32 good_2byte_insns[256 / 32] = {
212 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
213 	/*      ----------------------------------------------         */
214 	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
215 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
216 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
217 	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
218 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
219 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
220 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
221 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
222 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
223 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
224 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
225 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
226 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
227 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
228 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
229 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
230 	/*      ----------------------------------------------         */
231 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
232 };
233 #undef W
234 
235 /*
236  * opcodes we may need to refine support for:
237  *
238  *  0f - 2-byte instructions: For many of these instructions, the validity
239  *  depends on the prefix and/or the reg field.  On such instructions, we
240  *  just consider the opcode combination valid if it corresponds to any
241  *  valid instruction.
242  *
243  *  8f - Group 1 - only reg = 0 is OK
244  *  c6-c7 - Group 11 - only reg = 0 is OK
245  *  d9-df - fpu insns with some illegal encodings
246  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
247  *  certain floating-point instructions, such as addsd.
248  *
249  *  fe - Group 4 - only reg = 0 or 1 is OK
250  *  ff - Group 5 - only reg = 0-6 is OK
251  *
252  * others -- Do we need to support these?
253  *
254  *  0f - (floating-point?) prefetch instructions
255  *  07, 17, 1f - pop es, pop ss, pop ds
256  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
257  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
258  *  67 - addr16 prefix
259  *  ce - into
260  *  f0 - lock prefix
261  */
262 
263 /*
264  * TODO:
265  * - Where necessary, examine the modrm byte and allow only valid instructions
266  * in the different Groups and fpu instructions.
267  */
268 
269 static bool is_prefix_bad(struct insn *insn)
270 {
271 	int i;
272 
273 	for (i = 0; i < insn->prefixes.nbytes; i++) {
274 		insn_attr_t attr;
275 
276 		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
277 		switch (attr) {
278 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
279 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
280 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
281 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
282 		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
283 			return true;
284 		}
285 	}
286 	return false;
287 }
288 
289 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
290 {
291 	u32 volatile *good_insns;
292 
293 	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
294 	/* has the side-effect of processing the entire instruction */
295 	insn_get_length(insn);
296 	if (!insn_complete(insn))
297 		return -ENOEXEC;
298 
299 	if (is_prefix_bad(insn))
300 		return -ENOTSUPP;
301 
302 	/* We should not singlestep on the exception masking instructions */
303 	if (insn_masking_exception(insn))
304 		return -ENOTSUPP;
305 
306 	if (x86_64)
307 		good_insns = good_insns_64;
308 	else
309 		good_insns = good_insns_32;
310 
311 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
312 		return 0;
313 
314 	if (insn->opcode.nbytes == 2) {
315 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
316 			return 0;
317 	}
318 
319 	return -ENOTSUPP;
320 }
321 
322 #ifdef CONFIG_X86_64
323 /*
324  * If arch_uprobe->insn doesn't use rip-relative addressing, return
325  * immediately.  Otherwise, rewrite the instruction so that it accesses
326  * its memory operand indirectly through a scratch register.  Set
327  * defparam->fixups accordingly. (The contents of the scratch register
328  * will be saved before we single-step the modified instruction,
329  * and restored afterward).
330  *
331  * We do this because a rip-relative instruction can access only a
332  * relatively small area (+/- 2 GB from the instruction), and the XOL
333  * area typically lies beyond that area.  At least for instructions
334  * that store to memory, we can't execute the original instruction
335  * and "fix things up" later, because the misdirected store could be
336  * disastrous.
337  *
338  * Some useful facts about rip-relative instructions:
339  *
340  *  - There's always a modrm byte with bit layout "00 reg 101".
341  *  - There's never a SIB byte.
342  *  - The displacement is always 4 bytes.
343  *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
344  *    has no effect on rip-relative mode. It doesn't make modrm byte
345  *    with r/m=101 refer to register 1101 = R13.
346  */
347 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
348 {
349 	u8 *cursor;
350 	u8 reg;
351 	u8 reg2;
352 
353 	if (!insn_rip_relative(insn))
354 		return;
355 
356 	/*
357 	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
358 	 * Clear REX.b bit (extension of MODRM.rm field):
359 	 * we want to encode low numbered reg, not r8+.
360 	 */
361 	if (insn->rex_prefix.nbytes) {
362 		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
363 		/* REX byte has 0100wrxb layout, clearing REX.b bit */
364 		*cursor &= 0xfe;
365 	}
366 	/*
367 	 * Similar treatment for VEX3/EVEX prefix.
368 	 * TODO: add XOP treatment when insn decoder supports them
369 	 */
370 	if (insn->vex_prefix.nbytes >= 3) {
371 		/*
372 		 * vex2:     c5    rvvvvLpp   (has no b bit)
373 		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
374 		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
375 		 * Setting VEX3.b (setting because it has inverted meaning).
376 		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
377 		 * is the 4th bit of MODRM.rm, and needs the same treatment.
378 		 * For VEX3-encoded insns, VEX3.x value has no effect in
379 		 * non-SIB encoding, the change is superfluous but harmless.
380 		 */
381 		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
382 		*cursor |= 0x60;
383 	}
384 
385 	/*
386 	 * Convert from rip-relative addressing to register-relative addressing
387 	 * via a scratch register.
388 	 *
389 	 * This is tricky since there are insns with modrm byte
390 	 * which also use registers not encoded in modrm byte:
391 	 * [i]div/[i]mul: implicitly use dx:ax
392 	 * shift ops: implicitly use cx
393 	 * cmpxchg: implicitly uses ax
394 	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
395 	 *   Encoding: 0f c7/1 modrm
396 	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
397 	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
398 	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
399 	 *   Example where none of bx,cx,dx can be used as scratch reg:
400 	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
401 	 * [v]pcmpistri: implicitly uses cx, xmm0
402 	 * [v]pcmpistrm: implicitly uses xmm0
403 	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
404 	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
405 	 *   Evil SSE4.2 string comparison ops from hell.
406 	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
407 	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
408 	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
409 	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
410 	 *   and that it can have only register operands, not mem
411 	 *   (its modrm byte must have mode=11).
412 	 *   If these restrictions will ever be lifted,
413 	 *   we'll need code to prevent selection of di as scratch reg!
414 	 *
415 	 * Summary: I don't know any insns with modrm byte which
416 	 * use SI register implicitly. DI register is used only
417 	 * by one insn (maskmovq) and BX register is used
418 	 * only by one too (cmpxchg8b).
419 	 * BP is stack-segment based (may be a problem?).
420 	 * AX, DX, CX are off-limits (many implicit users).
421 	 * SP is unusable (it's stack pointer - think about "pop mem";
422 	 * also, rsp+disp32 needs sib encoding -> insn length change).
423 	 */
424 
425 	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
426 	reg2 = 0xff;		/* Fetch vex.vvvv */
427 	if (insn->vex_prefix.nbytes)
428 		reg2 = insn->vex_prefix.bytes[2];
429 	/*
430 	 * TODO: add XOP vvvv reading.
431 	 *
432 	 * vex.vvvv field is in bits 6-3, bits are inverted.
433 	 * But in 32-bit mode, high-order bit may be ignored.
434 	 * Therefore, let's consider only 3 low-order bits.
435 	 */
436 	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
437 	/*
438 	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
439 	 *
440 	 * Choose scratch reg. Order is important: must not select bx
441 	 * if we can use si (cmpxchg8b case!)
442 	 */
443 	if (reg != 6 && reg2 != 6) {
444 		reg2 = 6;
445 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
446 	} else if (reg != 7 && reg2 != 7) {
447 		reg2 = 7;
448 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
449 		/* TODO (paranoia): force maskmovq to not use di */
450 	} else {
451 		reg2 = 3;
452 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
453 	}
454 	/*
455 	 * Point cursor at the modrm byte.  The next 4 bytes are the
456 	 * displacement.  Beyond the displacement, for some instructions,
457 	 * is the immediate operand.
458 	 */
459 	cursor = auprobe->insn + insn_offset_modrm(insn);
460 	/*
461 	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
462 	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
463 	 * 89 86 disp32  mov %eax,disp32(%rsi)
464 	 */
465 	*cursor = 0x80 | (reg << 3) | reg2;
466 }
467 
468 static inline unsigned long *
469 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
470 {
471 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
472 		return &regs->si;
473 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
474 		return &regs->di;
475 	return &regs->bx;
476 }
477 
478 /*
479  * If we're emulating a rip-relative instruction, save the contents
480  * of the scratch register and store the target address in that register.
481  */
482 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
483 {
484 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
485 		struct uprobe_task *utask = current->utask;
486 		unsigned long *sr = scratch_reg(auprobe, regs);
487 
488 		utask->autask.saved_scratch_register = *sr;
489 		*sr = utask->vaddr + auprobe->defparam.ilen;
490 	}
491 }
492 
493 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
494 {
495 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
496 		struct uprobe_task *utask = current->utask;
497 		unsigned long *sr = scratch_reg(auprobe, regs);
498 
499 		*sr = utask->autask.saved_scratch_register;
500 	}
501 }
502 #else /* 32-bit: */
503 /*
504  * No RIP-relative addressing on 32-bit
505  */
506 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
507 {
508 }
509 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
510 {
511 }
512 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
513 {
514 }
515 #endif /* CONFIG_X86_64 */
516 
517 struct uprobe_xol_ops {
518 	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
519 	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
520 	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
521 	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
522 };
523 
524 static inline int sizeof_long(void)
525 {
526 	return in_ia32_syscall() ? 4 : 8;
527 }
528 
529 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
530 {
531 	riprel_pre_xol(auprobe, regs);
532 	return 0;
533 }
534 
535 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
536 {
537 	unsigned long new_sp = regs->sp - sizeof_long();
538 
539 	if (copy_to_user((void __user *)new_sp, &val, sizeof_long()))
540 		return -EFAULT;
541 
542 	regs->sp = new_sp;
543 	return 0;
544 }
545 
546 /*
547  * We have to fix things up as follows:
548  *
549  * Typically, the new ip is relative to the copied instruction.  We need
550  * to make it relative to the original instruction (FIX_IP).  Exceptions
551  * are return instructions and absolute or indirect jump or call instructions.
552  *
553  * If the single-stepped instruction was a call, the return address that
554  * is atop the stack is the address following the copied instruction.  We
555  * need to make it the address following the original instruction (FIX_CALL).
556  *
557  * If the original instruction was a rip-relative instruction such as
558  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
559  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
560  * We need to restore the contents of the scratch register
561  * (FIX_RIP_reg).
562  */
563 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
564 {
565 	struct uprobe_task *utask = current->utask;
566 
567 	riprel_post_xol(auprobe, regs);
568 	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
569 		long correction = utask->vaddr - utask->xol_vaddr;
570 		regs->ip += correction;
571 	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
572 		regs->sp += sizeof_long(); /* Pop incorrect return address */
573 		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
574 			return -ERESTART;
575 	}
576 	/* popf; tell the caller to not touch TF */
577 	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
578 		utask->autask.saved_tf = true;
579 
580 	return 0;
581 }
582 
583 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
584 {
585 	riprel_post_xol(auprobe, regs);
586 }
587 
588 static const struct uprobe_xol_ops default_xol_ops = {
589 	.pre_xol  = default_pre_xol_op,
590 	.post_xol = default_post_xol_op,
591 	.abort	  = default_abort_op,
592 };
593 
594 static bool branch_is_call(struct arch_uprobe *auprobe)
595 {
596 	return auprobe->branch.opc1 == 0xe8;
597 }
598 
599 #define CASE_COND					\
600 	COND(70, 71, XF(OF))				\
601 	COND(72, 73, XF(CF))				\
602 	COND(74, 75, XF(ZF))				\
603 	COND(78, 79, XF(SF))				\
604 	COND(7a, 7b, XF(PF))				\
605 	COND(76, 77, XF(CF) || XF(ZF))			\
606 	COND(7c, 7d, XF(SF) != XF(OF))			\
607 	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
608 
609 #define COND(op_y, op_n, expr)				\
610 	case 0x ## op_y: DO((expr) != 0)		\
611 	case 0x ## op_n: DO((expr) == 0)
612 
613 #define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
614 
615 static bool is_cond_jmp_opcode(u8 opcode)
616 {
617 	switch (opcode) {
618 	#define DO(expr)	\
619 		return true;
620 	CASE_COND
621 	#undef	DO
622 
623 	default:
624 		return false;
625 	}
626 }
627 
628 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
629 {
630 	unsigned long flags = regs->flags;
631 
632 	switch (auprobe->branch.opc1) {
633 	#define DO(expr)	\
634 		return expr;
635 	CASE_COND
636 	#undef	DO
637 
638 	default:	/* not a conditional jmp */
639 		return true;
640 	}
641 }
642 
643 #undef	XF
644 #undef	COND
645 #undef	CASE_COND
646 
647 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
648 {
649 	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
650 	unsigned long offs = (long)auprobe->branch.offs;
651 
652 	if (branch_is_call(auprobe)) {
653 		/*
654 		 * If it fails we execute this (mangled, see the comment in
655 		 * branch_clear_offset) insn out-of-line. In the likely case
656 		 * this should trigger the trap, and the probed application
657 		 * should die or restart the same insn after it handles the
658 		 * signal, arch_uprobe_post_xol() won't be even called.
659 		 *
660 		 * But there is corner case, see the comment in ->post_xol().
661 		 */
662 		if (emulate_push_stack(regs, new_ip))
663 			return false;
664 	} else if (!check_jmp_cond(auprobe, regs)) {
665 		offs = 0;
666 	}
667 
668 	regs->ip = new_ip + offs;
669 	return true;
670 }
671 
672 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
673 {
674 	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
675 
676 	if (emulate_push_stack(regs, *src_ptr))
677 		return false;
678 	regs->ip += auprobe->push.ilen;
679 	return true;
680 }
681 
682 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
683 {
684 	BUG_ON(!branch_is_call(auprobe));
685 	/*
686 	 * We can only get here if branch_emulate_op() failed to push the ret
687 	 * address _and_ another thread expanded our stack before the (mangled)
688 	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
689 	 * We could also restore ->ip and try to call branch_emulate_op() again.
690 	 */
691 	regs->sp += sizeof_long();
692 	return -ERESTART;
693 }
694 
695 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
696 {
697 	/*
698 	 * Turn this insn into "call 1f; 1:", this is what we will execute
699 	 * out-of-line if ->emulate() fails. We only need this to generate
700 	 * a trap, so that the probed task receives the correct signal with
701 	 * the properly filled siginfo.
702 	 *
703 	 * But see the comment in ->post_xol(), in the unlikely case it can
704 	 * succeed. So we need to ensure that the new ->ip can not fall into
705 	 * the non-canonical area and trigger #GP.
706 	 *
707 	 * We could turn it into (say) "pushf", but then we would need to
708 	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
709 	 * of ->insn[] for set_orig_insn().
710 	 */
711 	memset(auprobe->insn + insn_offset_immediate(insn),
712 		0, insn->immediate.nbytes);
713 }
714 
715 static const struct uprobe_xol_ops branch_xol_ops = {
716 	.emulate  = branch_emulate_op,
717 	.post_xol = branch_post_xol_op,
718 };
719 
720 static const struct uprobe_xol_ops push_xol_ops = {
721 	.emulate  = push_emulate_op,
722 };
723 
724 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
725 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
726 {
727 	u8 opc1 = OPCODE1(insn);
728 	int i;
729 
730 	switch (opc1) {
731 	case 0xeb:	/* jmp 8 */
732 	case 0xe9:	/* jmp 32 */
733 	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
734 		break;
735 
736 	case 0xe8:	/* call relative */
737 		branch_clear_offset(auprobe, insn);
738 		break;
739 
740 	case 0x0f:
741 		if (insn->opcode.nbytes != 2)
742 			return -ENOSYS;
743 		/*
744 		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
745 		 * OPCODE1() of the "short" jmp which checks the same condition.
746 		 */
747 		opc1 = OPCODE2(insn) - 0x10;
748 	default:
749 		if (!is_cond_jmp_opcode(opc1))
750 			return -ENOSYS;
751 	}
752 
753 	/*
754 	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
755 	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
756 	 * No one uses these insns, reject any branch insns with such prefix.
757 	 */
758 	for (i = 0; i < insn->prefixes.nbytes; i++) {
759 		if (insn->prefixes.bytes[i] == 0x66)
760 			return -ENOTSUPP;
761 	}
762 
763 	auprobe->branch.opc1 = opc1;
764 	auprobe->branch.ilen = insn->length;
765 	auprobe->branch.offs = insn->immediate.value;
766 
767 	auprobe->ops = &branch_xol_ops;
768 	return 0;
769 }
770 
771 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
772 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
773 {
774 	u8 opc1 = OPCODE1(insn), reg_offset = 0;
775 
776 	if (opc1 < 0x50 || opc1 > 0x57)
777 		return -ENOSYS;
778 
779 	if (insn->length > 2)
780 		return -ENOSYS;
781 	if (insn->length == 2) {
782 		/* only support rex_prefix 0x41 (x64 only) */
783 #ifdef CONFIG_X86_64
784 		if (insn->rex_prefix.nbytes != 1 ||
785 		    insn->rex_prefix.bytes[0] != 0x41)
786 			return -ENOSYS;
787 
788 		switch (opc1) {
789 		case 0x50:
790 			reg_offset = offsetof(struct pt_regs, r8);
791 			break;
792 		case 0x51:
793 			reg_offset = offsetof(struct pt_regs, r9);
794 			break;
795 		case 0x52:
796 			reg_offset = offsetof(struct pt_regs, r10);
797 			break;
798 		case 0x53:
799 			reg_offset = offsetof(struct pt_regs, r11);
800 			break;
801 		case 0x54:
802 			reg_offset = offsetof(struct pt_regs, r12);
803 			break;
804 		case 0x55:
805 			reg_offset = offsetof(struct pt_regs, r13);
806 			break;
807 		case 0x56:
808 			reg_offset = offsetof(struct pt_regs, r14);
809 			break;
810 		case 0x57:
811 			reg_offset = offsetof(struct pt_regs, r15);
812 			break;
813 		}
814 #else
815 		return -ENOSYS;
816 #endif
817 	} else {
818 		switch (opc1) {
819 		case 0x50:
820 			reg_offset = offsetof(struct pt_regs, ax);
821 			break;
822 		case 0x51:
823 			reg_offset = offsetof(struct pt_regs, cx);
824 			break;
825 		case 0x52:
826 			reg_offset = offsetof(struct pt_regs, dx);
827 			break;
828 		case 0x53:
829 			reg_offset = offsetof(struct pt_regs, bx);
830 			break;
831 		case 0x54:
832 			reg_offset = offsetof(struct pt_regs, sp);
833 			break;
834 		case 0x55:
835 			reg_offset = offsetof(struct pt_regs, bp);
836 			break;
837 		case 0x56:
838 			reg_offset = offsetof(struct pt_regs, si);
839 			break;
840 		case 0x57:
841 			reg_offset = offsetof(struct pt_regs, di);
842 			break;
843 		}
844 	}
845 
846 	auprobe->push.reg_offset = reg_offset;
847 	auprobe->push.ilen = insn->length;
848 	auprobe->ops = &push_xol_ops;
849 	return 0;
850 }
851 
852 /**
853  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
854  * @mm: the probed address space.
855  * @arch_uprobe: the probepoint information.
856  * @addr: virtual address at which to install the probepoint
857  * Return 0 on success or a -ve number on error.
858  */
859 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
860 {
861 	struct insn insn;
862 	u8 fix_ip_or_call = UPROBE_FIX_IP;
863 	int ret;
864 
865 	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
866 	if (ret)
867 		return ret;
868 
869 	ret = branch_setup_xol_ops(auprobe, &insn);
870 	if (ret != -ENOSYS)
871 		return ret;
872 
873 	ret = push_setup_xol_ops(auprobe, &insn);
874 	if (ret != -ENOSYS)
875 		return ret;
876 
877 	/*
878 	 * Figure out which fixups default_post_xol_op() will need to perform,
879 	 * and annotate defparam->fixups accordingly.
880 	 */
881 	switch (OPCODE1(&insn)) {
882 	case 0x9d:		/* popf */
883 		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
884 		break;
885 	case 0xc3:		/* ret or lret -- ip is correct */
886 	case 0xcb:
887 	case 0xc2:
888 	case 0xca:
889 	case 0xea:		/* jmp absolute -- ip is correct */
890 		fix_ip_or_call = 0;
891 		break;
892 	case 0x9a:		/* call absolute - Fix return addr, not ip */
893 		fix_ip_or_call = UPROBE_FIX_CALL;
894 		break;
895 	case 0xff:
896 		switch (MODRM_REG(&insn)) {
897 		case 2: case 3:			/* call or lcall, indirect */
898 			fix_ip_or_call = UPROBE_FIX_CALL;
899 			break;
900 		case 4: case 5:			/* jmp or ljmp, indirect */
901 			fix_ip_or_call = 0;
902 			break;
903 		}
904 		/* fall through */
905 	default:
906 		riprel_analyze(auprobe, &insn);
907 	}
908 
909 	auprobe->defparam.ilen = insn.length;
910 	auprobe->defparam.fixups |= fix_ip_or_call;
911 
912 	auprobe->ops = &default_xol_ops;
913 	return 0;
914 }
915 
916 /*
917  * arch_uprobe_pre_xol - prepare to execute out of line.
918  * @auprobe: the probepoint information.
919  * @regs: reflects the saved user state of current task.
920  */
921 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
922 {
923 	struct uprobe_task *utask = current->utask;
924 
925 	if (auprobe->ops->pre_xol) {
926 		int err = auprobe->ops->pre_xol(auprobe, regs);
927 		if (err)
928 			return err;
929 	}
930 
931 	regs->ip = utask->xol_vaddr;
932 	utask->autask.saved_trap_nr = current->thread.trap_nr;
933 	current->thread.trap_nr = UPROBE_TRAP_NR;
934 
935 	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
936 	regs->flags |= X86_EFLAGS_TF;
937 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
938 		set_task_blockstep(current, false);
939 
940 	return 0;
941 }
942 
943 /*
944  * If xol insn itself traps and generates a signal(Say,
945  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
946  * instruction jumps back to its own address. It is assumed that anything
947  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
948  *
949  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
950  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
951  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
952  */
953 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
954 {
955 	if (t->thread.trap_nr != UPROBE_TRAP_NR)
956 		return true;
957 
958 	return false;
959 }
960 
961 /*
962  * Called after single-stepping. To avoid the SMP problems that can
963  * occur when we temporarily put back the original opcode to
964  * single-step, we single-stepped a copy of the instruction.
965  *
966  * This function prepares to resume execution after the single-step.
967  */
968 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
969 {
970 	struct uprobe_task *utask = current->utask;
971 	bool send_sigtrap = utask->autask.saved_tf;
972 	int err = 0;
973 
974 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
975 	current->thread.trap_nr = utask->autask.saved_trap_nr;
976 
977 	if (auprobe->ops->post_xol) {
978 		err = auprobe->ops->post_xol(auprobe, regs);
979 		if (err) {
980 			/*
981 			 * Restore ->ip for restart or post mortem analysis.
982 			 * ->post_xol() must not return -ERESTART unless this
983 			 * is really possible.
984 			 */
985 			regs->ip = utask->vaddr;
986 			if (err == -ERESTART)
987 				err = 0;
988 			send_sigtrap = false;
989 		}
990 	}
991 	/*
992 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
993 	 * so we can get an extra SIGTRAP if we do not clear TF. We need
994 	 * to examine the opcode to make it right.
995 	 */
996 	if (send_sigtrap)
997 		send_sig(SIGTRAP, current, 0);
998 
999 	if (!utask->autask.saved_tf)
1000 		regs->flags &= ~X86_EFLAGS_TF;
1001 
1002 	return err;
1003 }
1004 
1005 /* callback routine for handling exceptions. */
1006 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1007 {
1008 	struct die_args *args = data;
1009 	struct pt_regs *regs = args->regs;
1010 	int ret = NOTIFY_DONE;
1011 
1012 	/* We are only interested in userspace traps */
1013 	if (regs && !user_mode(regs))
1014 		return NOTIFY_DONE;
1015 
1016 	switch (val) {
1017 	case DIE_INT3:
1018 		if (uprobe_pre_sstep_notifier(regs))
1019 			ret = NOTIFY_STOP;
1020 
1021 		break;
1022 
1023 	case DIE_DEBUG:
1024 		if (uprobe_post_sstep_notifier(regs))
1025 			ret = NOTIFY_STOP;
1026 
1027 	default:
1028 		break;
1029 	}
1030 
1031 	return ret;
1032 }
1033 
1034 /*
1035  * This function gets called when XOL instruction either gets trapped or
1036  * the thread has a fatal signal. Reset the instruction pointer to its
1037  * probed address for the potential restart or for post mortem analysis.
1038  */
1039 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1040 {
1041 	struct uprobe_task *utask = current->utask;
1042 
1043 	if (auprobe->ops->abort)
1044 		auprobe->ops->abort(auprobe, regs);
1045 
1046 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1047 	regs->ip = utask->vaddr;
1048 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1049 	if (!utask->autask.saved_tf)
1050 		regs->flags &= ~X86_EFLAGS_TF;
1051 }
1052 
1053 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1054 {
1055 	if (auprobe->ops->emulate)
1056 		return auprobe->ops->emulate(auprobe, regs);
1057 	return false;
1058 }
1059 
1060 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1061 {
1062 	bool ret = __skip_sstep(auprobe, regs);
1063 	if (ret && (regs->flags & X86_EFLAGS_TF))
1064 		send_sig(SIGTRAP, current, 0);
1065 	return ret;
1066 }
1067 
1068 unsigned long
1069 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1070 {
1071 	int rasize = sizeof_long(), nleft;
1072 	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1073 
1074 	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1075 		return -1;
1076 
1077 	/* check whether address has been already hijacked */
1078 	if (orig_ret_vaddr == trampoline_vaddr)
1079 		return orig_ret_vaddr;
1080 
1081 	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1082 	if (likely(!nleft))
1083 		return orig_ret_vaddr;
1084 
1085 	if (nleft != rasize) {
1086 		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1087 		       current->pid, regs->sp, regs->ip);
1088 
1089 		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
1090 	}
1091 
1092 	return -1;
1093 }
1094 
1095 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1096 				struct pt_regs *regs)
1097 {
1098 	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1099 		return regs->sp < ret->stack;
1100 	else
1101 		return regs->sp <= ret->stack;
1102 }
1103