xref: /openbmc/linux/arch/x86/kernel/uprobes.c (revision 0d456bad)
1 /*
2  * User-space Probes (UProbes) for x86
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2011
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  */
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
28 
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
31 #include <asm/insn.h>
32 
33 /* Post-execution fixups. */
34 
35 /* No fixup needed */
36 #define UPROBE_FIX_NONE		0x0
37 
38 /* Adjust IP back to vicinity of actual insn */
39 #define UPROBE_FIX_IP		0x1
40 
41 /* Adjust the return address of a call insn */
42 #define UPROBE_FIX_CALL	0x2
43 
44 /* Instruction will modify TF, don't change it */
45 #define UPROBE_FIX_SETF	0x4
46 
47 #define UPROBE_FIX_RIP_AX	0x8000
48 #define UPROBE_FIX_RIP_CX	0x4000
49 
50 #define	UPROBE_TRAP_NR		UINT_MAX
51 
52 /* Adaptations for mhiramat x86 decoder v14. */
53 #define OPCODE1(insn)		((insn)->opcode.bytes[0])
54 #define OPCODE2(insn)		((insn)->opcode.bytes[1])
55 #define OPCODE3(insn)		((insn)->opcode.bytes[2])
56 #define MODRM_REG(insn)		X86_MODRM_REG(insn->modrm.value)
57 
58 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
60 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
61 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
62 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
63 	 << (row % 32))
64 
65 /*
66  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
67  * to keep gcc from statically optimizing it out, as variable_test_bit makes
68  * some versions of gcc to think only *(unsigned long*) is used.
69  */
70 static volatile u32 good_insns_32[256 / 32] = {
71 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
72 	/*      ----------------------------------------------         */
73 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
74 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
75 	W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
76 	W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
77 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
78 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
79 	W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
80 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
81 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
82 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
83 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
84 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
85 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
86 	W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
87 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
88 	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
89 	/*      ----------------------------------------------         */
90 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
91 };
92 
93 /* Using this for both 64-bit and 32-bit apps */
94 static volatile u32 good_2byte_insns[256 / 32] = {
95 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
96 	/*      ----------------------------------------------         */
97 	W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
98 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
99 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
100 	W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
101 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
102 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
103 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
104 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
105 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
106 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
107 	W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
108 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
109 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
110 	W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
111 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
112 	W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
113 	/*      ----------------------------------------------         */
114 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
115 };
116 
117 #ifdef CONFIG_X86_64
118 /* Good-instruction tables for 64-bit apps */
119 static volatile u32 good_insns_64[256 / 32] = {
120 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
121 	/*      ----------------------------------------------         */
122 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
123 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
124 	W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
125 	W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
126 	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
127 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
128 	W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
129 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
130 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
131 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
132 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
133 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
134 	W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
135 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
136 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
137 	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
138 	/*      ----------------------------------------------         */
139 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
140 };
141 #endif
142 #undef W
143 
144 /*
145  * opcodes we'll probably never support:
146  *
147  *  6c-6d, e4-e5, ec-ed - in
148  *  6e-6f, e6-e7, ee-ef - out
149  *  cc, cd - int3, int
150  *  cf - iret
151  *  d6 - illegal instruction
152  *  f1 - int1/icebp
153  *  f4 - hlt
154  *  fa, fb - cli, sti
155  *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
156  *
157  * invalid opcodes in 64-bit mode:
158  *
159  *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
160  *  63 - we support this opcode in x86_64 but not in i386.
161  *
162  * opcodes we may need to refine support for:
163  *
164  *  0f - 2-byte instructions: For many of these instructions, the validity
165  *  depends on the prefix and/or the reg field.  On such instructions, we
166  *  just consider the opcode combination valid if it corresponds to any
167  *  valid instruction.
168  *
169  *  8f - Group 1 - only reg = 0 is OK
170  *  c6-c7 - Group 11 - only reg = 0 is OK
171  *  d9-df - fpu insns with some illegal encodings
172  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
173  *  certain floating-point instructions, such as addsd.
174  *
175  *  fe - Group 4 - only reg = 0 or 1 is OK
176  *  ff - Group 5 - only reg = 0-6 is OK
177  *
178  * others -- Do we need to support these?
179  *
180  *  0f - (floating-point?) prefetch instructions
181  *  07, 17, 1f - pop es, pop ss, pop ds
182  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
183  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
184  *  67 - addr16 prefix
185  *  ce - into
186  *  f0 - lock prefix
187  */
188 
189 /*
190  * TODO:
191  * - Where necessary, examine the modrm byte and allow only valid instructions
192  * in the different Groups and fpu instructions.
193  */
194 
195 static bool is_prefix_bad(struct insn *insn)
196 {
197 	int i;
198 
199 	for (i = 0; i < insn->prefixes.nbytes; i++) {
200 		switch (insn->prefixes.bytes[i]) {
201 		case 0x26:	/* INAT_PFX_ES   */
202 		case 0x2E:	/* INAT_PFX_CS   */
203 		case 0x36:	/* INAT_PFX_DS   */
204 		case 0x3E:	/* INAT_PFX_SS   */
205 		case 0xF0:	/* INAT_PFX_LOCK */
206 			return true;
207 		}
208 	}
209 	return false;
210 }
211 
212 static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
213 {
214 	insn_init(insn, auprobe->insn, false);
215 
216 	/* Skip good instruction prefixes; reject "bad" ones. */
217 	insn_get_opcode(insn);
218 	if (is_prefix_bad(insn))
219 		return -ENOTSUPP;
220 
221 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
222 		return 0;
223 
224 	if (insn->opcode.nbytes == 2) {
225 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
226 			return 0;
227 	}
228 
229 	return -ENOTSUPP;
230 }
231 
232 /*
233  * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
234  * annotate arch_uprobe->fixups accordingly.  To start with,
235  * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
236  */
237 static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
238 {
239 	bool fix_ip = true, fix_call = false;	/* defaults */
240 	int reg;
241 
242 	insn_get_opcode(insn);	/* should be a nop */
243 
244 	switch (OPCODE1(insn)) {
245 	case 0x9d:
246 		/* popf */
247 		auprobe->fixups |= UPROBE_FIX_SETF;
248 		break;
249 	case 0xc3:		/* ret/lret */
250 	case 0xcb:
251 	case 0xc2:
252 	case 0xca:
253 		/* ip is correct */
254 		fix_ip = false;
255 		break;
256 	case 0xe8:		/* call relative - Fix return addr */
257 		fix_call = true;
258 		break;
259 	case 0x9a:		/* call absolute - Fix return addr, not ip */
260 		fix_call = true;
261 		fix_ip = false;
262 		break;
263 	case 0xff:
264 		insn_get_modrm(insn);
265 		reg = MODRM_REG(insn);
266 		if (reg == 2 || reg == 3) {
267 			/* call or lcall, indirect */
268 			/* Fix return addr; ip is correct. */
269 			fix_call = true;
270 			fix_ip = false;
271 		} else if (reg == 4 || reg == 5) {
272 			/* jmp or ljmp, indirect */
273 			/* ip is correct. */
274 			fix_ip = false;
275 		}
276 		break;
277 	case 0xea:		/* jmp absolute -- ip is correct */
278 		fix_ip = false;
279 		break;
280 	default:
281 		break;
282 	}
283 	if (fix_ip)
284 		auprobe->fixups |= UPROBE_FIX_IP;
285 	if (fix_call)
286 		auprobe->fixups |= UPROBE_FIX_CALL;
287 }
288 
289 #ifdef CONFIG_X86_64
290 /*
291  * If arch_uprobe->insn doesn't use rip-relative addressing, return
292  * immediately.  Otherwise, rewrite the instruction so that it accesses
293  * its memory operand indirectly through a scratch register.  Set
294  * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
295  * accordingly.  (The contents of the scratch register will be saved
296  * before we single-step the modified instruction, and restored
297  * afterward.)
298  *
299  * We do this because a rip-relative instruction can access only a
300  * relatively small area (+/- 2 GB from the instruction), and the XOL
301  * area typically lies beyond that area.  At least for instructions
302  * that store to memory, we can't execute the original instruction
303  * and "fix things up" later, because the misdirected store could be
304  * disastrous.
305  *
306  * Some useful facts about rip-relative instructions:
307  *
308  *  - There's always a modrm byte.
309  *  - There's never a SIB byte.
310  *  - The displacement is always 4 bytes.
311  */
312 static void
313 handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
314 {
315 	u8 *cursor;
316 	u8 reg;
317 
318 	if (mm->context.ia32_compat)
319 		return;
320 
321 	auprobe->rip_rela_target_address = 0x0;
322 	if (!insn_rip_relative(insn))
323 		return;
324 
325 	/*
326 	 * insn_rip_relative() would have decoded rex_prefix, modrm.
327 	 * Clear REX.b bit (extension of MODRM.rm field):
328 	 * we want to encode rax/rcx, not r8/r9.
329 	 */
330 	if (insn->rex_prefix.nbytes) {
331 		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
332 		*cursor &= 0xfe;	/* Clearing REX.B bit */
333 	}
334 
335 	/*
336 	 * Point cursor at the modrm byte.  The next 4 bytes are the
337 	 * displacement.  Beyond the displacement, for some instructions,
338 	 * is the immediate operand.
339 	 */
340 	cursor = auprobe->insn + insn_offset_modrm(insn);
341 	insn_get_length(insn);
342 
343 	/*
344 	 * Convert from rip-relative addressing to indirect addressing
345 	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
346 	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
347 	 */
348 	reg = MODRM_REG(insn);
349 	if (reg == 0) {
350 		/*
351 		 * The register operand (if any) is either the A register
352 		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
353 		 * REX prefix) %r8.  In any case, we know the C register
354 		 * is NOT the register operand, so we use %rcx (register
355 		 * #1) for the scratch register.
356 		 */
357 		auprobe->fixups = UPROBE_FIX_RIP_CX;
358 		/* Change modrm from 00 000 101 to 00 000 001. */
359 		*cursor = 0x1;
360 	} else {
361 		/* Use %rax (register #0) for the scratch register. */
362 		auprobe->fixups = UPROBE_FIX_RIP_AX;
363 		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
364 		*cursor = (reg << 3);
365 	}
366 
367 	/* Target address = address of next instruction + (signed) offset */
368 	auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
369 
370 	/* Displacement field is gone; slide immediate field (if any) over. */
371 	if (insn->immediate.nbytes) {
372 		cursor++;
373 		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
374 	}
375 	return;
376 }
377 
378 static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
379 {
380 	insn_init(insn, auprobe->insn, true);
381 
382 	/* Skip good instruction prefixes; reject "bad" ones. */
383 	insn_get_opcode(insn);
384 	if (is_prefix_bad(insn))
385 		return -ENOTSUPP;
386 
387 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
388 		return 0;
389 
390 	if (insn->opcode.nbytes == 2) {
391 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
392 			return 0;
393 	}
394 	return -ENOTSUPP;
395 }
396 
397 static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
398 {
399 	if (mm->context.ia32_compat)
400 		return validate_insn_32bits(auprobe, insn);
401 	return validate_insn_64bits(auprobe, insn);
402 }
403 #else /* 32-bit: */
404 static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
405 {
406 	/* No RIP-relative addressing on 32-bit */
407 }
408 
409 static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm,  struct insn *insn)
410 {
411 	return validate_insn_32bits(auprobe, insn);
412 }
413 #endif /* CONFIG_X86_64 */
414 
415 /**
416  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
417  * @mm: the probed address space.
418  * @arch_uprobe: the probepoint information.
419  * @addr: virtual address at which to install the probepoint
420  * Return 0 on success or a -ve number on error.
421  */
422 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
423 {
424 	int ret;
425 	struct insn insn;
426 
427 	auprobe->fixups = 0;
428 	ret = validate_insn_bits(auprobe, mm, &insn);
429 	if (ret != 0)
430 		return ret;
431 
432 	handle_riprel_insn(auprobe, mm, &insn);
433 	prepare_fixups(auprobe, &insn);
434 
435 	return 0;
436 }
437 
438 #ifdef CONFIG_X86_64
439 /*
440  * If we're emulating a rip-relative instruction, save the contents
441  * of the scratch register and store the target address in that register.
442  */
443 static void
444 pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
445 				struct arch_uprobe_task *autask)
446 {
447 	if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
448 		autask->saved_scratch_register = regs->ax;
449 		regs->ax = current->utask->vaddr;
450 		regs->ax += auprobe->rip_rela_target_address;
451 	} else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
452 		autask->saved_scratch_register = regs->cx;
453 		regs->cx = current->utask->vaddr;
454 		regs->cx += auprobe->rip_rela_target_address;
455 	}
456 }
457 #else
458 static void
459 pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
460 				struct arch_uprobe_task *autask)
461 {
462 	/* No RIP-relative addressing on 32-bit */
463 }
464 #endif
465 
466 /*
467  * arch_uprobe_pre_xol - prepare to execute out of line.
468  * @auprobe: the probepoint information.
469  * @regs: reflects the saved user state of current task.
470  */
471 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
472 {
473 	struct arch_uprobe_task *autask;
474 
475 	autask = &current->utask->autask;
476 	autask->saved_trap_nr = current->thread.trap_nr;
477 	current->thread.trap_nr = UPROBE_TRAP_NR;
478 	regs->ip = current->utask->xol_vaddr;
479 	pre_xol_rip_insn(auprobe, regs, autask);
480 
481 	autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF);
482 	regs->flags |= X86_EFLAGS_TF;
483 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
484 		set_task_blockstep(current, false);
485 
486 	return 0;
487 }
488 
489 /*
490  * This function is called by arch_uprobe_post_xol() to adjust the return
491  * address pushed by a call instruction executed out of line.
492  */
493 static int adjust_ret_addr(unsigned long sp, long correction)
494 {
495 	int rasize, ncopied;
496 	long ra = 0;
497 
498 	if (is_ia32_task())
499 		rasize = 4;
500 	else
501 		rasize = 8;
502 
503 	ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
504 	if (unlikely(ncopied))
505 		return -EFAULT;
506 
507 	ra += correction;
508 	ncopied = copy_to_user((void __user *)sp, &ra, rasize);
509 	if (unlikely(ncopied))
510 		return -EFAULT;
511 
512 	return 0;
513 }
514 
515 #ifdef CONFIG_X86_64
516 static bool is_riprel_insn(struct arch_uprobe *auprobe)
517 {
518 	return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
519 }
520 
521 static void
522 handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
523 {
524 	if (is_riprel_insn(auprobe)) {
525 		struct arch_uprobe_task *autask;
526 
527 		autask = &current->utask->autask;
528 		if (auprobe->fixups & UPROBE_FIX_RIP_AX)
529 			regs->ax = autask->saved_scratch_register;
530 		else
531 			regs->cx = autask->saved_scratch_register;
532 
533 		/*
534 		 * The original instruction includes a displacement, and so
535 		 * is 4 bytes longer than what we've just single-stepped.
536 		 * Fall through to handle stuff like "jmpq *...(%rip)" and
537 		 * "callq *...(%rip)".
538 		 */
539 		if (correction)
540 			*correction += 4;
541 	}
542 }
543 #else
544 static void
545 handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
546 {
547 	/* No RIP-relative addressing on 32-bit */
548 }
549 #endif
550 
551 /*
552  * If xol insn itself traps and generates a signal(Say,
553  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
554  * instruction jumps back to its own address. It is assumed that anything
555  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
556  *
557  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
558  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
559  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
560  */
561 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
562 {
563 	if (t->thread.trap_nr != UPROBE_TRAP_NR)
564 		return true;
565 
566 	return false;
567 }
568 
569 /*
570  * Called after single-stepping. To avoid the SMP problems that can
571  * occur when we temporarily put back the original opcode to
572  * single-step, we single-stepped a copy of the instruction.
573  *
574  * This function prepares to resume execution after the single-step.
575  * We have to fix things up as follows:
576  *
577  * Typically, the new ip is relative to the copied instruction.  We need
578  * to make it relative to the original instruction (FIX_IP).  Exceptions
579  * are return instructions and absolute or indirect jump or call instructions.
580  *
581  * If the single-stepped instruction was a call, the return address that
582  * is atop the stack is the address following the copied instruction.  We
583  * need to make it the address following the original instruction (FIX_CALL).
584  *
585  * If the original instruction was a rip-relative instruction such as
586  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
587  * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
588  * We need to restore the contents of the scratch register and adjust
589  * the ip, keeping in mind that the instruction we executed is 4 bytes
590  * shorter than the original instruction (since we squeezed out the offset
591  * field).  (FIX_RIP_AX or FIX_RIP_CX)
592  */
593 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
594 {
595 	struct uprobe_task *utask;
596 	long correction;
597 	int result = 0;
598 
599 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
600 
601 	utask = current->utask;
602 	current->thread.trap_nr = utask->autask.saved_trap_nr;
603 	correction = (long)(utask->vaddr - utask->xol_vaddr);
604 	handle_riprel_post_xol(auprobe, regs, &correction);
605 	if (auprobe->fixups & UPROBE_FIX_IP)
606 		regs->ip += correction;
607 
608 	if (auprobe->fixups & UPROBE_FIX_CALL)
609 		result = adjust_ret_addr(regs->sp, correction);
610 
611 	/*
612 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
613 	 * so we can get an extra SIGTRAP if we do not clear TF. We need
614 	 * to examine the opcode to make it right.
615 	 */
616 	if (utask->autask.saved_tf)
617 		send_sig(SIGTRAP, current, 0);
618 	else if (!(auprobe->fixups & UPROBE_FIX_SETF))
619 		regs->flags &= ~X86_EFLAGS_TF;
620 
621 	return result;
622 }
623 
624 /* callback routine for handling exceptions. */
625 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
626 {
627 	struct die_args *args = data;
628 	struct pt_regs *regs = args->regs;
629 	int ret = NOTIFY_DONE;
630 
631 	/* We are only interested in userspace traps */
632 	if (regs && !user_mode_vm(regs))
633 		return NOTIFY_DONE;
634 
635 	switch (val) {
636 	case DIE_INT3:
637 		if (uprobe_pre_sstep_notifier(regs))
638 			ret = NOTIFY_STOP;
639 
640 		break;
641 
642 	case DIE_DEBUG:
643 		if (uprobe_post_sstep_notifier(regs))
644 			ret = NOTIFY_STOP;
645 
646 	default:
647 		break;
648 	}
649 
650 	return ret;
651 }
652 
653 /*
654  * This function gets called when XOL instruction either gets trapped or
655  * the thread has a fatal signal, so reset the instruction pointer to its
656  * probed address.
657  */
658 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
659 {
660 	struct uprobe_task *utask = current->utask;
661 
662 	current->thread.trap_nr = utask->autask.saved_trap_nr;
663 	handle_riprel_post_xol(auprobe, regs, NULL);
664 	instruction_pointer_set(regs, utask->vaddr);
665 
666 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
667 	if (!utask->autask.saved_tf)
668 		regs->flags &= ~X86_EFLAGS_TF;
669 }
670 
671 /*
672  * Skip these instructions as per the currently known x86 ISA.
673  * rep=0x66*; nop=0x90
674  */
675 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
676 {
677 	int i;
678 
679 	for (i = 0; i < MAX_UINSN_BYTES; i++) {
680 		if (auprobe->insn[i] == 0x66)
681 			continue;
682 
683 		if (auprobe->insn[i] == 0x90)
684 			return true;
685 
686 		break;
687 	}
688 	return false;
689 }
690 
691 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
692 {
693 	bool ret = __skip_sstep(auprobe, regs);
694 	if (ret && (regs->flags & X86_EFLAGS_TF))
695 		send_sig(SIGTRAP, current, 0);
696 	return ret;
697 }
698