1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 #include <linux/init.h> 7 #include <linux/export.h> 8 #include <linux/timer.h> 9 #include <linux/acpi_pmtmr.h> 10 #include <linux/cpufreq.h> 11 #include <linux/delay.h> 12 #include <linux/clocksource.h> 13 #include <linux/percpu.h> 14 #include <linux/timex.h> 15 #include <linux/static_key.h> 16 17 #include <asm/hpet.h> 18 #include <asm/timer.h> 19 #include <asm/vgtod.h> 20 #include <asm/time.h> 21 #include <asm/delay.h> 22 #include <asm/hypervisor.h> 23 #include <asm/nmi.h> 24 #include <asm/x86_init.h> 25 #include <asm/geode.h> 26 #include <asm/apic.h> 27 #include <asm/intel-family.h> 28 #include <asm/i8259.h> 29 #include <asm/uv/uv.h> 30 31 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 32 EXPORT_SYMBOL(cpu_khz); 33 34 unsigned int __read_mostly tsc_khz; 35 EXPORT_SYMBOL(tsc_khz); 36 37 #define KHZ 1000 38 39 /* 40 * TSC can be unstable due to cpufreq or due to unsynced TSCs 41 */ 42 static int __read_mostly tsc_unstable; 43 44 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 45 46 int tsc_clocksource_reliable; 47 48 static u32 art_to_tsc_numerator; 49 static u32 art_to_tsc_denominator; 50 static u64 art_to_tsc_offset; 51 struct clocksource *art_related_clocksource; 52 53 struct cyc2ns { 54 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ 55 seqcount_t seq; /* 32 + 4 = 36 */ 56 57 }; /* fits one cacheline */ 58 59 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 60 61 void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data) 62 { 63 int seq, idx; 64 65 preempt_disable_notrace(); 66 67 do { 68 seq = this_cpu_read(cyc2ns.seq.sequence); 69 idx = seq & 1; 70 71 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); 72 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); 73 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); 74 75 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence))); 76 } 77 78 void __always_inline cyc2ns_read_end(void) 79 { 80 preempt_enable_notrace(); 81 } 82 83 /* 84 * Accelerators for sched_clock() 85 * convert from cycles(64bits) => nanoseconds (64bits) 86 * basic equation: 87 * ns = cycles / (freq / ns_per_sec) 88 * ns = cycles * (ns_per_sec / freq) 89 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 90 * ns = cycles * (10^6 / cpu_khz) 91 * 92 * Then we use scaling math (suggested by george@mvista.com) to get: 93 * ns = cycles * (10^6 * SC / cpu_khz) / SC 94 * ns = cycles * cyc2ns_scale / SC 95 * 96 * And since SC is a constant power of two, we can convert the div 97 * into a shift. The larger SC is, the more accurate the conversion, but 98 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 99 * (64-bit result) can be used. 100 * 101 * We can use khz divisor instead of mhz to keep a better precision. 102 * (mathieu.desnoyers@polymtl.ca) 103 * 104 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 105 */ 106 107 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) 108 { 109 struct cyc2ns_data data; 110 unsigned long long ns; 111 112 cyc2ns_read_begin(&data); 113 114 ns = data.cyc2ns_offset; 115 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); 116 117 cyc2ns_read_end(); 118 119 return ns; 120 } 121 122 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 123 { 124 unsigned long long ns_now; 125 struct cyc2ns_data data; 126 struct cyc2ns *c2n; 127 128 ns_now = cycles_2_ns(tsc_now); 129 130 /* 131 * Compute a new multiplier as per the above comment and ensure our 132 * time function is continuous; see the comment near struct 133 * cyc2ns_data. 134 */ 135 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, 136 NSEC_PER_MSEC, 0); 137 138 /* 139 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 140 * not expected to be greater than 31 due to the original published 141 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 142 * value) - refer perf_event_mmap_page documentation in perf_event.h. 143 */ 144 if (data.cyc2ns_shift == 32) { 145 data.cyc2ns_shift = 31; 146 data.cyc2ns_mul >>= 1; 147 } 148 149 data.cyc2ns_offset = ns_now - 150 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); 151 152 c2n = per_cpu_ptr(&cyc2ns, cpu); 153 154 raw_write_seqcount_latch(&c2n->seq); 155 c2n->data[0] = data; 156 raw_write_seqcount_latch(&c2n->seq); 157 c2n->data[1] = data; 158 } 159 160 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 161 { 162 unsigned long flags; 163 164 local_irq_save(flags); 165 sched_clock_idle_sleep_event(); 166 167 if (khz) 168 __set_cyc2ns_scale(khz, cpu, tsc_now); 169 170 sched_clock_idle_wakeup_event(); 171 local_irq_restore(flags); 172 } 173 174 /* 175 * Initialize cyc2ns for boot cpu 176 */ 177 static void __init cyc2ns_init_boot_cpu(void) 178 { 179 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 180 181 seqcount_init(&c2n->seq); 182 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); 183 } 184 185 /* 186 * Secondary CPUs do not run through tsc_init(), so set up 187 * all the scale factors for all CPUs, assuming the same 188 * speed as the bootup CPU. 189 */ 190 static void __init cyc2ns_init_secondary_cpus(void) 191 { 192 unsigned int cpu, this_cpu = smp_processor_id(); 193 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 194 struct cyc2ns_data *data = c2n->data; 195 196 for_each_possible_cpu(cpu) { 197 if (cpu != this_cpu) { 198 seqcount_init(&c2n->seq); 199 c2n = per_cpu_ptr(&cyc2ns, cpu); 200 c2n->data[0] = data[0]; 201 c2n->data[1] = data[1]; 202 } 203 } 204 } 205 206 /* 207 * Scheduler clock - returns current time in nanosec units. 208 */ 209 u64 native_sched_clock(void) 210 { 211 if (static_branch_likely(&__use_tsc)) { 212 u64 tsc_now = rdtsc(); 213 214 /* return the value in ns */ 215 return cycles_2_ns(tsc_now); 216 } 217 218 /* 219 * Fall back to jiffies if there's no TSC available: 220 * ( But note that we still use it if the TSC is marked 221 * unstable. We do this because unlike Time Of Day, 222 * the scheduler clock tolerates small errors and it's 223 * very important for it to be as fast as the platform 224 * can achieve it. ) 225 */ 226 227 /* No locking but a rare wrong value is not a big deal: */ 228 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 229 } 230 231 /* 232 * Generate a sched_clock if you already have a TSC value. 233 */ 234 u64 native_sched_clock_from_tsc(u64 tsc) 235 { 236 return cycles_2_ns(tsc); 237 } 238 239 /* We need to define a real function for sched_clock, to override the 240 weak default version */ 241 #ifdef CONFIG_PARAVIRT 242 unsigned long long sched_clock(void) 243 { 244 return paravirt_sched_clock(); 245 } 246 247 bool using_native_sched_clock(void) 248 { 249 return pv_ops.time.sched_clock == native_sched_clock; 250 } 251 #else 252 unsigned long long 253 sched_clock(void) __attribute__((alias("native_sched_clock"))); 254 255 bool using_native_sched_clock(void) { return true; } 256 #endif 257 258 int check_tsc_unstable(void) 259 { 260 return tsc_unstable; 261 } 262 EXPORT_SYMBOL_GPL(check_tsc_unstable); 263 264 #ifdef CONFIG_X86_TSC 265 int __init notsc_setup(char *str) 266 { 267 mark_tsc_unstable("boot parameter notsc"); 268 return 1; 269 } 270 #else 271 /* 272 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 273 * in cpu/common.c 274 */ 275 int __init notsc_setup(char *str) 276 { 277 setup_clear_cpu_cap(X86_FEATURE_TSC); 278 return 1; 279 } 280 #endif 281 282 __setup("notsc", notsc_setup); 283 284 static int no_sched_irq_time; 285 static int no_tsc_watchdog; 286 287 static int __init tsc_setup(char *str) 288 { 289 if (!strcmp(str, "reliable")) 290 tsc_clocksource_reliable = 1; 291 if (!strncmp(str, "noirqtime", 9)) 292 no_sched_irq_time = 1; 293 if (!strcmp(str, "unstable")) 294 mark_tsc_unstable("boot parameter"); 295 if (!strcmp(str, "nowatchdog")) 296 no_tsc_watchdog = 1; 297 return 1; 298 } 299 300 __setup("tsc=", tsc_setup); 301 302 #define MAX_RETRIES 5 303 #define TSC_DEFAULT_THRESHOLD 0x20000 304 305 /* 306 * Read TSC and the reference counters. Take care of any disturbances 307 */ 308 static u64 tsc_read_refs(u64 *p, int hpet) 309 { 310 u64 t1, t2; 311 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; 312 int i; 313 314 for (i = 0; i < MAX_RETRIES; i++) { 315 t1 = get_cycles(); 316 if (hpet) 317 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 318 else 319 *p = acpi_pm_read_early(); 320 t2 = get_cycles(); 321 if ((t2 - t1) < thresh) 322 return t2; 323 } 324 return ULLONG_MAX; 325 } 326 327 /* 328 * Calculate the TSC frequency from HPET reference 329 */ 330 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 331 { 332 u64 tmp; 333 334 if (hpet2 < hpet1) 335 hpet2 += 0x100000000ULL; 336 hpet2 -= hpet1; 337 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 338 do_div(tmp, 1000000); 339 deltatsc = div64_u64(deltatsc, tmp); 340 341 return (unsigned long) deltatsc; 342 } 343 344 /* 345 * Calculate the TSC frequency from PMTimer reference 346 */ 347 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 348 { 349 u64 tmp; 350 351 if (!pm1 && !pm2) 352 return ULONG_MAX; 353 354 if (pm2 < pm1) 355 pm2 += (u64)ACPI_PM_OVRRUN; 356 pm2 -= pm1; 357 tmp = pm2 * 1000000000LL; 358 do_div(tmp, PMTMR_TICKS_PER_SEC); 359 do_div(deltatsc, tmp); 360 361 return (unsigned long) deltatsc; 362 } 363 364 #define CAL_MS 10 365 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 366 #define CAL_PIT_LOOPS 1000 367 368 #define CAL2_MS 50 369 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 370 #define CAL2_PIT_LOOPS 5000 371 372 373 /* 374 * Try to calibrate the TSC against the Programmable 375 * Interrupt Timer and return the frequency of the TSC 376 * in kHz. 377 * 378 * Return ULONG_MAX on failure to calibrate. 379 */ 380 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 381 { 382 u64 tsc, t1, t2, delta; 383 unsigned long tscmin, tscmax; 384 int pitcnt; 385 386 if (!has_legacy_pic()) { 387 /* 388 * Relies on tsc_early_delay_calibrate() to have given us semi 389 * usable udelay(), wait for the same 50ms we would have with 390 * the PIT loop below. 391 */ 392 udelay(10 * USEC_PER_MSEC); 393 udelay(10 * USEC_PER_MSEC); 394 udelay(10 * USEC_PER_MSEC); 395 udelay(10 * USEC_PER_MSEC); 396 udelay(10 * USEC_PER_MSEC); 397 return ULONG_MAX; 398 } 399 400 /* Set the Gate high, disable speaker */ 401 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 402 403 /* 404 * Setup CTC channel 2* for mode 0, (interrupt on terminal 405 * count mode), binary count. Set the latch register to 50ms 406 * (LSB then MSB) to begin countdown. 407 */ 408 outb(0xb0, 0x43); 409 outb(latch & 0xff, 0x42); 410 outb(latch >> 8, 0x42); 411 412 tsc = t1 = t2 = get_cycles(); 413 414 pitcnt = 0; 415 tscmax = 0; 416 tscmin = ULONG_MAX; 417 while ((inb(0x61) & 0x20) == 0) { 418 t2 = get_cycles(); 419 delta = t2 - tsc; 420 tsc = t2; 421 if ((unsigned long) delta < tscmin) 422 tscmin = (unsigned int) delta; 423 if ((unsigned long) delta > tscmax) 424 tscmax = (unsigned int) delta; 425 pitcnt++; 426 } 427 428 /* 429 * Sanity checks: 430 * 431 * If we were not able to read the PIT more than loopmin 432 * times, then we have been hit by a massive SMI 433 * 434 * If the maximum is 10 times larger than the minimum, 435 * then we got hit by an SMI as well. 436 */ 437 if (pitcnt < loopmin || tscmax > 10 * tscmin) 438 return ULONG_MAX; 439 440 /* Calculate the PIT value */ 441 delta = t2 - t1; 442 do_div(delta, ms); 443 return delta; 444 } 445 446 /* 447 * This reads the current MSB of the PIT counter, and 448 * checks if we are running on sufficiently fast and 449 * non-virtualized hardware. 450 * 451 * Our expectations are: 452 * 453 * - the PIT is running at roughly 1.19MHz 454 * 455 * - each IO is going to take about 1us on real hardware, 456 * but we allow it to be much faster (by a factor of 10) or 457 * _slightly_ slower (ie we allow up to a 2us read+counter 458 * update - anything else implies a unacceptably slow CPU 459 * or PIT for the fast calibration to work. 460 * 461 * - with 256 PIT ticks to read the value, we have 214us to 462 * see the same MSB (and overhead like doing a single TSC 463 * read per MSB value etc). 464 * 465 * - We're doing 2 reads per loop (LSB, MSB), and we expect 466 * them each to take about a microsecond on real hardware. 467 * So we expect a count value of around 100. But we'll be 468 * generous, and accept anything over 50. 469 * 470 * - if the PIT is stuck, and we see *many* more reads, we 471 * return early (and the next caller of pit_expect_msb() 472 * then consider it a failure when they don't see the 473 * next expected value). 474 * 475 * These expectations mean that we know that we have seen the 476 * transition from one expected value to another with a fairly 477 * high accuracy, and we didn't miss any events. We can thus 478 * use the TSC value at the transitions to calculate a pretty 479 * good value for the TSC frequencty. 480 */ 481 static inline int pit_verify_msb(unsigned char val) 482 { 483 /* Ignore LSB */ 484 inb(0x42); 485 return inb(0x42) == val; 486 } 487 488 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 489 { 490 int count; 491 u64 tsc = 0, prev_tsc = 0; 492 493 for (count = 0; count < 50000; count++) { 494 if (!pit_verify_msb(val)) 495 break; 496 prev_tsc = tsc; 497 tsc = get_cycles(); 498 } 499 *deltap = get_cycles() - prev_tsc; 500 *tscp = tsc; 501 502 /* 503 * We require _some_ success, but the quality control 504 * will be based on the error terms on the TSC values. 505 */ 506 return count > 5; 507 } 508 509 /* 510 * How many MSB values do we want to see? We aim for 511 * a maximum error rate of 500ppm (in practice the 512 * real error is much smaller), but refuse to spend 513 * more than 50ms on it. 514 */ 515 #define MAX_QUICK_PIT_MS 50 516 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 517 518 static unsigned long quick_pit_calibrate(void) 519 { 520 int i; 521 u64 tsc, delta; 522 unsigned long d1, d2; 523 524 if (!has_legacy_pic()) 525 return 0; 526 527 /* Set the Gate high, disable speaker */ 528 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 529 530 /* 531 * Counter 2, mode 0 (one-shot), binary count 532 * 533 * NOTE! Mode 2 decrements by two (and then the 534 * output is flipped each time, giving the same 535 * final output frequency as a decrement-by-one), 536 * so mode 0 is much better when looking at the 537 * individual counts. 538 */ 539 outb(0xb0, 0x43); 540 541 /* Start at 0xffff */ 542 outb(0xff, 0x42); 543 outb(0xff, 0x42); 544 545 /* 546 * The PIT starts counting at the next edge, so we 547 * need to delay for a microsecond. The easiest way 548 * to do that is to just read back the 16-bit counter 549 * once from the PIT. 550 */ 551 pit_verify_msb(0); 552 553 if (pit_expect_msb(0xff, &tsc, &d1)) { 554 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 555 if (!pit_expect_msb(0xff-i, &delta, &d2)) 556 break; 557 558 delta -= tsc; 559 560 /* 561 * Extrapolate the error and fail fast if the error will 562 * never be below 500 ppm. 563 */ 564 if (i == 1 && 565 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 566 return 0; 567 568 /* 569 * Iterate until the error is less than 500 ppm 570 */ 571 if (d1+d2 >= delta >> 11) 572 continue; 573 574 /* 575 * Check the PIT one more time to verify that 576 * all TSC reads were stable wrt the PIT. 577 * 578 * This also guarantees serialization of the 579 * last cycle read ('d2') in pit_expect_msb. 580 */ 581 if (!pit_verify_msb(0xfe - i)) 582 break; 583 goto success; 584 } 585 } 586 pr_info("Fast TSC calibration failed\n"); 587 return 0; 588 589 success: 590 /* 591 * Ok, if we get here, then we've seen the 592 * MSB of the PIT decrement 'i' times, and the 593 * error has shrunk to less than 500 ppm. 594 * 595 * As a result, we can depend on there not being 596 * any odd delays anywhere, and the TSC reads are 597 * reliable (within the error). 598 * 599 * kHz = ticks / time-in-seconds / 1000; 600 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 601 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 602 */ 603 delta *= PIT_TICK_RATE; 604 do_div(delta, i*256*1000); 605 pr_info("Fast TSC calibration using PIT\n"); 606 return delta; 607 } 608 609 /** 610 * native_calibrate_tsc 611 * Determine TSC frequency via CPUID, else return 0. 612 */ 613 unsigned long native_calibrate_tsc(void) 614 { 615 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 616 unsigned int crystal_khz; 617 618 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 619 return 0; 620 621 if (boot_cpu_data.cpuid_level < 0x15) 622 return 0; 623 624 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 625 626 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 627 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 628 629 if (ebx_numerator == 0 || eax_denominator == 0) 630 return 0; 631 632 crystal_khz = ecx_hz / 1000; 633 634 if (crystal_khz == 0) { 635 switch (boot_cpu_data.x86_model) { 636 case INTEL_FAM6_SKYLAKE_MOBILE: 637 case INTEL_FAM6_SKYLAKE_DESKTOP: 638 case INTEL_FAM6_KABYLAKE_MOBILE: 639 case INTEL_FAM6_KABYLAKE_DESKTOP: 640 crystal_khz = 24000; /* 24.0 MHz */ 641 break; 642 case INTEL_FAM6_ATOM_GOLDMONT_X: 643 crystal_khz = 25000; /* 25.0 MHz */ 644 break; 645 case INTEL_FAM6_ATOM_GOLDMONT: 646 crystal_khz = 19200; /* 19.2 MHz */ 647 break; 648 } 649 } 650 651 if (crystal_khz == 0) 652 return 0; 653 /* 654 * TSC frequency determined by CPUID is a "hardware reported" 655 * frequency and is the most accurate one so far we have. This 656 * is considered a known frequency. 657 */ 658 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 659 660 /* 661 * For Atom SoCs TSC is the only reliable clocksource. 662 * Mark TSC reliable so no watchdog on it. 663 */ 664 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) 665 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 666 667 return crystal_khz * ebx_numerator / eax_denominator; 668 } 669 670 static unsigned long cpu_khz_from_cpuid(void) 671 { 672 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 673 674 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 675 return 0; 676 677 if (boot_cpu_data.cpuid_level < 0x16) 678 return 0; 679 680 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 681 682 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 683 684 return eax_base_mhz * 1000; 685 } 686 687 /* 688 * calibrate cpu using pit, hpet, and ptimer methods. They are available 689 * later in boot after acpi is initialized. 690 */ 691 static unsigned long pit_hpet_ptimer_calibrate_cpu(void) 692 { 693 u64 tsc1, tsc2, delta, ref1, ref2; 694 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 695 unsigned long flags, latch, ms; 696 int hpet = is_hpet_enabled(), i, loopmin; 697 698 /* 699 * Run 5 calibration loops to get the lowest frequency value 700 * (the best estimate). We use two different calibration modes 701 * here: 702 * 703 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 704 * load a timeout of 50ms. We read the time right after we 705 * started the timer and wait until the PIT count down reaches 706 * zero. In each wait loop iteration we read the TSC and check 707 * the delta to the previous read. We keep track of the min 708 * and max values of that delta. The delta is mostly defined 709 * by the IO time of the PIT access, so we can detect when 710 * any disturbance happened between the two reads. If the 711 * maximum time is significantly larger than the minimum time, 712 * then we discard the result and have another try. 713 * 714 * 2) Reference counter. If available we use the HPET or the 715 * PMTIMER as a reference to check the sanity of that value. 716 * We use separate TSC readouts and check inside of the 717 * reference read for any possible disturbance. We dicard 718 * disturbed values here as well. We do that around the PIT 719 * calibration delay loop as we have to wait for a certain 720 * amount of time anyway. 721 */ 722 723 /* Preset PIT loop values */ 724 latch = CAL_LATCH; 725 ms = CAL_MS; 726 loopmin = CAL_PIT_LOOPS; 727 728 for (i = 0; i < 3; i++) { 729 unsigned long tsc_pit_khz; 730 731 /* 732 * Read the start value and the reference count of 733 * hpet/pmtimer when available. Then do the PIT 734 * calibration, which will take at least 50ms, and 735 * read the end value. 736 */ 737 local_irq_save(flags); 738 tsc1 = tsc_read_refs(&ref1, hpet); 739 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 740 tsc2 = tsc_read_refs(&ref2, hpet); 741 local_irq_restore(flags); 742 743 /* Pick the lowest PIT TSC calibration so far */ 744 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 745 746 /* hpet or pmtimer available ? */ 747 if (ref1 == ref2) 748 continue; 749 750 /* Check, whether the sampling was disturbed */ 751 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 752 continue; 753 754 tsc2 = (tsc2 - tsc1) * 1000000LL; 755 if (hpet) 756 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 757 else 758 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 759 760 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 761 762 /* Check the reference deviation */ 763 delta = ((u64) tsc_pit_min) * 100; 764 do_div(delta, tsc_ref_min); 765 766 /* 767 * If both calibration results are inside a 10% window 768 * then we can be sure, that the calibration 769 * succeeded. We break out of the loop right away. We 770 * use the reference value, as it is more precise. 771 */ 772 if (delta >= 90 && delta <= 110) { 773 pr_info("PIT calibration matches %s. %d loops\n", 774 hpet ? "HPET" : "PMTIMER", i + 1); 775 return tsc_ref_min; 776 } 777 778 /* 779 * Check whether PIT failed more than once. This 780 * happens in virtualized environments. We need to 781 * give the virtual PC a slightly longer timeframe for 782 * the HPET/PMTIMER to make the result precise. 783 */ 784 if (i == 1 && tsc_pit_min == ULONG_MAX) { 785 latch = CAL2_LATCH; 786 ms = CAL2_MS; 787 loopmin = CAL2_PIT_LOOPS; 788 } 789 } 790 791 /* 792 * Now check the results. 793 */ 794 if (tsc_pit_min == ULONG_MAX) { 795 /* PIT gave no useful value */ 796 pr_warn("Unable to calibrate against PIT\n"); 797 798 /* We don't have an alternative source, disable TSC */ 799 if (!hpet && !ref1 && !ref2) { 800 pr_notice("No reference (HPET/PMTIMER) available\n"); 801 return 0; 802 } 803 804 /* The alternative source failed as well, disable TSC */ 805 if (tsc_ref_min == ULONG_MAX) { 806 pr_warn("HPET/PMTIMER calibration failed\n"); 807 return 0; 808 } 809 810 /* Use the alternative source */ 811 pr_info("using %s reference calibration\n", 812 hpet ? "HPET" : "PMTIMER"); 813 814 return tsc_ref_min; 815 } 816 817 /* We don't have an alternative source, use the PIT calibration value */ 818 if (!hpet && !ref1 && !ref2) { 819 pr_info("Using PIT calibration value\n"); 820 return tsc_pit_min; 821 } 822 823 /* The alternative source failed, use the PIT calibration value */ 824 if (tsc_ref_min == ULONG_MAX) { 825 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 826 return tsc_pit_min; 827 } 828 829 /* 830 * The calibration values differ too much. In doubt, we use 831 * the PIT value as we know that there are PMTIMERs around 832 * running at double speed. At least we let the user know: 833 */ 834 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 835 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 836 pr_info("Using PIT calibration value\n"); 837 return tsc_pit_min; 838 } 839 840 /** 841 * native_calibrate_cpu_early - can calibrate the cpu early in boot 842 */ 843 unsigned long native_calibrate_cpu_early(void) 844 { 845 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); 846 847 if (!fast_calibrate) 848 fast_calibrate = cpu_khz_from_msr(); 849 if (!fast_calibrate) { 850 local_irq_save(flags); 851 fast_calibrate = quick_pit_calibrate(); 852 local_irq_restore(flags); 853 } 854 return fast_calibrate; 855 } 856 857 858 /** 859 * native_calibrate_cpu - calibrate the cpu 860 */ 861 static unsigned long native_calibrate_cpu(void) 862 { 863 unsigned long tsc_freq = native_calibrate_cpu_early(); 864 865 if (!tsc_freq) 866 tsc_freq = pit_hpet_ptimer_calibrate_cpu(); 867 868 return tsc_freq; 869 } 870 871 void recalibrate_cpu_khz(void) 872 { 873 #ifndef CONFIG_SMP 874 unsigned long cpu_khz_old = cpu_khz; 875 876 if (!boot_cpu_has(X86_FEATURE_TSC)) 877 return; 878 879 cpu_khz = x86_platform.calibrate_cpu(); 880 tsc_khz = x86_platform.calibrate_tsc(); 881 if (tsc_khz == 0) 882 tsc_khz = cpu_khz; 883 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 884 cpu_khz = tsc_khz; 885 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 886 cpu_khz_old, cpu_khz); 887 #endif 888 } 889 890 EXPORT_SYMBOL(recalibrate_cpu_khz); 891 892 893 static unsigned long long cyc2ns_suspend; 894 895 void tsc_save_sched_clock_state(void) 896 { 897 if (!sched_clock_stable()) 898 return; 899 900 cyc2ns_suspend = sched_clock(); 901 } 902 903 /* 904 * Even on processors with invariant TSC, TSC gets reset in some the 905 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 906 * arbitrary value (still sync'd across cpu's) during resume from such sleep 907 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 908 * that sched_clock() continues from the point where it was left off during 909 * suspend. 910 */ 911 void tsc_restore_sched_clock_state(void) 912 { 913 unsigned long long offset; 914 unsigned long flags; 915 int cpu; 916 917 if (!sched_clock_stable()) 918 return; 919 920 local_irq_save(flags); 921 922 /* 923 * We're coming out of suspend, there's no concurrency yet; don't 924 * bother being nice about the RCU stuff, just write to both 925 * data fields. 926 */ 927 928 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 929 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 930 931 offset = cyc2ns_suspend - sched_clock(); 932 933 for_each_possible_cpu(cpu) { 934 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 935 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 936 } 937 938 local_irq_restore(flags); 939 } 940 941 #ifdef CONFIG_CPU_FREQ 942 /* 943 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency 944 * changes. 945 * 946 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC 947 * as unstable and give up in those cases. 948 * 949 * Should fix up last_tsc too. Currently gettimeofday in the 950 * first tick after the change will be slightly wrong. 951 */ 952 953 static unsigned int ref_freq; 954 static unsigned long loops_per_jiffy_ref; 955 static unsigned long tsc_khz_ref; 956 957 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 958 void *data) 959 { 960 struct cpufreq_freqs *freq = data; 961 962 if (num_online_cpus() > 1) { 963 mark_tsc_unstable("cpufreq changes on SMP"); 964 return 0; 965 } 966 967 if (!ref_freq) { 968 ref_freq = freq->old; 969 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; 970 tsc_khz_ref = tsc_khz; 971 } 972 973 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 974 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 975 boot_cpu_data.loops_per_jiffy = 976 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 977 978 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 979 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 980 mark_tsc_unstable("cpufreq changes"); 981 982 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); 983 } 984 985 return 0; 986 } 987 988 static struct notifier_block time_cpufreq_notifier_block = { 989 .notifier_call = time_cpufreq_notifier 990 }; 991 992 static int __init cpufreq_register_tsc_scaling(void) 993 { 994 if (!boot_cpu_has(X86_FEATURE_TSC)) 995 return 0; 996 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 997 return 0; 998 cpufreq_register_notifier(&time_cpufreq_notifier_block, 999 CPUFREQ_TRANSITION_NOTIFIER); 1000 return 0; 1001 } 1002 1003 core_initcall(cpufreq_register_tsc_scaling); 1004 1005 #endif /* CONFIG_CPU_FREQ */ 1006 1007 #define ART_CPUID_LEAF (0x15) 1008 #define ART_MIN_DENOMINATOR (1) 1009 1010 1011 /* 1012 * If ART is present detect the numerator:denominator to convert to TSC 1013 */ 1014 static void __init detect_art(void) 1015 { 1016 unsigned int unused[2]; 1017 1018 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1019 return; 1020 1021 /* 1022 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, 1023 * and the TSC counter resets must not occur asynchronously. 1024 */ 1025 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1026 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1027 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || 1028 tsc_async_resets) 1029 return; 1030 1031 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1032 &art_to_tsc_numerator, unused, unused+1); 1033 1034 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1035 return; 1036 1037 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); 1038 1039 /* Make this sticky over multiple CPU init calls */ 1040 setup_force_cpu_cap(X86_FEATURE_ART); 1041 } 1042 1043 1044 /* clocksource code */ 1045 1046 static void tsc_resume(struct clocksource *cs) 1047 { 1048 tsc_verify_tsc_adjust(true); 1049 } 1050 1051 /* 1052 * We used to compare the TSC to the cycle_last value in the clocksource 1053 * structure to avoid a nasty time-warp. This can be observed in a 1054 * very small window right after one CPU updated cycle_last under 1055 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1056 * is smaller than the cycle_last reference value due to a TSC which 1057 * is slighty behind. This delta is nowhere else observable, but in 1058 * that case it results in a forward time jump in the range of hours 1059 * due to the unsigned delta calculation of the time keeping core 1060 * code, which is necessary to support wrapping clocksources like pm 1061 * timer. 1062 * 1063 * This sanity check is now done in the core timekeeping code. 1064 * checking the result of read_tsc() - cycle_last for being negative. 1065 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1066 */ 1067 static u64 read_tsc(struct clocksource *cs) 1068 { 1069 return (u64)rdtsc_ordered(); 1070 } 1071 1072 static void tsc_cs_mark_unstable(struct clocksource *cs) 1073 { 1074 if (tsc_unstable) 1075 return; 1076 1077 tsc_unstable = 1; 1078 if (using_native_sched_clock()) 1079 clear_sched_clock_stable(); 1080 disable_sched_clock_irqtime(); 1081 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1082 } 1083 1084 static void tsc_cs_tick_stable(struct clocksource *cs) 1085 { 1086 if (tsc_unstable) 1087 return; 1088 1089 if (using_native_sched_clock()) 1090 sched_clock_tick_stable(); 1091 } 1092 1093 /* 1094 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1095 */ 1096 static struct clocksource clocksource_tsc_early = { 1097 .name = "tsc-early", 1098 .rating = 299, 1099 .read = read_tsc, 1100 .mask = CLOCKSOURCE_MASK(64), 1101 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1102 CLOCK_SOURCE_MUST_VERIFY, 1103 .archdata = { .vclock_mode = VCLOCK_TSC }, 1104 .resume = tsc_resume, 1105 .mark_unstable = tsc_cs_mark_unstable, 1106 .tick_stable = tsc_cs_tick_stable, 1107 .list = LIST_HEAD_INIT(clocksource_tsc_early.list), 1108 }; 1109 1110 /* 1111 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early 1112 * this one will immediately take over. We will only register if TSC has 1113 * been found good. 1114 */ 1115 static struct clocksource clocksource_tsc = { 1116 .name = "tsc", 1117 .rating = 300, 1118 .read = read_tsc, 1119 .mask = CLOCKSOURCE_MASK(64), 1120 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1121 CLOCK_SOURCE_VALID_FOR_HRES | 1122 CLOCK_SOURCE_MUST_VERIFY, 1123 .archdata = { .vclock_mode = VCLOCK_TSC }, 1124 .resume = tsc_resume, 1125 .mark_unstable = tsc_cs_mark_unstable, 1126 .tick_stable = tsc_cs_tick_stable, 1127 .list = LIST_HEAD_INIT(clocksource_tsc.list), 1128 }; 1129 1130 void mark_tsc_unstable(char *reason) 1131 { 1132 if (tsc_unstable) 1133 return; 1134 1135 tsc_unstable = 1; 1136 if (using_native_sched_clock()) 1137 clear_sched_clock_stable(); 1138 disable_sched_clock_irqtime(); 1139 pr_info("Marking TSC unstable due to %s\n", reason); 1140 1141 clocksource_mark_unstable(&clocksource_tsc_early); 1142 clocksource_mark_unstable(&clocksource_tsc); 1143 } 1144 1145 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1146 1147 static void __init check_system_tsc_reliable(void) 1148 { 1149 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1150 if (is_geode_lx()) { 1151 /* RTSC counts during suspend */ 1152 #define RTSC_SUSP 0x100 1153 unsigned long res_low, res_high; 1154 1155 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1156 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1157 if (res_low & RTSC_SUSP) 1158 tsc_clocksource_reliable = 1; 1159 } 1160 #endif 1161 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1162 tsc_clocksource_reliable = 1; 1163 } 1164 1165 /* 1166 * Make an educated guess if the TSC is trustworthy and synchronized 1167 * over all CPUs. 1168 */ 1169 int unsynchronized_tsc(void) 1170 { 1171 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1172 return 1; 1173 1174 #ifdef CONFIG_SMP 1175 if (apic_is_clustered_box()) 1176 return 1; 1177 #endif 1178 1179 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1180 return 0; 1181 1182 if (tsc_clocksource_reliable) 1183 return 0; 1184 /* 1185 * Intel systems are normally all synchronized. 1186 * Exceptions must mark TSC as unstable: 1187 */ 1188 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1189 /* assume multi socket systems are not synchronized: */ 1190 if (num_possible_cpus() > 1) 1191 return 1; 1192 } 1193 1194 return 0; 1195 } 1196 1197 /* 1198 * Convert ART to TSC given numerator/denominator found in detect_art() 1199 */ 1200 struct system_counterval_t convert_art_to_tsc(u64 art) 1201 { 1202 u64 tmp, res, rem; 1203 1204 rem = do_div(art, art_to_tsc_denominator); 1205 1206 res = art * art_to_tsc_numerator; 1207 tmp = rem * art_to_tsc_numerator; 1208 1209 do_div(tmp, art_to_tsc_denominator); 1210 res += tmp + art_to_tsc_offset; 1211 1212 return (struct system_counterval_t) {.cs = art_related_clocksource, 1213 .cycles = res}; 1214 } 1215 EXPORT_SYMBOL(convert_art_to_tsc); 1216 1217 /** 1218 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. 1219 * @art_ns: ART (Always Running Timer) in unit of nanoseconds 1220 * 1221 * PTM requires all timestamps to be in units of nanoseconds. When user 1222 * software requests a cross-timestamp, this function converts system timestamp 1223 * to TSC. 1224 * 1225 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set 1226 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check 1227 * that this flag is set before conversion to TSC is attempted. 1228 * 1229 * Return: 1230 * struct system_counterval_t - system counter value with the pointer to the 1231 * corresponding clocksource 1232 * @cycles: System counter value 1233 * @cs: Clocksource corresponding to system counter value. Used 1234 * by timekeeping code to verify comparibility of two cycle 1235 * values. 1236 */ 1237 1238 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) 1239 { 1240 u64 tmp, res, rem; 1241 1242 rem = do_div(art_ns, USEC_PER_SEC); 1243 1244 res = art_ns * tsc_khz; 1245 tmp = rem * tsc_khz; 1246 1247 do_div(tmp, USEC_PER_SEC); 1248 res += tmp; 1249 1250 return (struct system_counterval_t) { .cs = art_related_clocksource, 1251 .cycles = res}; 1252 } 1253 EXPORT_SYMBOL(convert_art_ns_to_tsc); 1254 1255 1256 static void tsc_refine_calibration_work(struct work_struct *work); 1257 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1258 /** 1259 * tsc_refine_calibration_work - Further refine tsc freq calibration 1260 * @work - ignored. 1261 * 1262 * This functions uses delayed work over a period of a 1263 * second to further refine the TSC freq value. Since this is 1264 * timer based, instead of loop based, we don't block the boot 1265 * process while this longer calibration is done. 1266 * 1267 * If there are any calibration anomalies (too many SMIs, etc), 1268 * or the refined calibration is off by 1% of the fast early 1269 * calibration, we throw out the new calibration and use the 1270 * early calibration. 1271 */ 1272 static void tsc_refine_calibration_work(struct work_struct *work) 1273 { 1274 static u64 tsc_start = ULLONG_MAX, ref_start; 1275 static int hpet; 1276 u64 tsc_stop, ref_stop, delta; 1277 unsigned long freq; 1278 int cpu; 1279 1280 /* Don't bother refining TSC on unstable systems */ 1281 if (tsc_unstable) 1282 goto unreg; 1283 1284 /* 1285 * Since the work is started early in boot, we may be 1286 * delayed the first time we expire. So set the workqueue 1287 * again once we know timers are working. 1288 */ 1289 if (tsc_start == ULLONG_MAX) { 1290 restart: 1291 /* 1292 * Only set hpet once, to avoid mixing hardware 1293 * if the hpet becomes enabled later. 1294 */ 1295 hpet = is_hpet_enabled(); 1296 tsc_start = tsc_read_refs(&ref_start, hpet); 1297 schedule_delayed_work(&tsc_irqwork, HZ); 1298 return; 1299 } 1300 1301 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1302 1303 /* hpet or pmtimer available ? */ 1304 if (ref_start == ref_stop) 1305 goto out; 1306 1307 /* Check, whether the sampling was disturbed */ 1308 if (tsc_stop == ULLONG_MAX) 1309 goto restart; 1310 1311 delta = tsc_stop - tsc_start; 1312 delta *= 1000000LL; 1313 if (hpet) 1314 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1315 else 1316 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1317 1318 /* Make sure we're within 1% */ 1319 if (abs(tsc_khz - freq) > tsc_khz/100) 1320 goto out; 1321 1322 tsc_khz = freq; 1323 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1324 (unsigned long)tsc_khz / 1000, 1325 (unsigned long)tsc_khz % 1000); 1326 1327 /* Inform the TSC deadline clockevent devices about the recalibration */ 1328 lapic_update_tsc_freq(); 1329 1330 /* Update the sched_clock() rate to match the clocksource one */ 1331 for_each_possible_cpu(cpu) 1332 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); 1333 1334 out: 1335 if (tsc_unstable) 1336 goto unreg; 1337 1338 if (boot_cpu_has(X86_FEATURE_ART)) 1339 art_related_clocksource = &clocksource_tsc; 1340 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1341 unreg: 1342 clocksource_unregister(&clocksource_tsc_early); 1343 } 1344 1345 1346 static int __init init_tsc_clocksource(void) 1347 { 1348 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) 1349 return 0; 1350 1351 if (tsc_unstable) 1352 goto unreg; 1353 1354 if (tsc_clocksource_reliable || no_tsc_watchdog) 1355 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1356 1357 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1358 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1359 1360 /* 1361 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1362 * the refined calibration and directly register it as a clocksource. 1363 */ 1364 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1365 if (boot_cpu_has(X86_FEATURE_ART)) 1366 art_related_clocksource = &clocksource_tsc; 1367 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1368 unreg: 1369 clocksource_unregister(&clocksource_tsc_early); 1370 return 0; 1371 } 1372 1373 schedule_delayed_work(&tsc_irqwork, 0); 1374 return 0; 1375 } 1376 /* 1377 * We use device_initcall here, to ensure we run after the hpet 1378 * is fully initialized, which may occur at fs_initcall time. 1379 */ 1380 device_initcall(init_tsc_clocksource); 1381 1382 static bool __init determine_cpu_tsc_frequencies(bool early) 1383 { 1384 /* Make sure that cpu and tsc are not already calibrated */ 1385 WARN_ON(cpu_khz || tsc_khz); 1386 1387 if (early) { 1388 cpu_khz = x86_platform.calibrate_cpu(); 1389 tsc_khz = x86_platform.calibrate_tsc(); 1390 } else { 1391 /* We should not be here with non-native cpu calibration */ 1392 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); 1393 cpu_khz = pit_hpet_ptimer_calibrate_cpu(); 1394 } 1395 1396 /* 1397 * Trust non-zero tsc_khz as authoritative, 1398 * and use it to sanity check cpu_khz, 1399 * which will be off if system timer is off. 1400 */ 1401 if (tsc_khz == 0) 1402 tsc_khz = cpu_khz; 1403 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1404 cpu_khz = tsc_khz; 1405 1406 if (tsc_khz == 0) 1407 return false; 1408 1409 pr_info("Detected %lu.%03lu MHz processor\n", 1410 (unsigned long)cpu_khz / KHZ, 1411 (unsigned long)cpu_khz % KHZ); 1412 1413 if (cpu_khz != tsc_khz) { 1414 pr_info("Detected %lu.%03lu MHz TSC", 1415 (unsigned long)tsc_khz / KHZ, 1416 (unsigned long)tsc_khz % KHZ); 1417 } 1418 return true; 1419 } 1420 1421 static unsigned long __init get_loops_per_jiffy(void) 1422 { 1423 u64 lpj = (u64)tsc_khz * KHZ; 1424 1425 do_div(lpj, HZ); 1426 return lpj; 1427 } 1428 1429 static void __init tsc_enable_sched_clock(void) 1430 { 1431 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1432 tsc_store_and_check_tsc_adjust(true); 1433 cyc2ns_init_boot_cpu(); 1434 static_branch_enable(&__use_tsc); 1435 } 1436 1437 void __init tsc_early_init(void) 1438 { 1439 if (!boot_cpu_has(X86_FEATURE_TSC)) 1440 return; 1441 /* Don't change UV TSC multi-chassis synchronization */ 1442 if (is_early_uv_system()) 1443 return; 1444 if (!determine_cpu_tsc_frequencies(true)) 1445 return; 1446 loops_per_jiffy = get_loops_per_jiffy(); 1447 1448 tsc_enable_sched_clock(); 1449 } 1450 1451 void __init tsc_init(void) 1452 { 1453 /* 1454 * native_calibrate_cpu_early can only calibrate using methods that are 1455 * available early in boot. 1456 */ 1457 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) 1458 x86_platform.calibrate_cpu = native_calibrate_cpu; 1459 1460 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1461 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1462 return; 1463 } 1464 1465 if (!tsc_khz) { 1466 /* We failed to determine frequencies earlier, try again */ 1467 if (!determine_cpu_tsc_frequencies(false)) { 1468 mark_tsc_unstable("could not calculate TSC khz"); 1469 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1470 return; 1471 } 1472 tsc_enable_sched_clock(); 1473 } 1474 1475 cyc2ns_init_secondary_cpus(); 1476 1477 if (!no_sched_irq_time) 1478 enable_sched_clock_irqtime(); 1479 1480 lpj_fine = get_loops_per_jiffy(); 1481 use_tsc_delay(); 1482 1483 check_system_tsc_reliable(); 1484 1485 if (unsynchronized_tsc()) { 1486 mark_tsc_unstable("TSCs unsynchronized"); 1487 return; 1488 } 1489 1490 clocksource_register_khz(&clocksource_tsc_early, tsc_khz); 1491 detect_art(); 1492 } 1493 1494 #ifdef CONFIG_SMP 1495 /* 1496 * If we have a constant TSC and are using the TSC for the delay loop, 1497 * we can skip clock calibration if another cpu in the same socket has already 1498 * been calibrated. This assumes that CONSTANT_TSC applies to all 1499 * cpus in the socket - this should be a safe assumption. 1500 */ 1501 unsigned long calibrate_delay_is_known(void) 1502 { 1503 int sibling, cpu = smp_processor_id(); 1504 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); 1505 const struct cpumask *mask = topology_core_cpumask(cpu); 1506 1507 if (!constant_tsc || !mask) 1508 return 0; 1509 1510 sibling = cpumask_any_but(mask, cpu); 1511 if (sibling < nr_cpu_ids) 1512 return cpu_data(sibling).loops_per_jiffy; 1513 return 0; 1514 } 1515 #endif 1516