xref: /openbmc/linux/arch/x86/kernel/tsc_msr.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TSC frequency enumeration via MSR
4  *
5  * Copyright (C) 2013, 2018 Intel Corporation
6  * Author: Bin Gao <bin.gao@intel.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/thread_info.h>
11 
12 #include <asm/apic.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/intel-family.h>
15 #include <asm/msr.h>
16 #include <asm/param.h>
17 #include <asm/tsc.h>
18 
19 #define MAX_NUM_FREQS	16 /* 4 bits to select the frequency */
20 
21 /*
22  * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
23  * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
24  * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
25  * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
26  * unclear if the root PLL outputs are used directly by the CPU clock PLL or
27  * if there is another PLL in between.
28  * This does not matter though, we can model the chain of PLLs as a single PLL
29  * with a quotient equal to the quotients of all PLLs in the chain multiplied.
30  * So we can create a simplified model of the CPU clock setup using a reference
31  * clock of 100 MHz plus a quotient which gets us as close to the frequency
32  * from the SDM as possible.
33  * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
34  * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
35  */
36 #define TSC_REFERENCE_KHZ 100000
37 
38 struct muldiv {
39 	u32 multiplier;
40 	u32 divider;
41 };
42 
43 /*
44  * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
45  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
46  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
47  * so we need manually differentiate SoC families. This is what the
48  * field use_msr_plat does.
49  */
50 struct freq_desc {
51 	bool use_msr_plat;
52 	struct muldiv muldiv[MAX_NUM_FREQS];
53 	/*
54 	 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
55 	 * that case the muldiv array is empty and the freqs array is used.
56 	 */
57 	u32 freqs[MAX_NUM_FREQS];
58 	u32 mask;
59 };
60 
61 /*
62  * Penwell and Clovertrail use spread spectrum clock,
63  * so the freq number is not exactly the same as reported
64  * by MSR based on SDM.
65  */
66 static const struct freq_desc freq_desc_pnw = {
67 	.use_msr_plat = false,
68 	.freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
69 	.mask = 0x07,
70 };
71 
72 static const struct freq_desc freq_desc_clv = {
73 	.use_msr_plat = false,
74 	.freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
75 	.mask = 0x07,
76 };
77 
78 /*
79  * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
80  *  000:   100 *  5 /  6  =  83.3333 MHz
81  *  001:   100 *  1 /  1  = 100.0000 MHz
82  *  010:   100 *  4 /  3  = 133.3333 MHz
83  *  011:   100 *  7 /  6  = 116.6667 MHz
84  *  100:   100 *  4 /  5  =  80.0000 MHz
85  */
86 static const struct freq_desc freq_desc_byt = {
87 	.use_msr_plat = true,
88 	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
89 		    { 4, 5 } },
90 	.mask = 0x07,
91 };
92 
93 /*
94  * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
95  * 0000:   100 *  5 /  6  =  83.3333 MHz
96  * 0001:   100 *  1 /  1  = 100.0000 MHz
97  * 0010:   100 *  4 /  3  = 133.3333 MHz
98  * 0011:   100 *  7 /  6  = 116.6667 MHz
99  * 0100:   100 *  4 /  5  =  80.0000 MHz
100  * 0101:   100 * 14 / 15  =  93.3333 MHz
101  * 0110:   100 *  9 / 10  =  90.0000 MHz
102  * 0111:   100 *  8 /  9  =  88.8889 MHz
103  * 1000:   100 *  7 /  8  =  87.5000 MHz
104  */
105 static const struct freq_desc freq_desc_cht = {
106 	.use_msr_plat = true,
107 	.muldiv = { { 5, 6 }, {  1,  1 }, { 4,  3 }, { 7, 6 },
108 		    { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
109 		    { 7, 8 } },
110 	.mask = 0x0f,
111 };
112 
113 /*
114  * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
115  * 0001:   100 *  1 /  1  = 100.0000 MHz
116  * 0010:   100 *  4 /  3  = 133.3333 MHz
117  */
118 static const struct freq_desc freq_desc_tng = {
119 	.use_msr_plat = true,
120 	.muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
121 	.mask = 0x07,
122 };
123 
124 /*
125  * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
126  * 0000:   100 *  5 /  6  =  83.3333 MHz
127  * 0001:   100 *  1 /  1  = 100.0000 MHz
128  * 0010:   100 *  4 /  3  = 133.3333 MHz
129  * 0011:   100 *  1 /  1  = 100.0000 MHz
130  */
131 static const struct freq_desc freq_desc_ann = {
132 	.use_msr_plat = true,
133 	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
134 	.mask = 0x0f,
135 };
136 
137 /*
138  * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
139  * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
140  * so all the frequency entries are 78000.
141  */
142 static const struct freq_desc freq_desc_lgm = {
143 	.use_msr_plat = true,
144 	.freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
145 		   78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
146 	.mask = 0x0f,
147 };
148 
149 static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
150 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_MID,	&freq_desc_pnw),
151 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_TABLET,&freq_desc_clv),
152 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&freq_desc_byt),
153 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&freq_desc_tng),
154 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&freq_desc_cht),
155 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&freq_desc_ann),
156 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_NP,	&freq_desc_lgm),
157 	{}
158 };
159 
160 /*
161  * MSR-based CPU/TSC frequency discovery for certain CPUs.
162  *
163  * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
164  * Return processor base frequency in KHz, or 0 on failure.
165  */
166 unsigned long cpu_khz_from_msr(void)
167 {
168 	u32 lo, hi, ratio, freq, tscref;
169 	const struct freq_desc *freq_desc;
170 	const struct x86_cpu_id *id;
171 	const struct muldiv *md;
172 	unsigned long res;
173 	int index;
174 
175 	id = x86_match_cpu(tsc_msr_cpu_ids);
176 	if (!id)
177 		return 0;
178 
179 	freq_desc = (struct freq_desc *)id->driver_data;
180 	if (freq_desc->use_msr_plat) {
181 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
182 		ratio = (lo >> 8) & 0xff;
183 	} else {
184 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
185 		ratio = (hi >> 8) & 0x1f;
186 	}
187 
188 	/* Get FSB FREQ ID */
189 	rdmsr(MSR_FSB_FREQ, lo, hi);
190 	index = lo & freq_desc->mask;
191 	md = &freq_desc->muldiv[index];
192 
193 	/*
194 	 * Note this also catches cases where the index points to an unpopulated
195 	 * part of muldiv, in that case the else will set freq and res to 0.
196 	 */
197 	if (md->divider) {
198 		tscref = TSC_REFERENCE_KHZ * md->multiplier;
199 		freq = DIV_ROUND_CLOSEST(tscref, md->divider);
200 		/*
201 		 * Multiplying by ratio before the division has better
202 		 * accuracy than just calculating freq * ratio.
203 		 */
204 		res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
205 	} else {
206 		freq = freq_desc->freqs[index];
207 		res = freq * ratio;
208 	}
209 
210 	if (freq == 0)
211 		pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
212 
213 #ifdef CONFIG_X86_LOCAL_APIC
214 	lapic_timer_period = (freq * 1000) / HZ;
215 #endif
216 
217 	/*
218 	 * TSC frequency determined by MSR is always considered "known"
219 	 * because it is reported by HW.
220 	 * Another fact is that on MSR capable platforms, PIT/HPET is
221 	 * generally not available so calibration won't work at all.
222 	 */
223 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
224 
225 	/*
226 	 * Unfortunately there is no way for hardware to tell whether the
227 	 * TSC is reliable.  We were told by silicon design team that TSC
228 	 * on Atom SoCs are always "reliable". TSC is also the only
229 	 * reliable clocksource on these SoCs (HPET is either not present
230 	 * or not functional) so mark TSC reliable which removes the
231 	 * requirement for a watchdog clocksource.
232 	 */
233 	setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
234 
235 	return res;
236 }
237