1 /* 2 * check TSC synchronization. 3 * 4 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar 5 * 6 * We check whether all boot CPUs have their TSC's synchronized, 7 * print a warning if not and turn off the TSC clock-source. 8 * 9 * The warp-check is point-to-point between two CPUs, the CPU 10 * initiating the bootup is the 'source CPU', the freshly booting 11 * CPU is the 'target CPU'. 12 * 13 * Only two CPUs may participate - they can enter in any order. 14 * ( The serial nature of the boot logic and the CPU hotplug lock 15 * protects against more than 2 CPUs entering this code. ) 16 */ 17 #include <linux/topology.h> 18 #include <linux/spinlock.h> 19 #include <linux/kernel.h> 20 #include <linux/smp.h> 21 #include <linux/nmi.h> 22 #include <asm/tsc.h> 23 24 struct tsc_adjust { 25 s64 bootval; 26 s64 adjusted; 27 unsigned long nextcheck; 28 bool warned; 29 }; 30 31 static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust); 32 33 void tsc_verify_tsc_adjust(bool resume) 34 { 35 struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust); 36 s64 curval; 37 38 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) 39 return; 40 41 /* Rate limit the MSR check */ 42 if (!resume && time_before(jiffies, adj->nextcheck)) 43 return; 44 45 adj->nextcheck = jiffies + HZ; 46 47 rdmsrl(MSR_IA32_TSC_ADJUST, curval); 48 if (adj->adjusted == curval) 49 return; 50 51 /* Restore the original value */ 52 wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted); 53 54 if (!adj->warned || resume) { 55 pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n", 56 smp_processor_id(), adj->adjusted, curval); 57 adj->warned = true; 58 } 59 } 60 61 static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval, 62 unsigned int cpu, bool bootcpu) 63 { 64 /* 65 * First online CPU in a package stores the boot value in the 66 * adjustment value. This value might change later via the sync 67 * mechanism. If that fails we still can yell about boot values not 68 * being consistent. 69 * 70 * On the boot cpu we just force set the ADJUST value to 0 if it's 71 * non zero. We don't do that on non boot cpus because physical 72 * hotplug should have set the ADJUST register to a value > 0 so 73 * the TSC is in sync with the already running cpus. 74 */ 75 if (bootcpu && bootval != 0) { 76 pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n", cpu, 77 bootval); 78 wrmsrl(MSR_IA32_TSC_ADJUST, 0); 79 bootval = 0; 80 } 81 cur->adjusted = bootval; 82 } 83 84 #ifndef CONFIG_SMP 85 bool __init tsc_store_and_check_tsc_adjust(bool bootcpu) 86 { 87 struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust); 88 s64 bootval; 89 90 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) 91 return false; 92 93 rdmsrl(MSR_IA32_TSC_ADJUST, bootval); 94 cur->bootval = bootval; 95 cur->nextcheck = jiffies + HZ; 96 tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu); 97 return false; 98 } 99 100 #else /* !CONFIG_SMP */ 101 102 /* 103 * Store and check the TSC ADJUST MSR if available 104 */ 105 bool tsc_store_and_check_tsc_adjust(bool bootcpu) 106 { 107 struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust); 108 unsigned int refcpu, cpu = smp_processor_id(); 109 struct cpumask *mask; 110 s64 bootval; 111 112 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) 113 return false; 114 115 rdmsrl(MSR_IA32_TSC_ADJUST, bootval); 116 cur->bootval = bootval; 117 cur->nextcheck = jiffies + HZ; 118 cur->warned = false; 119 120 /* 121 * Check whether this CPU is the first in a package to come up. In 122 * this case do not check the boot value against another package 123 * because the new package might have been physically hotplugged, 124 * where TSC_ADJUST is expected to be different. When called on the 125 * boot CPU topology_core_cpumask() might not be available yet. 126 */ 127 mask = topology_core_cpumask(cpu); 128 refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids; 129 130 if (refcpu >= nr_cpu_ids) { 131 tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), 132 bootcpu); 133 return false; 134 } 135 136 ref = per_cpu_ptr(&tsc_adjust, refcpu); 137 /* 138 * Compare the boot value and complain if it differs in the 139 * package. 140 */ 141 if (bootval != ref->bootval) { 142 pr_warn(FW_BUG "TSC ADJUST differs: Reference CPU%u: %lld CPU%u: %lld\n", 143 refcpu, ref->bootval, cpu, bootval); 144 } 145 /* 146 * The TSC_ADJUST values in a package must be the same. If the boot 147 * value on this newly upcoming CPU differs from the adjustment 148 * value of the already online CPU in this package, set it to that 149 * adjusted value. 150 */ 151 if (bootval != ref->adjusted) { 152 pr_warn("TSC ADJUST synchronize: Reference CPU%u: %lld CPU%u: %lld\n", 153 refcpu, ref->adjusted, cpu, bootval); 154 cur->adjusted = ref->adjusted; 155 wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted); 156 } 157 /* 158 * We have the TSCs forced to be in sync on this package. Skip sync 159 * test: 160 */ 161 return true; 162 } 163 164 /* 165 * Entry/exit counters that make sure that both CPUs 166 * run the measurement code at once: 167 */ 168 static atomic_t start_count; 169 static atomic_t stop_count; 170 static atomic_t skip_test; 171 static atomic_t test_runs; 172 173 /* 174 * We use a raw spinlock in this exceptional case, because 175 * we want to have the fastest, inlined, non-debug version 176 * of a critical section, to be able to prove TSC time-warps: 177 */ 178 static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED; 179 180 static cycles_t last_tsc; 181 static cycles_t max_warp; 182 static int nr_warps; 183 static int random_warps; 184 185 /* 186 * TSC-warp measurement loop running on both CPUs. This is not called 187 * if there is no TSC. 188 */ 189 static cycles_t check_tsc_warp(unsigned int timeout) 190 { 191 cycles_t start, now, prev, end, cur_max_warp = 0; 192 int i, cur_warps = 0; 193 194 start = rdtsc_ordered(); 195 /* 196 * The measurement runs for 'timeout' msecs: 197 */ 198 end = start + (cycles_t) tsc_khz * timeout; 199 now = start; 200 201 for (i = 0; ; i++) { 202 /* 203 * We take the global lock, measure TSC, save the 204 * previous TSC that was measured (possibly on 205 * another CPU) and update the previous TSC timestamp. 206 */ 207 arch_spin_lock(&sync_lock); 208 prev = last_tsc; 209 now = rdtsc_ordered(); 210 last_tsc = now; 211 arch_spin_unlock(&sync_lock); 212 213 /* 214 * Be nice every now and then (and also check whether 215 * measurement is done [we also insert a 10 million 216 * loops safety exit, so we dont lock up in case the 217 * TSC readout is totally broken]): 218 */ 219 if (unlikely(!(i & 7))) { 220 if (now > end || i > 10000000) 221 break; 222 cpu_relax(); 223 touch_nmi_watchdog(); 224 } 225 /* 226 * Outside the critical section we can now see whether 227 * we saw a time-warp of the TSC going backwards: 228 */ 229 if (unlikely(prev > now)) { 230 arch_spin_lock(&sync_lock); 231 max_warp = max(max_warp, prev - now); 232 cur_max_warp = max_warp; 233 /* 234 * Check whether this bounces back and forth. Only 235 * one CPU should observe time going backwards. 236 */ 237 if (cur_warps != nr_warps) 238 random_warps++; 239 nr_warps++; 240 cur_warps = nr_warps; 241 arch_spin_unlock(&sync_lock); 242 } 243 } 244 WARN(!(now-start), 245 "Warning: zero tsc calibration delta: %Ld [max: %Ld]\n", 246 now-start, end-start); 247 return cur_max_warp; 248 } 249 250 /* 251 * If the target CPU coming online doesn't have any of its core-siblings 252 * online, a timeout of 20msec will be used for the TSC-warp measurement 253 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some 254 * information about this socket already (and this information grows as we 255 * have more and more logical-siblings in that socket). 256 * 257 * Ideally we should be able to skip the TSC sync check on the other 258 * core-siblings, if the first logical CPU in a socket passed the sync test. 259 * But as the TSC is per-logical CPU and can potentially be modified wrongly 260 * by the bios, TSC sync test for smaller duration should be able 261 * to catch such errors. Also this will catch the condition where all the 262 * cores in the socket doesn't get reset at the same time. 263 */ 264 static inline unsigned int loop_timeout(int cpu) 265 { 266 return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20; 267 } 268 269 /* 270 * Source CPU calls into this - it waits for the freshly booted 271 * target CPU to arrive and then starts the measurement: 272 */ 273 void check_tsc_sync_source(int cpu) 274 { 275 int cpus = 2; 276 277 /* 278 * No need to check if we already know that the TSC is not 279 * synchronized or if we have no TSC. 280 */ 281 if (unsynchronized_tsc()) 282 return; 283 284 /* 285 * Set the maximum number of test runs to 286 * 1 if the CPU does not provide the TSC_ADJUST MSR 287 * 3 if the MSR is available, so the target can try to adjust 288 */ 289 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) 290 atomic_set(&test_runs, 1); 291 else 292 atomic_set(&test_runs, 3); 293 retry: 294 /* 295 * Wait for the target to start or to skip the test: 296 */ 297 while (atomic_read(&start_count) != cpus - 1) { 298 if (atomic_read(&skip_test) > 0) { 299 atomic_set(&skip_test, 0); 300 return; 301 } 302 cpu_relax(); 303 } 304 305 /* 306 * Trigger the target to continue into the measurement too: 307 */ 308 atomic_inc(&start_count); 309 310 check_tsc_warp(loop_timeout(cpu)); 311 312 while (atomic_read(&stop_count) != cpus-1) 313 cpu_relax(); 314 315 /* 316 * If the test was successful set the number of runs to zero and 317 * stop. If not, decrement the number of runs an check if we can 318 * retry. In case of random warps no retry is attempted. 319 */ 320 if (!nr_warps) { 321 atomic_set(&test_runs, 0); 322 323 pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n", 324 smp_processor_id(), cpu); 325 326 } else if (atomic_dec_and_test(&test_runs) || random_warps) { 327 /* Force it to 0 if random warps brought us here */ 328 atomic_set(&test_runs, 0); 329 330 pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n", 331 smp_processor_id(), cpu); 332 pr_warning("Measured %Ld cycles TSC warp between CPUs, " 333 "turning off TSC clock.\n", max_warp); 334 if (random_warps) 335 pr_warning("TSC warped randomly between CPUs\n"); 336 mark_tsc_unstable("check_tsc_sync_source failed"); 337 } 338 339 /* 340 * Reset it - just in case we boot another CPU later: 341 */ 342 atomic_set(&start_count, 0); 343 random_warps = 0; 344 nr_warps = 0; 345 max_warp = 0; 346 last_tsc = 0; 347 348 /* 349 * Let the target continue with the bootup: 350 */ 351 atomic_inc(&stop_count); 352 353 /* 354 * Retry, if there is a chance to do so. 355 */ 356 if (atomic_read(&test_runs) > 0) 357 goto retry; 358 } 359 360 /* 361 * Freshly booted CPUs call into this: 362 */ 363 void check_tsc_sync_target(void) 364 { 365 struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust); 366 unsigned int cpu = smp_processor_id(); 367 cycles_t cur_max_warp, gbl_max_warp; 368 int cpus = 2; 369 370 /* Also aborts if there is no TSC. */ 371 if (unsynchronized_tsc()) 372 return; 373 374 /* 375 * Store, verify and sanitize the TSC adjust register. If 376 * successful skip the test. 377 * 378 * The test is also skipped when the TSC is marked reliable. This 379 * is true for SoCs which have no fallback clocksource. On these 380 * SoCs the TSC is frequency synchronized, but still the TSC ADJUST 381 * register might have been wreckaged by the BIOS.. 382 */ 383 if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable) { 384 atomic_inc(&skip_test); 385 return; 386 } 387 388 retry: 389 /* 390 * Register this CPU's participation and wait for the 391 * source CPU to start the measurement: 392 */ 393 atomic_inc(&start_count); 394 while (atomic_read(&start_count) != cpus) 395 cpu_relax(); 396 397 cur_max_warp = check_tsc_warp(loop_timeout(cpu)); 398 399 /* 400 * Store the maximum observed warp value for a potential retry: 401 */ 402 gbl_max_warp = max_warp; 403 404 /* 405 * Ok, we are done: 406 */ 407 atomic_inc(&stop_count); 408 409 /* 410 * Wait for the source CPU to print stuff: 411 */ 412 while (atomic_read(&stop_count) != cpus) 413 cpu_relax(); 414 415 /* 416 * Reset it for the next sync test: 417 */ 418 atomic_set(&stop_count, 0); 419 420 /* 421 * Check the number of remaining test runs. If not zero, the test 422 * failed and a retry with adjusted TSC is possible. If zero the 423 * test was either successful or failed terminally. 424 */ 425 if (!atomic_read(&test_runs)) 426 return; 427 428 /* 429 * If the warp value of this CPU is 0, then the other CPU 430 * observed time going backwards so this TSC was ahead and 431 * needs to move backwards. 432 */ 433 if (!cur_max_warp) 434 cur_max_warp = -gbl_max_warp; 435 436 /* 437 * Add the result to the previous adjustment value. 438 * 439 * The adjustement value is slightly off by the overhead of the 440 * sync mechanism (observed values are ~200 TSC cycles), but this 441 * really depends on CPU, node distance and frequency. So 442 * compensating for this is hard to get right. Experiments show 443 * that the warp is not longer detectable when the observed warp 444 * value is used. In the worst case the adjustment needs to go 445 * through a 3rd run for fine tuning. 446 */ 447 cur->adjusted += cur_max_warp; 448 449 pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n", 450 cpu, cur_max_warp, cur->adjusted); 451 452 wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted); 453 goto retry; 454 455 } 456 457 #endif /* CONFIG_SMP */ 458