xref: /openbmc/linux/arch/x86/kernel/unwind_frame.c (revision 8730046c)
1 #include <linux/sched.h>
2 #include <asm/ptrace.h>
3 #include <asm/bitops.h>
4 #include <asm/stacktrace.h>
5 #include <asm/unwind.h>
6 
7 #define FRAME_HEADER_SIZE (sizeof(long) * 2)
8 
9 /*
10  * This disables KASAN checking when reading a value from another task's stack,
11  * since the other task could be running on another CPU and could have poisoned
12  * the stack in the meantime.
13  */
14 #define READ_ONCE_TASK_STACK(task, x)			\
15 ({							\
16 	unsigned long val;				\
17 	if (task == current)				\
18 		val = READ_ONCE(x);			\
19 	else						\
20 		val = READ_ONCE_NOCHECK(x);		\
21 	val;						\
22 })
23 
24 static void unwind_dump(struct unwind_state *state, unsigned long *sp)
25 {
26 	static bool dumped_before = false;
27 	bool prev_zero, zero = false;
28 	unsigned long word;
29 
30 	if (dumped_before)
31 		return;
32 
33 	dumped_before = true;
34 
35 	printk_deferred("unwind stack type:%d next_sp:%p mask:%lx graph_idx:%d\n",
36 			state->stack_info.type, state->stack_info.next_sp,
37 			state->stack_mask, state->graph_idx);
38 
39 	for (sp = state->orig_sp; sp < state->stack_info.end; sp++) {
40 		word = READ_ONCE_NOCHECK(*sp);
41 
42 		prev_zero = zero;
43 		zero = word == 0;
44 
45 		if (zero) {
46 			if (!prev_zero)
47 				printk_deferred("%p: %016x ...\n", sp, 0);
48 			continue;
49 		}
50 
51 		printk_deferred("%p: %016lx (%pB)\n", sp, word, (void *)word);
52 	}
53 }
54 
55 unsigned long unwind_get_return_address(struct unwind_state *state)
56 {
57 	unsigned long addr;
58 	unsigned long *addr_p = unwind_get_return_address_ptr(state);
59 
60 	if (unwind_done(state))
61 		return 0;
62 
63 	if (state->regs && user_mode(state->regs))
64 		return 0;
65 
66 	addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
67 	addr = ftrace_graph_ret_addr(state->task, &state->graph_idx, addr,
68 				     addr_p);
69 
70 	return __kernel_text_address(addr) ? addr : 0;
71 }
72 EXPORT_SYMBOL_GPL(unwind_get_return_address);
73 
74 static size_t regs_size(struct pt_regs *regs)
75 {
76 	/* x86_32 regs from kernel mode are two words shorter: */
77 	if (IS_ENABLED(CONFIG_X86_32) && !user_mode(regs))
78 		return sizeof(*regs) - 2*sizeof(long);
79 
80 	return sizeof(*regs);
81 }
82 
83 static bool is_last_task_frame(struct unwind_state *state)
84 {
85 	unsigned long bp = (unsigned long)state->bp;
86 	unsigned long regs = (unsigned long)task_pt_regs(state->task);
87 
88 	/*
89 	 * We have to check for the last task frame at two different locations
90 	 * because gcc can occasionally decide to realign the stack pointer and
91 	 * change the offset of the stack frame by a word in the prologue of a
92 	 * function called by head/entry code.
93 	 */
94 	return bp == regs - FRAME_HEADER_SIZE ||
95 	       bp == regs - FRAME_HEADER_SIZE - sizeof(long);
96 }
97 
98 /*
99  * This determines if the frame pointer actually contains an encoded pointer to
100  * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
101  */
102 static struct pt_regs *decode_frame_pointer(unsigned long *bp)
103 {
104 	unsigned long regs = (unsigned long)bp;
105 
106 	if (!(regs & 0x1))
107 		return NULL;
108 
109 	return (struct pt_regs *)(regs & ~0x1);
110 }
111 
112 static bool update_stack_state(struct unwind_state *state, void *addr,
113 			       size_t len)
114 {
115 	struct stack_info *info = &state->stack_info;
116 	enum stack_type orig_type = info->type;
117 
118 	/*
119 	 * If addr isn't on the current stack, switch to the next one.
120 	 *
121 	 * We may have to traverse multiple stacks to deal with the possibility
122 	 * that 'info->next_sp' could point to an empty stack and 'addr' could
123 	 * be on a subsequent stack.
124 	 */
125 	while (!on_stack(info, addr, len))
126 		if (get_stack_info(info->next_sp, state->task, info,
127 				   &state->stack_mask))
128 			return false;
129 
130 	if (!state->orig_sp || info->type != orig_type)
131 		state->orig_sp = addr;
132 
133 	return true;
134 }
135 
136 bool unwind_next_frame(struct unwind_state *state)
137 {
138 	struct pt_regs *regs;
139 	unsigned long *next_bp, *next_frame;
140 	size_t next_len;
141 	enum stack_type prev_type = state->stack_info.type;
142 
143 	if (unwind_done(state))
144 		return false;
145 
146 	/* have we reached the end? */
147 	if (state->regs && user_mode(state->regs))
148 		goto the_end;
149 
150 	if (is_last_task_frame(state)) {
151 		regs = task_pt_regs(state->task);
152 
153 		/*
154 		 * kthreads (other than the boot CPU's idle thread) have some
155 		 * partial regs at the end of their stack which were placed
156 		 * there by copy_thread_tls().  But the regs don't have any
157 		 * useful information, so we can skip them.
158 		 *
159 		 * This user_mode() check is slightly broader than a PF_KTHREAD
160 		 * check because it also catches the awkward situation where a
161 		 * newly forked kthread transitions into a user task by calling
162 		 * do_execve(), which eventually clears PF_KTHREAD.
163 		 */
164 		if (!user_mode(regs))
165 			goto the_end;
166 
167 		/*
168 		 * We're almost at the end, but not quite: there's still the
169 		 * syscall regs frame.  Entry code doesn't encode the regs
170 		 * pointer for syscalls, so we have to set it manually.
171 		 */
172 		state->regs = regs;
173 		state->bp = NULL;
174 		return true;
175 	}
176 
177 	/* get the next frame pointer */
178 	if (state->regs)
179 		next_bp = (unsigned long *)state->regs->bp;
180 	else
181 		next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task,*state->bp);
182 
183 	/* is the next frame pointer an encoded pointer to pt_regs? */
184 	regs = decode_frame_pointer(next_bp);
185 	if (regs) {
186 		next_frame = (unsigned long *)regs;
187 		next_len = sizeof(*regs);
188 	} else {
189 		next_frame = next_bp;
190 		next_len = FRAME_HEADER_SIZE;
191 	}
192 
193 	/* make sure the next frame's data is accessible */
194 	if (!update_stack_state(state, next_frame, next_len)) {
195 		/*
196 		 * Don't warn on bad regs->bp.  An interrupt in entry code
197 		 * might cause a false positive warning.
198 		 */
199 		if (state->regs)
200 			goto the_end;
201 
202 		goto bad_address;
203 	}
204 
205 	/* Make sure it only unwinds up and doesn't overlap the last frame: */
206 	if (state->stack_info.type == prev_type) {
207 		if (state->regs && (void *)next_frame < (void *)state->regs + regs_size(state->regs))
208 			goto bad_address;
209 
210 		if (state->bp && (void *)next_frame < (void *)state->bp + FRAME_HEADER_SIZE)
211 			goto bad_address;
212 	}
213 
214 	/* move to the next frame */
215 	if (regs) {
216 		state->regs = regs;
217 		state->bp = NULL;
218 	} else {
219 		state->bp = next_bp;
220 		state->regs = NULL;
221 	}
222 
223 	return true;
224 
225 bad_address:
226 	/*
227 	 * When unwinding a non-current task, the task might actually be
228 	 * running on another CPU, in which case it could be modifying its
229 	 * stack while we're reading it.  This is generally not a problem and
230 	 * can be ignored as long as the caller understands that unwinding
231 	 * another task will not always succeed.
232 	 */
233 	if (state->task != current)
234 		goto the_end;
235 
236 	if (state->regs) {
237 		printk_deferred_once(KERN_WARNING
238 			"WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
239 			state->regs, state->task->comm,
240 			state->task->pid, next_frame);
241 		unwind_dump(state, (unsigned long *)state->regs);
242 	} else {
243 		printk_deferred_once(KERN_WARNING
244 			"WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
245 			state->bp, state->task->comm,
246 			state->task->pid, next_frame);
247 		unwind_dump(state, state->bp);
248 	}
249 the_end:
250 	state->stack_info.type = STACK_TYPE_UNKNOWN;
251 	return false;
252 }
253 EXPORT_SYMBOL_GPL(unwind_next_frame);
254 
255 void __unwind_start(struct unwind_state *state, struct task_struct *task,
256 		    struct pt_regs *regs, unsigned long *first_frame)
257 {
258 	unsigned long *bp, *frame;
259 	size_t len;
260 
261 	memset(state, 0, sizeof(*state));
262 	state->task = task;
263 
264 	/* don't even attempt to start from user mode regs */
265 	if (regs && user_mode(regs)) {
266 		state->stack_info.type = STACK_TYPE_UNKNOWN;
267 		return;
268 	}
269 
270 	/* set up the starting stack frame */
271 	bp = get_frame_pointer(task, regs);
272 	regs = decode_frame_pointer(bp);
273 	if (regs) {
274 		state->regs = regs;
275 		frame = (unsigned long *)regs;
276 		len = sizeof(*regs);
277 	} else {
278 		state->bp = bp;
279 		frame = bp;
280 		len = FRAME_HEADER_SIZE;
281 	}
282 
283 	/* initialize stack info and make sure the frame data is accessible */
284 	get_stack_info(frame, state->task, &state->stack_info,
285 		       &state->stack_mask);
286 	update_stack_state(state, frame, len);
287 
288 	/*
289 	 * The caller can provide the address of the first frame directly
290 	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
291 	 * to start unwinding at.  Skip ahead until we reach it.
292 	 */
293 	while (!unwind_done(state) &&
294 	       (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
295 			state->bp < first_frame))
296 		unwind_next_frame(state);
297 }
298 EXPORT_SYMBOL_GPL(__unwind_start);
299