1 /* 2 * check TSC synchronization. 3 * 4 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar 5 * 6 * We check whether all boot CPUs have their TSC's synchronized, 7 * print a warning if not and turn off the TSC clock-source. 8 * 9 * The warp-check is point-to-point between two CPUs, the CPU 10 * initiating the bootup is the 'source CPU', the freshly booting 11 * CPU is the 'target CPU'. 12 * 13 * Only two CPUs may participate - they can enter in any order. 14 * ( The serial nature of the boot logic and the CPU hotplug lock 15 * protects against more than 2 CPUs entering this code. ) 16 */ 17 #include <linux/spinlock.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/smp.h> 21 #include <linux/nmi.h> 22 #include <asm/tsc.h> 23 24 /* 25 * Entry/exit counters that make sure that both CPUs 26 * run the measurement code at once: 27 */ 28 static __cpuinitdata atomic_t start_count; 29 static __cpuinitdata atomic_t stop_count; 30 31 /* 32 * We use a raw spinlock in this exceptional case, because 33 * we want to have the fastest, inlined, non-debug version 34 * of a critical section, to be able to prove TSC time-warps: 35 */ 36 static __cpuinitdata raw_spinlock_t sync_lock = __RAW_SPIN_LOCK_UNLOCKED; 37 38 static __cpuinitdata cycles_t last_tsc; 39 static __cpuinitdata cycles_t max_warp; 40 static __cpuinitdata int nr_warps; 41 42 /* 43 * TSC-warp measurement loop running on both CPUs: 44 */ 45 static __cpuinit void check_tsc_warp(void) 46 { 47 cycles_t start, now, prev, end; 48 int i; 49 50 rdtsc_barrier(); 51 start = get_cycles(); 52 rdtsc_barrier(); 53 /* 54 * The measurement runs for 20 msecs: 55 */ 56 end = start + tsc_khz * 20ULL; 57 now = start; 58 59 for (i = 0; ; i++) { 60 /* 61 * We take the global lock, measure TSC, save the 62 * previous TSC that was measured (possibly on 63 * another CPU) and update the previous TSC timestamp. 64 */ 65 __raw_spin_lock(&sync_lock); 66 prev = last_tsc; 67 rdtsc_barrier(); 68 now = get_cycles(); 69 rdtsc_barrier(); 70 last_tsc = now; 71 __raw_spin_unlock(&sync_lock); 72 73 /* 74 * Be nice every now and then (and also check whether 75 * measurement is done [we also insert a 10 million 76 * loops safety exit, so we dont lock up in case the 77 * TSC readout is totally broken]): 78 */ 79 if (unlikely(!(i & 7))) { 80 if (now > end || i > 10000000) 81 break; 82 cpu_relax(); 83 touch_nmi_watchdog(); 84 } 85 /* 86 * Outside the critical section we can now see whether 87 * we saw a time-warp of the TSC going backwards: 88 */ 89 if (unlikely(prev > now)) { 90 __raw_spin_lock(&sync_lock); 91 max_warp = max(max_warp, prev - now); 92 nr_warps++; 93 __raw_spin_unlock(&sync_lock); 94 } 95 } 96 WARN(!(now-start), 97 "Warning: zero tsc calibration delta: %Ld [max: %Ld]\n", 98 now-start, end-start); 99 } 100 101 /* 102 * Source CPU calls into this - it waits for the freshly booted 103 * target CPU to arrive and then starts the measurement: 104 */ 105 void __cpuinit check_tsc_sync_source(int cpu) 106 { 107 int cpus = 2; 108 109 /* 110 * No need to check if we already know that the TSC is not 111 * synchronized: 112 */ 113 if (unsynchronized_tsc()) 114 return; 115 116 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 117 pr_info("Skipping synchronization checks as TSC is reliable.\n"); 118 return; 119 } 120 121 pr_info("checking TSC synchronization [CPU#%d -> CPU#%d]:", 122 smp_processor_id(), cpu); 123 124 /* 125 * Reset it - in case this is a second bootup: 126 */ 127 atomic_set(&stop_count, 0); 128 129 /* 130 * Wait for the target to arrive: 131 */ 132 while (atomic_read(&start_count) != cpus-1) 133 cpu_relax(); 134 /* 135 * Trigger the target to continue into the measurement too: 136 */ 137 atomic_inc(&start_count); 138 139 check_tsc_warp(); 140 141 while (atomic_read(&stop_count) != cpus-1) 142 cpu_relax(); 143 144 if (nr_warps) { 145 printk("\n"); 146 pr_warning("Measured %Ld cycles TSC warp between CPUs, " 147 "turning off TSC clock.\n", max_warp); 148 mark_tsc_unstable("check_tsc_sync_source failed"); 149 } else { 150 printk(" passed.\n"); 151 } 152 153 /* 154 * Reset it - just in case we boot another CPU later: 155 */ 156 atomic_set(&start_count, 0); 157 nr_warps = 0; 158 max_warp = 0; 159 last_tsc = 0; 160 161 /* 162 * Let the target continue with the bootup: 163 */ 164 atomic_inc(&stop_count); 165 } 166 167 /* 168 * Freshly booted CPUs call into this: 169 */ 170 void __cpuinit check_tsc_sync_target(void) 171 { 172 int cpus = 2; 173 174 if (unsynchronized_tsc() || boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 175 return; 176 177 /* 178 * Register this CPU's participation and wait for the 179 * source CPU to start the measurement: 180 */ 181 atomic_inc(&start_count); 182 while (atomic_read(&start_count) != cpus) 183 cpu_relax(); 184 185 check_tsc_warp(); 186 187 /* 188 * Ok, we are done: 189 */ 190 atomic_inc(&stop_count); 191 192 /* 193 * Wait for the source CPU to print stuff: 194 */ 195 while (atomic_read(&stop_count) != cpus) 196 cpu_relax(); 197 } 198