xref: /openbmc/linux/arch/x86/kernel/tsc_msr.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TSC frequency enumeration via MSR
4  *
5  * Copyright (C) 2013, 2018 Intel Corporation
6  * Author: Bin Gao <bin.gao@intel.com>
7  */
8 
9 #include <linux/kernel.h>
10 
11 #include <asm/apic.h>
12 #include <asm/cpu_device_id.h>
13 #include <asm/intel-family.h>
14 #include <asm/msr.h>
15 #include <asm/param.h>
16 #include <asm/tsc.h>
17 
18 #define MAX_NUM_FREQS	16 /* 4 bits to select the frequency */
19 
20 /*
21  * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
22  * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
23  * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
24  * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
25  * unclear if the root PLL outputs are used directly by the CPU clock PLL or
26  * if there is another PLL in between.
27  * This does not matter though, we can model the chain of PLLs as a single PLL
28  * with a quotient equal to the quotients of all PLLs in the chain multiplied.
29  * So we can create a simplified model of the CPU clock setup using a reference
30  * clock of 100 MHz plus a quotient which gets us as close to the frequency
31  * from the SDM as possible.
32  * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
33  * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
34  */
35 #define TSC_REFERENCE_KHZ 100000
36 
37 struct muldiv {
38 	u32 multiplier;
39 	u32 divider;
40 };
41 
42 /*
43  * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
44  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
45  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
46  * so we need manually differentiate SoC families. This is what the
47  * field use_msr_plat does.
48  */
49 struct freq_desc {
50 	bool use_msr_plat;
51 	struct muldiv muldiv[MAX_NUM_FREQS];
52 	/*
53 	 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
54 	 * that case the muldiv array is empty and the freqs array is used.
55 	 */
56 	u32 freqs[MAX_NUM_FREQS];
57 	u32 mask;
58 };
59 
60 /*
61  * Penwell and Clovertrail use spread spectrum clock,
62  * so the freq number is not exactly the same as reported
63  * by MSR based on SDM.
64  */
65 static const struct freq_desc freq_desc_pnw = {
66 	.use_msr_plat = false,
67 	.freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
68 	.mask = 0x07,
69 };
70 
71 static const struct freq_desc freq_desc_clv = {
72 	.use_msr_plat = false,
73 	.freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
74 	.mask = 0x07,
75 };
76 
77 /*
78  * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
79  *  000:   100 *  5 /  6  =  83.3333 MHz
80  *  001:   100 *  1 /  1  = 100.0000 MHz
81  *  010:   100 *  4 /  3  = 133.3333 MHz
82  *  011:   100 *  7 /  6  = 116.6667 MHz
83  *  100:   100 *  4 /  5  =  80.0000 MHz
84  */
85 static const struct freq_desc freq_desc_byt = {
86 	.use_msr_plat = true,
87 	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
88 		    { 4, 5 } },
89 	.mask = 0x07,
90 };
91 
92 /*
93  * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
94  * 0000:   100 *  5 /  6  =  83.3333 MHz
95  * 0001:   100 *  1 /  1  = 100.0000 MHz
96  * 0010:   100 *  4 /  3  = 133.3333 MHz
97  * 0011:   100 *  7 /  6  = 116.6667 MHz
98  * 0100:   100 *  4 /  5  =  80.0000 MHz
99  * 0101:   100 * 14 / 15  =  93.3333 MHz
100  * 0110:   100 *  9 / 10  =  90.0000 MHz
101  * 0111:   100 *  8 /  9  =  88.8889 MHz
102  * 1000:   100 *  7 /  8  =  87.5000 MHz
103  */
104 static const struct freq_desc freq_desc_cht = {
105 	.use_msr_plat = true,
106 	.muldiv = { { 5, 6 }, {  1,  1 }, { 4,  3 }, { 7, 6 },
107 		    { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
108 		    { 7, 8 } },
109 	.mask = 0x0f,
110 };
111 
112 /*
113  * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
114  * 0001:   100 *  1 /  1  = 100.0000 MHz
115  * 0010:   100 *  4 /  3  = 133.3333 MHz
116  */
117 static const struct freq_desc freq_desc_tng = {
118 	.use_msr_plat = true,
119 	.muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
120 	.mask = 0x07,
121 };
122 
123 /*
124  * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
125  * 0000:   100 *  5 /  6  =  83.3333 MHz
126  * 0001:   100 *  1 /  1  = 100.0000 MHz
127  * 0010:   100 *  4 /  3  = 133.3333 MHz
128  * 0011:   100 *  1 /  1  = 100.0000 MHz
129  */
130 static const struct freq_desc freq_desc_ann = {
131 	.use_msr_plat = true,
132 	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
133 	.mask = 0x0f,
134 };
135 
136 /* 24 MHz crystal? : 24 * 13 / 4 = 78 MHz */
137 static const struct freq_desc freq_desc_lgm = {
138 	.use_msr_plat = true,
139 	.freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
140 	.mask = 0x0f,
141 };
142 
143 static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
144 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_MID,	&freq_desc_pnw),
145 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_TABLET,&freq_desc_clv),
146 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&freq_desc_byt),
147 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&freq_desc_tng),
148 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&freq_desc_cht),
149 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&freq_desc_ann),
150 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_NP,	&freq_desc_lgm),
151 	{}
152 };
153 
154 /*
155  * MSR-based CPU/TSC frequency discovery for certain CPUs.
156  *
157  * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
158  * Return processor base frequency in KHz, or 0 on failure.
159  */
160 unsigned long cpu_khz_from_msr(void)
161 {
162 	u32 lo, hi, ratio, freq, tscref;
163 	const struct freq_desc *freq_desc;
164 	const struct x86_cpu_id *id;
165 	const struct muldiv *md;
166 	unsigned long res;
167 	int index;
168 
169 	id = x86_match_cpu(tsc_msr_cpu_ids);
170 	if (!id)
171 		return 0;
172 
173 	freq_desc = (struct freq_desc *)id->driver_data;
174 	if (freq_desc->use_msr_plat) {
175 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
176 		ratio = (lo >> 8) & 0xff;
177 	} else {
178 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
179 		ratio = (hi >> 8) & 0x1f;
180 	}
181 
182 	/* Get FSB FREQ ID */
183 	rdmsr(MSR_FSB_FREQ, lo, hi);
184 	index = lo & freq_desc->mask;
185 	md = &freq_desc->muldiv[index];
186 
187 	/*
188 	 * Note this also catches cases where the index points to an unpopulated
189 	 * part of muldiv, in that case the else will set freq and res to 0.
190 	 */
191 	if (md->divider) {
192 		tscref = TSC_REFERENCE_KHZ * md->multiplier;
193 		freq = DIV_ROUND_CLOSEST(tscref, md->divider);
194 		/*
195 		 * Multiplying by ratio before the division has better
196 		 * accuracy than just calculating freq * ratio.
197 		 */
198 		res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
199 	} else {
200 		freq = freq_desc->freqs[index];
201 		res = freq * ratio;
202 	}
203 
204 	if (freq == 0)
205 		pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
206 
207 #ifdef CONFIG_X86_LOCAL_APIC
208 	lapic_timer_period = (freq * 1000) / HZ;
209 #endif
210 
211 	/*
212 	 * TSC frequency determined by MSR is always considered "known"
213 	 * because it is reported by HW.
214 	 * Another fact is that on MSR capable platforms, PIT/HPET is
215 	 * generally not available so calibration won't work at all.
216 	 */
217 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
218 
219 	/*
220 	 * Unfortunately there is no way for hardware to tell whether the
221 	 * TSC is reliable.  We were told by silicon design team that TSC
222 	 * on Atom SoCs are always "reliable". TSC is also the only
223 	 * reliable clocksource on these SoCs (HPET is either not present
224 	 * or not functional) so mark TSC reliable which removes the
225 	 * requirement for a watchdog clocksource.
226 	 */
227 	setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
228 
229 	return res;
230 }
231