xref: /openbmc/linux/arch/x86/kernel/uprobes.c (revision 18da174d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * User-space Probes (UProbes) for x86
4  *
5  * Copyright (C) IBM Corporation, 2008-2011
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  */
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
15 
16 #include <linux/kdebug.h>
17 #include <asm/processor.h>
18 #include <asm/insn.h>
19 #include <asm/mmu_context.h>
20 
21 /* Post-execution fixups. */
22 
23 /* Adjust IP back to vicinity of actual insn */
24 #define UPROBE_FIX_IP		0x01
25 
26 /* Adjust the return address of a call insn */
27 #define UPROBE_FIX_CALL		0x02
28 
29 /* Instruction will modify TF, don't change it */
30 #define UPROBE_FIX_SETF		0x04
31 
32 #define UPROBE_FIX_RIP_SI	0x08
33 #define UPROBE_FIX_RIP_DI	0x10
34 #define UPROBE_FIX_RIP_BX	0x20
35 #define UPROBE_FIX_RIP_MASK	\
36 	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37 
38 #define	UPROBE_TRAP_NR		UINT_MAX
39 
40 /* Adaptations for mhiramat x86 decoder v14. */
41 #define OPCODE1(insn)		((insn)->opcode.bytes[0])
42 #define OPCODE2(insn)		((insn)->opcode.bytes[1])
43 #define OPCODE3(insn)		((insn)->opcode.bytes[2])
44 #define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
45 
46 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
48 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
49 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
50 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
51 	 << (row % 32))
52 
53 /*
54  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
55  * to keep gcc from statically optimizing it out, as variable_test_bit makes
56  * some versions of gcc to think only *(unsigned long*) is used.
57  *
58  * Opcodes we'll probably never support:
59  * 6c-6f - ins,outs. SEGVs if used in userspace
60  * e4-e7 - in,out imm. SEGVs if used in userspace
61  * ec-ef - in,out acc. SEGVs if used in userspace
62  * cc - int3. SIGTRAP if used in userspace
63  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64  *	(why we support bound (62) then? it's similar, and similarly unused...)
65  * f1 - int1. SIGTRAP if used in userspace
66  * f4 - hlt. SEGVs if used in userspace
67  * fa - cli. SEGVs if used in userspace
68  * fb - sti. SEGVs if used in userspace
69  *
70  * Opcodes which need some work to be supported:
71  * 07,17,1f - pop es/ss/ds
72  *	Normally not used in userspace, but would execute if used.
73  *	Can cause GP or stack exception if tries to load wrong segment descriptor.
74  *	We hesitate to run them under single step since kernel's handling
75  *	of userspace single-stepping (TF flag) is fragile.
76  *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77  *	on the same grounds that they are never used.
78  * cd - int N.
79  *	Used by userspace for "int 80" syscall entry. (Other "int N"
80  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81  *	Not supported since kernel's handling of userspace single-stepping
82  *	(TF flag) is fragile.
83  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84  */
85 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86 static volatile u32 good_insns_32[256 / 32] = {
87 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
88 	/*      ----------------------------------------------         */
89 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
105 	/*      ----------------------------------------------         */
106 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
107 };
108 #else
109 #define good_insns_32	NULL
110 #endif
111 
112 /* Good-instruction tables for 64-bit apps.
113  *
114  * Genuinely invalid opcodes:
115  * 06,07 - formerly push/pop es
116  * 0e - formerly push cs
117  * 16,17 - formerly push/pop ss
118  * 1e,1f - formerly push/pop ds
119  * 27,2f,37,3f - formerly daa/das/aaa/aas
120  * 60,61 - formerly pusha/popa
121  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122  * 82 - formerly redundant encoding of Group1
123  * 9a - formerly call seg:ofs
124  * ce - formerly into
125  * d4,d5 - formerly aam/aad
126  * d6 - formerly undocumented salc
127  * ea - formerly jmp seg:ofs
128  *
129  * Opcodes we'll probably never support:
130  * 6c-6f - ins,outs. SEGVs if used in userspace
131  * e4-e7 - in,out imm. SEGVs if used in userspace
132  * ec-ef - in,out acc. SEGVs if used in userspace
133  * cc - int3. SIGTRAP if used in userspace
134  * f1 - int1. SIGTRAP if used in userspace
135  * f4 - hlt. SEGVs if used in userspace
136  * fa - cli. SEGVs if used in userspace
137  * fb - sti. SEGVs if used in userspace
138  *
139  * Opcodes which need some work to be supported:
140  * cd - int N.
141  *	Used by userspace for "int 80" syscall entry. (Other "int N"
142  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143  *	Not supported since kernel's handling of userspace single-stepping
144  *	(TF flag) is fragile.
145  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146  */
147 #if defined(CONFIG_X86_64)
148 static volatile u32 good_insns_64[256 / 32] = {
149 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
150 	/*      ----------------------------------------------         */
151 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
167 	/*      ----------------------------------------------         */
168 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
169 };
170 #else
171 #define good_insns_64	NULL
172 #endif
173 
174 /* Using this for both 64-bit and 32-bit apps.
175  * Opcodes we don't support:
176  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178  *	Also encodes tons of other system insns if mod=11.
179  *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
180  * 0f 05 - syscall
181  * 0f 06 - clts (CPL0 insn)
182  * 0f 07 - sysret
183  * 0f 08 - invd (CPL0 insn)
184  * 0f 09 - wbinvd (CPL0 insn)
185  * 0f 0b - ud2
186  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187  * 0f 34 - sysenter
188  * 0f 35 - sysexit
189  * 0f 37 - getsec
190  * 0f 78 - vmread (Intel VMX. CPL0 insn)
191  * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192  *	Note: with prefixes, these two opcodes are
193  *	extrq/insertq/AVX512 convert vector ops.
194  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195  *	{rd,wr}{fs,gs}base,{s,l,m}fence.
196  *	Why? They are all user-executable.
197  */
198 static volatile u32 good_2byte_insns[256 / 32] = {
199 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
200 	/*      ----------------------------------------------         */
201 	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
217 	/*      ----------------------------------------------         */
218 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
219 };
220 #undef W
221 
222 /*
223  * opcodes we may need to refine support for:
224  *
225  *  0f - 2-byte instructions: For many of these instructions, the validity
226  *  depends on the prefix and/or the reg field.  On such instructions, we
227  *  just consider the opcode combination valid if it corresponds to any
228  *  valid instruction.
229  *
230  *  8f - Group 1 - only reg = 0 is OK
231  *  c6-c7 - Group 11 - only reg = 0 is OK
232  *  d9-df - fpu insns with some illegal encodings
233  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
234  *  certain floating-point instructions, such as addsd.
235  *
236  *  fe - Group 4 - only reg = 0 or 1 is OK
237  *  ff - Group 5 - only reg = 0-6 is OK
238  *
239  * others -- Do we need to support these?
240  *
241  *  0f - (floating-point?) prefetch instructions
242  *  07, 17, 1f - pop es, pop ss, pop ds
243  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
245  *  67 - addr16 prefix
246  *  ce - into
247  *  f0 - lock prefix
248  */
249 
250 /*
251  * TODO:
252  * - Where necessary, examine the modrm byte and allow only valid instructions
253  * in the different Groups and fpu instructions.
254  */
255 
256 static bool is_prefix_bad(struct insn *insn)
257 {
258 	insn_byte_t p;
259 	int i;
260 
261 	for_each_insn_prefix(insn, i, p) {
262 		insn_attr_t attr;
263 
264 		attr = inat_get_opcode_attribute(p);
265 		switch (attr) {
266 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
267 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
268 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
269 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
270 		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
271 			return true;
272 		}
273 	}
274 	return false;
275 }
276 
277 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
278 {
279 	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
280 	u32 volatile *good_insns;
281 	int ret;
282 
283 	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
284 	if (ret < 0)
285 		return -ENOEXEC;
286 
287 	if (is_prefix_bad(insn))
288 		return -ENOTSUPP;
289 
290 	/* We should not singlestep on the exception masking instructions */
291 	if (insn_masking_exception(insn))
292 		return -ENOTSUPP;
293 
294 	if (x86_64)
295 		good_insns = good_insns_64;
296 	else
297 		good_insns = good_insns_32;
298 
299 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
300 		return 0;
301 
302 	if (insn->opcode.nbytes == 2) {
303 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
304 			return 0;
305 	}
306 
307 	return -ENOTSUPP;
308 }
309 
310 #ifdef CONFIG_X86_64
311 /*
312  * If arch_uprobe->insn doesn't use rip-relative addressing, return
313  * immediately.  Otherwise, rewrite the instruction so that it accesses
314  * its memory operand indirectly through a scratch register.  Set
315  * defparam->fixups accordingly. (The contents of the scratch register
316  * will be saved before we single-step the modified instruction,
317  * and restored afterward).
318  *
319  * We do this because a rip-relative instruction can access only a
320  * relatively small area (+/- 2 GB from the instruction), and the XOL
321  * area typically lies beyond that area.  At least for instructions
322  * that store to memory, we can't execute the original instruction
323  * and "fix things up" later, because the misdirected store could be
324  * disastrous.
325  *
326  * Some useful facts about rip-relative instructions:
327  *
328  *  - There's always a modrm byte with bit layout "00 reg 101".
329  *  - There's never a SIB byte.
330  *  - The displacement is always 4 bytes.
331  *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
332  *    has no effect on rip-relative mode. It doesn't make modrm byte
333  *    with r/m=101 refer to register 1101 = R13.
334  */
335 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
336 {
337 	u8 *cursor;
338 	u8 reg;
339 	u8 reg2;
340 
341 	if (!insn_rip_relative(insn))
342 		return;
343 
344 	/*
345 	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
346 	 * Clear REX.b bit (extension of MODRM.rm field):
347 	 * we want to encode low numbered reg, not r8+.
348 	 */
349 	if (insn->rex_prefix.nbytes) {
350 		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
351 		/* REX byte has 0100wrxb layout, clearing REX.b bit */
352 		*cursor &= 0xfe;
353 	}
354 	/*
355 	 * Similar treatment for VEX3/EVEX prefix.
356 	 * TODO: add XOP treatment when insn decoder supports them
357 	 */
358 	if (insn->vex_prefix.nbytes >= 3) {
359 		/*
360 		 * vex2:     c5    rvvvvLpp   (has no b bit)
361 		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
362 		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
363 		 * Setting VEX3.b (setting because it has inverted meaning).
364 		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
365 		 * is the 4th bit of MODRM.rm, and needs the same treatment.
366 		 * For VEX3-encoded insns, VEX3.x value has no effect in
367 		 * non-SIB encoding, the change is superfluous but harmless.
368 		 */
369 		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
370 		*cursor |= 0x60;
371 	}
372 
373 	/*
374 	 * Convert from rip-relative addressing to register-relative addressing
375 	 * via a scratch register.
376 	 *
377 	 * This is tricky since there are insns with modrm byte
378 	 * which also use registers not encoded in modrm byte:
379 	 * [i]div/[i]mul: implicitly use dx:ax
380 	 * shift ops: implicitly use cx
381 	 * cmpxchg: implicitly uses ax
382 	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
383 	 *   Encoding: 0f c7/1 modrm
384 	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
385 	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
386 	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
387 	 *   Example where none of bx,cx,dx can be used as scratch reg:
388 	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
389 	 * [v]pcmpistri: implicitly uses cx, xmm0
390 	 * [v]pcmpistrm: implicitly uses xmm0
391 	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
392 	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
393 	 *   Evil SSE4.2 string comparison ops from hell.
394 	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
395 	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
396 	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
397 	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
398 	 *   and that it can have only register operands, not mem
399 	 *   (its modrm byte must have mode=11).
400 	 *   If these restrictions will ever be lifted,
401 	 *   we'll need code to prevent selection of di as scratch reg!
402 	 *
403 	 * Summary: I don't know any insns with modrm byte which
404 	 * use SI register implicitly. DI register is used only
405 	 * by one insn (maskmovq) and BX register is used
406 	 * only by one too (cmpxchg8b).
407 	 * BP is stack-segment based (may be a problem?).
408 	 * AX, DX, CX are off-limits (many implicit users).
409 	 * SP is unusable (it's stack pointer - think about "pop mem";
410 	 * also, rsp+disp32 needs sib encoding -> insn length change).
411 	 */
412 
413 	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
414 	reg2 = 0xff;		/* Fetch vex.vvvv */
415 	if (insn->vex_prefix.nbytes)
416 		reg2 = insn->vex_prefix.bytes[2];
417 	/*
418 	 * TODO: add XOP vvvv reading.
419 	 *
420 	 * vex.vvvv field is in bits 6-3, bits are inverted.
421 	 * But in 32-bit mode, high-order bit may be ignored.
422 	 * Therefore, let's consider only 3 low-order bits.
423 	 */
424 	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
425 	/*
426 	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
427 	 *
428 	 * Choose scratch reg. Order is important: must not select bx
429 	 * if we can use si (cmpxchg8b case!)
430 	 */
431 	if (reg != 6 && reg2 != 6) {
432 		reg2 = 6;
433 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
434 	} else if (reg != 7 && reg2 != 7) {
435 		reg2 = 7;
436 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
437 		/* TODO (paranoia): force maskmovq to not use di */
438 	} else {
439 		reg2 = 3;
440 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
441 	}
442 	/*
443 	 * Point cursor at the modrm byte.  The next 4 bytes are the
444 	 * displacement.  Beyond the displacement, for some instructions,
445 	 * is the immediate operand.
446 	 */
447 	cursor = auprobe->insn + insn_offset_modrm(insn);
448 	/*
449 	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
450 	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
451 	 * 89 86 disp32  mov %eax,disp32(%rsi)
452 	 */
453 	*cursor = 0x80 | (reg << 3) | reg2;
454 }
455 
456 static inline unsigned long *
457 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
458 {
459 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
460 		return &regs->si;
461 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
462 		return &regs->di;
463 	return &regs->bx;
464 }
465 
466 /*
467  * If we're emulating a rip-relative instruction, save the contents
468  * of the scratch register and store the target address in that register.
469  */
470 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
471 {
472 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
473 		struct uprobe_task *utask = current->utask;
474 		unsigned long *sr = scratch_reg(auprobe, regs);
475 
476 		utask->autask.saved_scratch_register = *sr;
477 		*sr = utask->vaddr + auprobe->defparam.ilen;
478 	}
479 }
480 
481 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
482 {
483 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
484 		struct uprobe_task *utask = current->utask;
485 		unsigned long *sr = scratch_reg(auprobe, regs);
486 
487 		*sr = utask->autask.saved_scratch_register;
488 	}
489 }
490 #else /* 32-bit: */
491 /*
492  * No RIP-relative addressing on 32-bit
493  */
494 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
495 {
496 }
497 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
498 {
499 }
500 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
501 {
502 }
503 #endif /* CONFIG_X86_64 */
504 
505 struct uprobe_xol_ops {
506 	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
507 	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
508 	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
509 	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
510 };
511 
512 static inline int sizeof_long(struct pt_regs *regs)
513 {
514 	/*
515 	 * Check registers for mode as in_xxx_syscall() does not apply here.
516 	 */
517 	return user_64bit_mode(regs) ? 8 : 4;
518 }
519 
520 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
521 {
522 	riprel_pre_xol(auprobe, regs);
523 	return 0;
524 }
525 
526 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
527 {
528 	unsigned long new_sp = regs->sp - sizeof_long(regs);
529 
530 	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
531 		return -EFAULT;
532 
533 	regs->sp = new_sp;
534 	return 0;
535 }
536 
537 /*
538  * We have to fix things up as follows:
539  *
540  * Typically, the new ip is relative to the copied instruction.  We need
541  * to make it relative to the original instruction (FIX_IP).  Exceptions
542  * are return instructions and absolute or indirect jump or call instructions.
543  *
544  * If the single-stepped instruction was a call, the return address that
545  * is atop the stack is the address following the copied instruction.  We
546  * need to make it the address following the original instruction (FIX_CALL).
547  *
548  * If the original instruction was a rip-relative instruction such as
549  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
550  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
551  * We need to restore the contents of the scratch register
552  * (FIX_RIP_reg).
553  */
554 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
555 {
556 	struct uprobe_task *utask = current->utask;
557 
558 	riprel_post_xol(auprobe, regs);
559 	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
560 		long correction = utask->vaddr - utask->xol_vaddr;
561 		regs->ip += correction;
562 	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
563 		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
564 		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
565 			return -ERESTART;
566 	}
567 	/* popf; tell the caller to not touch TF */
568 	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
569 		utask->autask.saved_tf = true;
570 
571 	return 0;
572 }
573 
574 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
575 {
576 	riprel_post_xol(auprobe, regs);
577 }
578 
579 static const struct uprobe_xol_ops default_xol_ops = {
580 	.pre_xol  = default_pre_xol_op,
581 	.post_xol = default_post_xol_op,
582 	.abort	  = default_abort_op,
583 };
584 
585 static bool branch_is_call(struct arch_uprobe *auprobe)
586 {
587 	return auprobe->branch.opc1 == 0xe8;
588 }
589 
590 #define CASE_COND					\
591 	COND(70, 71, XF(OF))				\
592 	COND(72, 73, XF(CF))				\
593 	COND(74, 75, XF(ZF))				\
594 	COND(78, 79, XF(SF))				\
595 	COND(7a, 7b, XF(PF))				\
596 	COND(76, 77, XF(CF) || XF(ZF))			\
597 	COND(7c, 7d, XF(SF) != XF(OF))			\
598 	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
599 
600 #define COND(op_y, op_n, expr)				\
601 	case 0x ## op_y: DO((expr) != 0)		\
602 	case 0x ## op_n: DO((expr) == 0)
603 
604 #define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
605 
606 static bool is_cond_jmp_opcode(u8 opcode)
607 {
608 	switch (opcode) {
609 	#define DO(expr)	\
610 		return true;
611 	CASE_COND
612 	#undef	DO
613 
614 	default:
615 		return false;
616 	}
617 }
618 
619 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
620 {
621 	unsigned long flags = regs->flags;
622 
623 	switch (auprobe->branch.opc1) {
624 	#define DO(expr)	\
625 		return expr;
626 	CASE_COND
627 	#undef	DO
628 
629 	default:	/* not a conditional jmp */
630 		return true;
631 	}
632 }
633 
634 #undef	XF
635 #undef	COND
636 #undef	CASE_COND
637 
638 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
639 {
640 	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
641 	unsigned long offs = (long)auprobe->branch.offs;
642 
643 	if (branch_is_call(auprobe)) {
644 		/*
645 		 * If it fails we execute this (mangled, see the comment in
646 		 * branch_clear_offset) insn out-of-line. In the likely case
647 		 * this should trigger the trap, and the probed application
648 		 * should die or restart the same insn after it handles the
649 		 * signal, arch_uprobe_post_xol() won't be even called.
650 		 *
651 		 * But there is corner case, see the comment in ->post_xol().
652 		 */
653 		if (emulate_push_stack(regs, new_ip))
654 			return false;
655 	} else if (!check_jmp_cond(auprobe, regs)) {
656 		offs = 0;
657 	}
658 
659 	regs->ip = new_ip + offs;
660 	return true;
661 }
662 
663 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
664 {
665 	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
666 
667 	if (emulate_push_stack(regs, *src_ptr))
668 		return false;
669 	regs->ip += auprobe->push.ilen;
670 	return true;
671 }
672 
673 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
674 {
675 	BUG_ON(!branch_is_call(auprobe));
676 	/*
677 	 * We can only get here if branch_emulate_op() failed to push the ret
678 	 * address _and_ another thread expanded our stack before the (mangled)
679 	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680 	 * We could also restore ->ip and try to call branch_emulate_op() again.
681 	 */
682 	regs->sp += sizeof_long(regs);
683 	return -ERESTART;
684 }
685 
686 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
687 {
688 	/*
689 	 * Turn this insn into "call 1f; 1:", this is what we will execute
690 	 * out-of-line if ->emulate() fails. We only need this to generate
691 	 * a trap, so that the probed task receives the correct signal with
692 	 * the properly filled siginfo.
693 	 *
694 	 * But see the comment in ->post_xol(), in the unlikely case it can
695 	 * succeed. So we need to ensure that the new ->ip can not fall into
696 	 * the non-canonical area and trigger #GP.
697 	 *
698 	 * We could turn it into (say) "pushf", but then we would need to
699 	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700 	 * of ->insn[] for set_orig_insn().
701 	 */
702 	memset(auprobe->insn + insn_offset_immediate(insn),
703 		0, insn->immediate.nbytes);
704 }
705 
706 static const struct uprobe_xol_ops branch_xol_ops = {
707 	.emulate  = branch_emulate_op,
708 	.post_xol = branch_post_xol_op,
709 };
710 
711 static const struct uprobe_xol_ops push_xol_ops = {
712 	.emulate  = push_emulate_op,
713 };
714 
715 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
716 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
717 {
718 	u8 opc1 = OPCODE1(insn);
719 	insn_byte_t p;
720 	int i;
721 
722 	switch (opc1) {
723 	case 0xeb:	/* jmp 8 */
724 	case 0xe9:	/* jmp 32 */
725 		break;
726 	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
727 		goto setup;
728 
729 	case 0xe8:	/* call relative */
730 		branch_clear_offset(auprobe, insn);
731 		break;
732 
733 	case 0x0f:
734 		if (insn->opcode.nbytes != 2)
735 			return -ENOSYS;
736 		/*
737 		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
738 		 * OPCODE1() of the "short" jmp which checks the same condition.
739 		 */
740 		opc1 = OPCODE2(insn) - 0x10;
741 		fallthrough;
742 	default:
743 		if (!is_cond_jmp_opcode(opc1))
744 			return -ENOSYS;
745 	}
746 
747 	/*
748 	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
749 	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
750 	 * No one uses these insns, reject any branch insns with such prefix.
751 	 */
752 	for_each_insn_prefix(insn, i, p) {
753 		if (p == 0x66)
754 			return -ENOTSUPP;
755 	}
756 
757 setup:
758 	auprobe->branch.opc1 = opc1;
759 	auprobe->branch.ilen = insn->length;
760 	auprobe->branch.offs = insn->immediate.value;
761 
762 	auprobe->ops = &branch_xol_ops;
763 	return 0;
764 }
765 
766 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
767 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
768 {
769 	u8 opc1 = OPCODE1(insn), reg_offset = 0;
770 
771 	if (opc1 < 0x50 || opc1 > 0x57)
772 		return -ENOSYS;
773 
774 	if (insn->length > 2)
775 		return -ENOSYS;
776 	if (insn->length == 2) {
777 		/* only support rex_prefix 0x41 (x64 only) */
778 #ifdef CONFIG_X86_64
779 		if (insn->rex_prefix.nbytes != 1 ||
780 		    insn->rex_prefix.bytes[0] != 0x41)
781 			return -ENOSYS;
782 
783 		switch (opc1) {
784 		case 0x50:
785 			reg_offset = offsetof(struct pt_regs, r8);
786 			break;
787 		case 0x51:
788 			reg_offset = offsetof(struct pt_regs, r9);
789 			break;
790 		case 0x52:
791 			reg_offset = offsetof(struct pt_regs, r10);
792 			break;
793 		case 0x53:
794 			reg_offset = offsetof(struct pt_regs, r11);
795 			break;
796 		case 0x54:
797 			reg_offset = offsetof(struct pt_regs, r12);
798 			break;
799 		case 0x55:
800 			reg_offset = offsetof(struct pt_regs, r13);
801 			break;
802 		case 0x56:
803 			reg_offset = offsetof(struct pt_regs, r14);
804 			break;
805 		case 0x57:
806 			reg_offset = offsetof(struct pt_regs, r15);
807 			break;
808 		}
809 #else
810 		return -ENOSYS;
811 #endif
812 	} else {
813 		switch (opc1) {
814 		case 0x50:
815 			reg_offset = offsetof(struct pt_regs, ax);
816 			break;
817 		case 0x51:
818 			reg_offset = offsetof(struct pt_regs, cx);
819 			break;
820 		case 0x52:
821 			reg_offset = offsetof(struct pt_regs, dx);
822 			break;
823 		case 0x53:
824 			reg_offset = offsetof(struct pt_regs, bx);
825 			break;
826 		case 0x54:
827 			reg_offset = offsetof(struct pt_regs, sp);
828 			break;
829 		case 0x55:
830 			reg_offset = offsetof(struct pt_regs, bp);
831 			break;
832 		case 0x56:
833 			reg_offset = offsetof(struct pt_regs, si);
834 			break;
835 		case 0x57:
836 			reg_offset = offsetof(struct pt_regs, di);
837 			break;
838 		}
839 	}
840 
841 	auprobe->push.reg_offset = reg_offset;
842 	auprobe->push.ilen = insn->length;
843 	auprobe->ops = &push_xol_ops;
844 	return 0;
845 }
846 
847 /**
848  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
849  * @auprobe: the probepoint information.
850  * @mm: the probed address space.
851  * @addr: virtual address at which to install the probepoint
852  * Return 0 on success or a -ve number on error.
853  */
854 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
855 {
856 	struct insn insn;
857 	u8 fix_ip_or_call = UPROBE_FIX_IP;
858 	int ret;
859 
860 	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
861 	if (ret)
862 		return ret;
863 
864 	ret = branch_setup_xol_ops(auprobe, &insn);
865 	if (ret != -ENOSYS)
866 		return ret;
867 
868 	ret = push_setup_xol_ops(auprobe, &insn);
869 	if (ret != -ENOSYS)
870 		return ret;
871 
872 	/*
873 	 * Figure out which fixups default_post_xol_op() will need to perform,
874 	 * and annotate defparam->fixups accordingly.
875 	 */
876 	switch (OPCODE1(&insn)) {
877 	case 0x9d:		/* popf */
878 		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
879 		break;
880 	case 0xc3:		/* ret or lret -- ip is correct */
881 	case 0xcb:
882 	case 0xc2:
883 	case 0xca:
884 	case 0xea:		/* jmp absolute -- ip is correct */
885 		fix_ip_or_call = 0;
886 		break;
887 	case 0x9a:		/* call absolute - Fix return addr, not ip */
888 		fix_ip_or_call = UPROBE_FIX_CALL;
889 		break;
890 	case 0xff:
891 		switch (MODRM_REG(&insn)) {
892 		case 2: case 3:			/* call or lcall, indirect */
893 			fix_ip_or_call = UPROBE_FIX_CALL;
894 			break;
895 		case 4: case 5:			/* jmp or ljmp, indirect */
896 			fix_ip_or_call = 0;
897 			break;
898 		}
899 		fallthrough;
900 	default:
901 		riprel_analyze(auprobe, &insn);
902 	}
903 
904 	auprobe->defparam.ilen = insn.length;
905 	auprobe->defparam.fixups |= fix_ip_or_call;
906 
907 	auprobe->ops = &default_xol_ops;
908 	return 0;
909 }
910 
911 /*
912  * arch_uprobe_pre_xol - prepare to execute out of line.
913  * @auprobe: the probepoint information.
914  * @regs: reflects the saved user state of current task.
915  */
916 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
917 {
918 	struct uprobe_task *utask = current->utask;
919 
920 	if (auprobe->ops->pre_xol) {
921 		int err = auprobe->ops->pre_xol(auprobe, regs);
922 		if (err)
923 			return err;
924 	}
925 
926 	regs->ip = utask->xol_vaddr;
927 	utask->autask.saved_trap_nr = current->thread.trap_nr;
928 	current->thread.trap_nr = UPROBE_TRAP_NR;
929 
930 	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
931 	regs->flags |= X86_EFLAGS_TF;
932 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
933 		set_task_blockstep(current, false);
934 
935 	return 0;
936 }
937 
938 /*
939  * If xol insn itself traps and generates a signal(Say,
940  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
941  * instruction jumps back to its own address. It is assumed that anything
942  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
943  *
944  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
945  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
946  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
947  */
948 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
949 {
950 	if (t->thread.trap_nr != UPROBE_TRAP_NR)
951 		return true;
952 
953 	return false;
954 }
955 
956 /*
957  * Called after single-stepping. To avoid the SMP problems that can
958  * occur when we temporarily put back the original opcode to
959  * single-step, we single-stepped a copy of the instruction.
960  *
961  * This function prepares to resume execution after the single-step.
962  */
963 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
964 {
965 	struct uprobe_task *utask = current->utask;
966 	bool send_sigtrap = utask->autask.saved_tf;
967 	int err = 0;
968 
969 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
970 	current->thread.trap_nr = utask->autask.saved_trap_nr;
971 
972 	if (auprobe->ops->post_xol) {
973 		err = auprobe->ops->post_xol(auprobe, regs);
974 		if (err) {
975 			/*
976 			 * Restore ->ip for restart or post mortem analysis.
977 			 * ->post_xol() must not return -ERESTART unless this
978 			 * is really possible.
979 			 */
980 			regs->ip = utask->vaddr;
981 			if (err == -ERESTART)
982 				err = 0;
983 			send_sigtrap = false;
984 		}
985 	}
986 	/*
987 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
988 	 * so we can get an extra SIGTRAP if we do not clear TF. We need
989 	 * to examine the opcode to make it right.
990 	 */
991 	if (send_sigtrap)
992 		send_sig(SIGTRAP, current, 0);
993 
994 	if (!utask->autask.saved_tf)
995 		regs->flags &= ~X86_EFLAGS_TF;
996 
997 	return err;
998 }
999 
1000 /* callback routine for handling exceptions. */
1001 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1002 {
1003 	struct die_args *args = data;
1004 	struct pt_regs *regs = args->regs;
1005 	int ret = NOTIFY_DONE;
1006 
1007 	/* We are only interested in userspace traps */
1008 	if (regs && !user_mode(regs))
1009 		return NOTIFY_DONE;
1010 
1011 	switch (val) {
1012 	case DIE_INT3:
1013 		if (uprobe_pre_sstep_notifier(regs))
1014 			ret = NOTIFY_STOP;
1015 
1016 		break;
1017 
1018 	case DIE_DEBUG:
1019 		if (uprobe_post_sstep_notifier(regs))
1020 			ret = NOTIFY_STOP;
1021 
1022 		break;
1023 
1024 	default:
1025 		break;
1026 	}
1027 
1028 	return ret;
1029 }
1030 
1031 /*
1032  * This function gets called when XOL instruction either gets trapped or
1033  * the thread has a fatal signal. Reset the instruction pointer to its
1034  * probed address for the potential restart or for post mortem analysis.
1035  */
1036 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1037 {
1038 	struct uprobe_task *utask = current->utask;
1039 
1040 	if (auprobe->ops->abort)
1041 		auprobe->ops->abort(auprobe, regs);
1042 
1043 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1044 	regs->ip = utask->vaddr;
1045 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1046 	if (!utask->autask.saved_tf)
1047 		regs->flags &= ~X86_EFLAGS_TF;
1048 }
1049 
1050 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1051 {
1052 	if (auprobe->ops->emulate)
1053 		return auprobe->ops->emulate(auprobe, regs);
1054 	return false;
1055 }
1056 
1057 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1058 {
1059 	bool ret = __skip_sstep(auprobe, regs);
1060 	if (ret && (regs->flags & X86_EFLAGS_TF))
1061 		send_sig(SIGTRAP, current, 0);
1062 	return ret;
1063 }
1064 
1065 unsigned long
1066 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1067 {
1068 	int rasize = sizeof_long(regs), nleft;
1069 	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1070 
1071 	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1072 		return -1;
1073 
1074 	/* check whether address has been already hijacked */
1075 	if (orig_ret_vaddr == trampoline_vaddr)
1076 		return orig_ret_vaddr;
1077 
1078 	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1079 	if (likely(!nleft))
1080 		return orig_ret_vaddr;
1081 
1082 	if (nleft != rasize) {
1083 		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1084 		       current->pid, regs->sp, regs->ip);
1085 
1086 		force_sig(SIGSEGV);
1087 	}
1088 
1089 	return -1;
1090 }
1091 
1092 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1093 				struct pt_regs *regs)
1094 {
1095 	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1096 		return regs->sp < ret->stack;
1097 	else
1098 		return regs->sp <= ret->stack;
1099 }
1100