xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision ff148d8a)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16 
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 #include <asm/uv/uv.h>
30 
31 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
32 EXPORT_SYMBOL(cpu_khz);
33 
34 unsigned int __read_mostly tsc_khz;
35 EXPORT_SYMBOL(tsc_khz);
36 
37 #define KHZ	1000
38 
39 /*
40  * TSC can be unstable due to cpufreq or due to unsynced TSCs
41  */
42 static int __read_mostly tsc_unstable;
43 
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45 
46 int tsc_clocksource_reliable;
47 
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
52 
53 struct cyc2ns {
54 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
55 	seqcount_t	   seq;		/* 32 + 4    = 36 */
56 
57 }; /* fits one cacheline */
58 
59 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
60 
61 void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
62 {
63 	int seq, idx;
64 
65 	preempt_disable_notrace();
66 
67 	do {
68 		seq = this_cpu_read(cyc2ns.seq.sequence);
69 		idx = seq & 1;
70 
71 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
72 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
73 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
74 
75 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
76 }
77 
78 void __always_inline cyc2ns_read_end(void)
79 {
80 	preempt_enable_notrace();
81 }
82 
83 /*
84  * Accelerators for sched_clock()
85  * convert from cycles(64bits) => nanoseconds (64bits)
86  *  basic equation:
87  *              ns = cycles / (freq / ns_per_sec)
88  *              ns = cycles * (ns_per_sec / freq)
89  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
90  *              ns = cycles * (10^6 / cpu_khz)
91  *
92  *      Then we use scaling math (suggested by george@mvista.com) to get:
93  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
94  *              ns = cycles * cyc2ns_scale / SC
95  *
96  *      And since SC is a constant power of two, we can convert the div
97  *  into a shift. The larger SC is, the more accurate the conversion, but
98  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99  *  (64-bit result) can be used.
100  *
101  *  We can use khz divisor instead of mhz to keep a better precision.
102  *  (mathieu.desnoyers@polymtl.ca)
103  *
104  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
105  */
106 
107 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
108 {
109 	struct cyc2ns_data data;
110 	unsigned long long ns;
111 
112 	cyc2ns_read_begin(&data);
113 
114 	ns = data.cyc2ns_offset;
115 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
116 
117 	cyc2ns_read_end();
118 
119 	return ns;
120 }
121 
122 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
123 {
124 	unsigned long long ns_now;
125 	struct cyc2ns_data data;
126 	struct cyc2ns *c2n;
127 
128 	ns_now = cycles_2_ns(tsc_now);
129 
130 	/*
131 	 * Compute a new multiplier as per the above comment and ensure our
132 	 * time function is continuous; see the comment near struct
133 	 * cyc2ns_data.
134 	 */
135 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
136 			       NSEC_PER_MSEC, 0);
137 
138 	/*
139 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140 	 * not expected to be greater than 31 due to the original published
141 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
143 	 */
144 	if (data.cyc2ns_shift == 32) {
145 		data.cyc2ns_shift = 31;
146 		data.cyc2ns_mul >>= 1;
147 	}
148 
149 	data.cyc2ns_offset = ns_now -
150 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
151 
152 	c2n = per_cpu_ptr(&cyc2ns, cpu);
153 
154 	raw_write_seqcount_latch(&c2n->seq);
155 	c2n->data[0] = data;
156 	raw_write_seqcount_latch(&c2n->seq);
157 	c2n->data[1] = data;
158 }
159 
160 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
161 {
162 	unsigned long flags;
163 
164 	local_irq_save(flags);
165 	sched_clock_idle_sleep_event();
166 
167 	if (khz)
168 		__set_cyc2ns_scale(khz, cpu, tsc_now);
169 
170 	sched_clock_idle_wakeup_event();
171 	local_irq_restore(flags);
172 }
173 
174 /*
175  * Initialize cyc2ns for boot cpu
176  */
177 static void __init cyc2ns_init_boot_cpu(void)
178 {
179 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
180 
181 	seqcount_init(&c2n->seq);
182 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
183 }
184 
185 /*
186  * Secondary CPUs do not run through tsc_init(), so set up
187  * all the scale factors for all CPUs, assuming the same
188  * speed as the bootup CPU.
189  */
190 static void __init cyc2ns_init_secondary_cpus(void)
191 {
192 	unsigned int cpu, this_cpu = smp_processor_id();
193 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
194 	struct cyc2ns_data *data = c2n->data;
195 
196 	for_each_possible_cpu(cpu) {
197 		if (cpu != this_cpu) {
198 			seqcount_init(&c2n->seq);
199 			c2n = per_cpu_ptr(&cyc2ns, cpu);
200 			c2n->data[0] = data[0];
201 			c2n->data[1] = data[1];
202 		}
203 	}
204 }
205 
206 /*
207  * Scheduler clock - returns current time in nanosec units.
208  */
209 u64 native_sched_clock(void)
210 {
211 	if (static_branch_likely(&__use_tsc)) {
212 		u64 tsc_now = rdtsc();
213 
214 		/* return the value in ns */
215 		return cycles_2_ns(tsc_now);
216 	}
217 
218 	/*
219 	 * Fall back to jiffies if there's no TSC available:
220 	 * ( But note that we still use it if the TSC is marked
221 	 *   unstable. We do this because unlike Time Of Day,
222 	 *   the scheduler clock tolerates small errors and it's
223 	 *   very important for it to be as fast as the platform
224 	 *   can achieve it. )
225 	 */
226 
227 	/* No locking but a rare wrong value is not a big deal: */
228 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
229 }
230 
231 /*
232  * Generate a sched_clock if you already have a TSC value.
233  */
234 u64 native_sched_clock_from_tsc(u64 tsc)
235 {
236 	return cycles_2_ns(tsc);
237 }
238 
239 /* We need to define a real function for sched_clock, to override the
240    weak default version */
241 #ifdef CONFIG_PARAVIRT
242 unsigned long long sched_clock(void)
243 {
244 	return paravirt_sched_clock();
245 }
246 
247 bool using_native_sched_clock(void)
248 {
249 	return pv_ops.time.sched_clock == native_sched_clock;
250 }
251 #else
252 unsigned long long
253 sched_clock(void) __attribute__((alias("native_sched_clock")));
254 
255 bool using_native_sched_clock(void) { return true; }
256 #endif
257 
258 int check_tsc_unstable(void)
259 {
260 	return tsc_unstable;
261 }
262 EXPORT_SYMBOL_GPL(check_tsc_unstable);
263 
264 #ifdef CONFIG_X86_TSC
265 int __init notsc_setup(char *str)
266 {
267 	mark_tsc_unstable("boot parameter notsc");
268 	return 1;
269 }
270 #else
271 /*
272  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
273  * in cpu/common.c
274  */
275 int __init notsc_setup(char *str)
276 {
277 	setup_clear_cpu_cap(X86_FEATURE_TSC);
278 	return 1;
279 }
280 #endif
281 
282 __setup("notsc", notsc_setup);
283 
284 static int no_sched_irq_time;
285 static int no_tsc_watchdog;
286 
287 static int __init tsc_setup(char *str)
288 {
289 	if (!strcmp(str, "reliable"))
290 		tsc_clocksource_reliable = 1;
291 	if (!strncmp(str, "noirqtime", 9))
292 		no_sched_irq_time = 1;
293 	if (!strcmp(str, "unstable"))
294 		mark_tsc_unstable("boot parameter");
295 	if (!strcmp(str, "nowatchdog"))
296 		no_tsc_watchdog = 1;
297 	return 1;
298 }
299 
300 __setup("tsc=", tsc_setup);
301 
302 #define MAX_RETRIES		5
303 #define TSC_DEFAULT_THRESHOLD	0x20000
304 
305 /*
306  * Read TSC and the reference counters. Take care of any disturbances
307  */
308 static u64 tsc_read_refs(u64 *p, int hpet)
309 {
310 	u64 t1, t2;
311 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
312 	int i;
313 
314 	for (i = 0; i < MAX_RETRIES; i++) {
315 		t1 = get_cycles();
316 		if (hpet)
317 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
318 		else
319 			*p = acpi_pm_read_early();
320 		t2 = get_cycles();
321 		if ((t2 - t1) < thresh)
322 			return t2;
323 	}
324 	return ULLONG_MAX;
325 }
326 
327 /*
328  * Calculate the TSC frequency from HPET reference
329  */
330 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
331 {
332 	u64 tmp;
333 
334 	if (hpet2 < hpet1)
335 		hpet2 += 0x100000000ULL;
336 	hpet2 -= hpet1;
337 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
338 	do_div(tmp, 1000000);
339 	deltatsc = div64_u64(deltatsc, tmp);
340 
341 	return (unsigned long) deltatsc;
342 }
343 
344 /*
345  * Calculate the TSC frequency from PMTimer reference
346  */
347 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
348 {
349 	u64 tmp;
350 
351 	if (!pm1 && !pm2)
352 		return ULONG_MAX;
353 
354 	if (pm2 < pm1)
355 		pm2 += (u64)ACPI_PM_OVRRUN;
356 	pm2 -= pm1;
357 	tmp = pm2 * 1000000000LL;
358 	do_div(tmp, PMTMR_TICKS_PER_SEC);
359 	do_div(deltatsc, tmp);
360 
361 	return (unsigned long) deltatsc;
362 }
363 
364 #define CAL_MS		10
365 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
366 #define CAL_PIT_LOOPS	1000
367 
368 #define CAL2_MS		50
369 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
370 #define CAL2_PIT_LOOPS	5000
371 
372 
373 /*
374  * Try to calibrate the TSC against the Programmable
375  * Interrupt Timer and return the frequency of the TSC
376  * in kHz.
377  *
378  * Return ULONG_MAX on failure to calibrate.
379  */
380 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
381 {
382 	u64 tsc, t1, t2, delta;
383 	unsigned long tscmin, tscmax;
384 	int pitcnt;
385 
386 	if (!has_legacy_pic()) {
387 		/*
388 		 * Relies on tsc_early_delay_calibrate() to have given us semi
389 		 * usable udelay(), wait for the same 50ms we would have with
390 		 * the PIT loop below.
391 		 */
392 		udelay(10 * USEC_PER_MSEC);
393 		udelay(10 * USEC_PER_MSEC);
394 		udelay(10 * USEC_PER_MSEC);
395 		udelay(10 * USEC_PER_MSEC);
396 		udelay(10 * USEC_PER_MSEC);
397 		return ULONG_MAX;
398 	}
399 
400 	/* Set the Gate high, disable speaker */
401 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
402 
403 	/*
404 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
405 	 * count mode), binary count. Set the latch register to 50ms
406 	 * (LSB then MSB) to begin countdown.
407 	 */
408 	outb(0xb0, 0x43);
409 	outb(latch & 0xff, 0x42);
410 	outb(latch >> 8, 0x42);
411 
412 	tsc = t1 = t2 = get_cycles();
413 
414 	pitcnt = 0;
415 	tscmax = 0;
416 	tscmin = ULONG_MAX;
417 	while ((inb(0x61) & 0x20) == 0) {
418 		t2 = get_cycles();
419 		delta = t2 - tsc;
420 		tsc = t2;
421 		if ((unsigned long) delta < tscmin)
422 			tscmin = (unsigned int) delta;
423 		if ((unsigned long) delta > tscmax)
424 			tscmax = (unsigned int) delta;
425 		pitcnt++;
426 	}
427 
428 	/*
429 	 * Sanity checks:
430 	 *
431 	 * If we were not able to read the PIT more than loopmin
432 	 * times, then we have been hit by a massive SMI
433 	 *
434 	 * If the maximum is 10 times larger than the minimum,
435 	 * then we got hit by an SMI as well.
436 	 */
437 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
438 		return ULONG_MAX;
439 
440 	/* Calculate the PIT value */
441 	delta = t2 - t1;
442 	do_div(delta, ms);
443 	return delta;
444 }
445 
446 /*
447  * This reads the current MSB of the PIT counter, and
448  * checks if we are running on sufficiently fast and
449  * non-virtualized hardware.
450  *
451  * Our expectations are:
452  *
453  *  - the PIT is running at roughly 1.19MHz
454  *
455  *  - each IO is going to take about 1us on real hardware,
456  *    but we allow it to be much faster (by a factor of 10) or
457  *    _slightly_ slower (ie we allow up to a 2us read+counter
458  *    update - anything else implies a unacceptably slow CPU
459  *    or PIT for the fast calibration to work.
460  *
461  *  - with 256 PIT ticks to read the value, we have 214us to
462  *    see the same MSB (and overhead like doing a single TSC
463  *    read per MSB value etc).
464  *
465  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
466  *    them each to take about a microsecond on real hardware.
467  *    So we expect a count value of around 100. But we'll be
468  *    generous, and accept anything over 50.
469  *
470  *  - if the PIT is stuck, and we see *many* more reads, we
471  *    return early (and the next caller of pit_expect_msb()
472  *    then consider it a failure when they don't see the
473  *    next expected value).
474  *
475  * These expectations mean that we know that we have seen the
476  * transition from one expected value to another with a fairly
477  * high accuracy, and we didn't miss any events. We can thus
478  * use the TSC value at the transitions to calculate a pretty
479  * good value for the TSC frequencty.
480  */
481 static inline int pit_verify_msb(unsigned char val)
482 {
483 	/* Ignore LSB */
484 	inb(0x42);
485 	return inb(0x42) == val;
486 }
487 
488 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
489 {
490 	int count;
491 	u64 tsc = 0, prev_tsc = 0;
492 
493 	for (count = 0; count < 50000; count++) {
494 		if (!pit_verify_msb(val))
495 			break;
496 		prev_tsc = tsc;
497 		tsc = get_cycles();
498 	}
499 	*deltap = get_cycles() - prev_tsc;
500 	*tscp = tsc;
501 
502 	/*
503 	 * We require _some_ success, but the quality control
504 	 * will be based on the error terms on the TSC values.
505 	 */
506 	return count > 5;
507 }
508 
509 /*
510  * How many MSB values do we want to see? We aim for
511  * a maximum error rate of 500ppm (in practice the
512  * real error is much smaller), but refuse to spend
513  * more than 50ms on it.
514  */
515 #define MAX_QUICK_PIT_MS 50
516 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
517 
518 static unsigned long quick_pit_calibrate(void)
519 {
520 	int i;
521 	u64 tsc, delta;
522 	unsigned long d1, d2;
523 
524 	if (!has_legacy_pic())
525 		return 0;
526 
527 	/* Set the Gate high, disable speaker */
528 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
529 
530 	/*
531 	 * Counter 2, mode 0 (one-shot), binary count
532 	 *
533 	 * NOTE! Mode 2 decrements by two (and then the
534 	 * output is flipped each time, giving the same
535 	 * final output frequency as a decrement-by-one),
536 	 * so mode 0 is much better when looking at the
537 	 * individual counts.
538 	 */
539 	outb(0xb0, 0x43);
540 
541 	/* Start at 0xffff */
542 	outb(0xff, 0x42);
543 	outb(0xff, 0x42);
544 
545 	/*
546 	 * The PIT starts counting at the next edge, so we
547 	 * need to delay for a microsecond. The easiest way
548 	 * to do that is to just read back the 16-bit counter
549 	 * once from the PIT.
550 	 */
551 	pit_verify_msb(0);
552 
553 	if (pit_expect_msb(0xff, &tsc, &d1)) {
554 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
555 			if (!pit_expect_msb(0xff-i, &delta, &d2))
556 				break;
557 
558 			delta -= tsc;
559 
560 			/*
561 			 * Extrapolate the error and fail fast if the error will
562 			 * never be below 500 ppm.
563 			 */
564 			if (i == 1 &&
565 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
566 				return 0;
567 
568 			/*
569 			 * Iterate until the error is less than 500 ppm
570 			 */
571 			if (d1+d2 >= delta >> 11)
572 				continue;
573 
574 			/*
575 			 * Check the PIT one more time to verify that
576 			 * all TSC reads were stable wrt the PIT.
577 			 *
578 			 * This also guarantees serialization of the
579 			 * last cycle read ('d2') in pit_expect_msb.
580 			 */
581 			if (!pit_verify_msb(0xfe - i))
582 				break;
583 			goto success;
584 		}
585 	}
586 	pr_info("Fast TSC calibration failed\n");
587 	return 0;
588 
589 success:
590 	/*
591 	 * Ok, if we get here, then we've seen the
592 	 * MSB of the PIT decrement 'i' times, and the
593 	 * error has shrunk to less than 500 ppm.
594 	 *
595 	 * As a result, we can depend on there not being
596 	 * any odd delays anywhere, and the TSC reads are
597 	 * reliable (within the error).
598 	 *
599 	 * kHz = ticks / time-in-seconds / 1000;
600 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
601 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
602 	 */
603 	delta *= PIT_TICK_RATE;
604 	do_div(delta, i*256*1000);
605 	pr_info("Fast TSC calibration using PIT\n");
606 	return delta;
607 }
608 
609 /**
610  * native_calibrate_tsc
611  * Determine TSC frequency via CPUID, else return 0.
612  */
613 unsigned long native_calibrate_tsc(void)
614 {
615 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
616 	unsigned int crystal_khz;
617 
618 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
619 		return 0;
620 
621 	if (boot_cpu_data.cpuid_level < 0x15)
622 		return 0;
623 
624 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
625 
626 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
627 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
628 
629 	if (ebx_numerator == 0 || eax_denominator == 0)
630 		return 0;
631 
632 	crystal_khz = ecx_hz / 1000;
633 
634 	if (crystal_khz == 0) {
635 		switch (boot_cpu_data.x86_model) {
636 		case INTEL_FAM6_SKYLAKE_MOBILE:
637 		case INTEL_FAM6_SKYLAKE_DESKTOP:
638 		case INTEL_FAM6_KABYLAKE_MOBILE:
639 		case INTEL_FAM6_KABYLAKE_DESKTOP:
640 			crystal_khz = 24000;	/* 24.0 MHz */
641 			break;
642 		case INTEL_FAM6_ATOM_GOLDMONT_X:
643 			crystal_khz = 25000;	/* 25.0 MHz */
644 			break;
645 		case INTEL_FAM6_ATOM_GOLDMONT:
646 			crystal_khz = 19200;	/* 19.2 MHz */
647 			break;
648 		}
649 	}
650 
651 	if (crystal_khz == 0)
652 		return 0;
653 	/*
654 	 * TSC frequency determined by CPUID is a "hardware reported"
655 	 * frequency and is the most accurate one so far we have. This
656 	 * is considered a known frequency.
657 	 */
658 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
659 
660 	/*
661 	 * For Atom SoCs TSC is the only reliable clocksource.
662 	 * Mark TSC reliable so no watchdog on it.
663 	 */
664 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
665 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
666 
667 	return crystal_khz * ebx_numerator / eax_denominator;
668 }
669 
670 static unsigned long cpu_khz_from_cpuid(void)
671 {
672 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
673 
674 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
675 		return 0;
676 
677 	if (boot_cpu_data.cpuid_level < 0x16)
678 		return 0;
679 
680 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
681 
682 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
683 
684 	return eax_base_mhz * 1000;
685 }
686 
687 /*
688  * calibrate cpu using pit, hpet, and ptimer methods. They are available
689  * later in boot after acpi is initialized.
690  */
691 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
692 {
693 	u64 tsc1, tsc2, delta, ref1, ref2;
694 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
695 	unsigned long flags, latch, ms;
696 	int hpet = is_hpet_enabled(), i, loopmin;
697 
698 	/*
699 	 * Run 5 calibration loops to get the lowest frequency value
700 	 * (the best estimate). We use two different calibration modes
701 	 * here:
702 	 *
703 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
704 	 * load a timeout of 50ms. We read the time right after we
705 	 * started the timer and wait until the PIT count down reaches
706 	 * zero. In each wait loop iteration we read the TSC and check
707 	 * the delta to the previous read. We keep track of the min
708 	 * and max values of that delta. The delta is mostly defined
709 	 * by the IO time of the PIT access, so we can detect when
710 	 * any disturbance happened between the two reads. If the
711 	 * maximum time is significantly larger than the minimum time,
712 	 * then we discard the result and have another try.
713 	 *
714 	 * 2) Reference counter. If available we use the HPET or the
715 	 * PMTIMER as a reference to check the sanity of that value.
716 	 * We use separate TSC readouts and check inside of the
717 	 * reference read for any possible disturbance. We dicard
718 	 * disturbed values here as well. We do that around the PIT
719 	 * calibration delay loop as we have to wait for a certain
720 	 * amount of time anyway.
721 	 */
722 
723 	/* Preset PIT loop values */
724 	latch = CAL_LATCH;
725 	ms = CAL_MS;
726 	loopmin = CAL_PIT_LOOPS;
727 
728 	for (i = 0; i < 3; i++) {
729 		unsigned long tsc_pit_khz;
730 
731 		/*
732 		 * Read the start value and the reference count of
733 		 * hpet/pmtimer when available. Then do the PIT
734 		 * calibration, which will take at least 50ms, and
735 		 * read the end value.
736 		 */
737 		local_irq_save(flags);
738 		tsc1 = tsc_read_refs(&ref1, hpet);
739 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
740 		tsc2 = tsc_read_refs(&ref2, hpet);
741 		local_irq_restore(flags);
742 
743 		/* Pick the lowest PIT TSC calibration so far */
744 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
745 
746 		/* hpet or pmtimer available ? */
747 		if (ref1 == ref2)
748 			continue;
749 
750 		/* Check, whether the sampling was disturbed */
751 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
752 			continue;
753 
754 		tsc2 = (tsc2 - tsc1) * 1000000LL;
755 		if (hpet)
756 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
757 		else
758 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
759 
760 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
761 
762 		/* Check the reference deviation */
763 		delta = ((u64) tsc_pit_min) * 100;
764 		do_div(delta, tsc_ref_min);
765 
766 		/*
767 		 * If both calibration results are inside a 10% window
768 		 * then we can be sure, that the calibration
769 		 * succeeded. We break out of the loop right away. We
770 		 * use the reference value, as it is more precise.
771 		 */
772 		if (delta >= 90 && delta <= 110) {
773 			pr_info("PIT calibration matches %s. %d loops\n",
774 				hpet ? "HPET" : "PMTIMER", i + 1);
775 			return tsc_ref_min;
776 		}
777 
778 		/*
779 		 * Check whether PIT failed more than once. This
780 		 * happens in virtualized environments. We need to
781 		 * give the virtual PC a slightly longer timeframe for
782 		 * the HPET/PMTIMER to make the result precise.
783 		 */
784 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
785 			latch = CAL2_LATCH;
786 			ms = CAL2_MS;
787 			loopmin = CAL2_PIT_LOOPS;
788 		}
789 	}
790 
791 	/*
792 	 * Now check the results.
793 	 */
794 	if (tsc_pit_min == ULONG_MAX) {
795 		/* PIT gave no useful value */
796 		pr_warn("Unable to calibrate against PIT\n");
797 
798 		/* We don't have an alternative source, disable TSC */
799 		if (!hpet && !ref1 && !ref2) {
800 			pr_notice("No reference (HPET/PMTIMER) available\n");
801 			return 0;
802 		}
803 
804 		/* The alternative source failed as well, disable TSC */
805 		if (tsc_ref_min == ULONG_MAX) {
806 			pr_warn("HPET/PMTIMER calibration failed\n");
807 			return 0;
808 		}
809 
810 		/* Use the alternative source */
811 		pr_info("using %s reference calibration\n",
812 			hpet ? "HPET" : "PMTIMER");
813 
814 		return tsc_ref_min;
815 	}
816 
817 	/* We don't have an alternative source, use the PIT calibration value */
818 	if (!hpet && !ref1 && !ref2) {
819 		pr_info("Using PIT calibration value\n");
820 		return tsc_pit_min;
821 	}
822 
823 	/* The alternative source failed, use the PIT calibration value */
824 	if (tsc_ref_min == ULONG_MAX) {
825 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
826 		return tsc_pit_min;
827 	}
828 
829 	/*
830 	 * The calibration values differ too much. In doubt, we use
831 	 * the PIT value as we know that there are PMTIMERs around
832 	 * running at double speed. At least we let the user know:
833 	 */
834 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
835 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
836 	pr_info("Using PIT calibration value\n");
837 	return tsc_pit_min;
838 }
839 
840 /**
841  * native_calibrate_cpu_early - can calibrate the cpu early in boot
842  */
843 unsigned long native_calibrate_cpu_early(void)
844 {
845 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
846 
847 	if (!fast_calibrate)
848 		fast_calibrate = cpu_khz_from_msr();
849 	if (!fast_calibrate) {
850 		local_irq_save(flags);
851 		fast_calibrate = quick_pit_calibrate();
852 		local_irq_restore(flags);
853 	}
854 	return fast_calibrate;
855 }
856 
857 
858 /**
859  * native_calibrate_cpu - calibrate the cpu
860  */
861 static unsigned long native_calibrate_cpu(void)
862 {
863 	unsigned long tsc_freq = native_calibrate_cpu_early();
864 
865 	if (!tsc_freq)
866 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
867 
868 	return tsc_freq;
869 }
870 
871 void recalibrate_cpu_khz(void)
872 {
873 #ifndef CONFIG_SMP
874 	unsigned long cpu_khz_old = cpu_khz;
875 
876 	if (!boot_cpu_has(X86_FEATURE_TSC))
877 		return;
878 
879 	cpu_khz = x86_platform.calibrate_cpu();
880 	tsc_khz = x86_platform.calibrate_tsc();
881 	if (tsc_khz == 0)
882 		tsc_khz = cpu_khz;
883 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
884 		cpu_khz = tsc_khz;
885 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
886 						    cpu_khz_old, cpu_khz);
887 #endif
888 }
889 
890 EXPORT_SYMBOL(recalibrate_cpu_khz);
891 
892 
893 static unsigned long long cyc2ns_suspend;
894 
895 void tsc_save_sched_clock_state(void)
896 {
897 	if (!sched_clock_stable())
898 		return;
899 
900 	cyc2ns_suspend = sched_clock();
901 }
902 
903 /*
904  * Even on processors with invariant TSC, TSC gets reset in some the
905  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
906  * arbitrary value (still sync'd across cpu's) during resume from such sleep
907  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
908  * that sched_clock() continues from the point where it was left off during
909  * suspend.
910  */
911 void tsc_restore_sched_clock_state(void)
912 {
913 	unsigned long long offset;
914 	unsigned long flags;
915 	int cpu;
916 
917 	if (!sched_clock_stable())
918 		return;
919 
920 	local_irq_save(flags);
921 
922 	/*
923 	 * We're coming out of suspend, there's no concurrency yet; don't
924 	 * bother being nice about the RCU stuff, just write to both
925 	 * data fields.
926 	 */
927 
928 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
929 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
930 
931 	offset = cyc2ns_suspend - sched_clock();
932 
933 	for_each_possible_cpu(cpu) {
934 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
935 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
936 	}
937 
938 	local_irq_restore(flags);
939 }
940 
941 #ifdef CONFIG_CPU_FREQ
942 /*
943  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
944  * changes.
945  *
946  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
947  * as unstable and give up in those cases.
948  *
949  * Should fix up last_tsc too. Currently gettimeofday in the
950  * first tick after the change will be slightly wrong.
951  */
952 
953 static unsigned int  ref_freq;
954 static unsigned long loops_per_jiffy_ref;
955 static unsigned long tsc_khz_ref;
956 
957 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
958 				void *data)
959 {
960 	struct cpufreq_freqs *freq = data;
961 
962 	if (num_online_cpus() > 1) {
963 		mark_tsc_unstable("cpufreq changes on SMP");
964 		return 0;
965 	}
966 
967 	if (!ref_freq) {
968 		ref_freq = freq->old;
969 		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
970 		tsc_khz_ref = tsc_khz;
971 	}
972 
973 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
974 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
975 		boot_cpu_data.loops_per_jiffy =
976 			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
977 
978 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
979 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
980 			mark_tsc_unstable("cpufreq changes");
981 
982 		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
983 	}
984 
985 	return 0;
986 }
987 
988 static struct notifier_block time_cpufreq_notifier_block = {
989 	.notifier_call  = time_cpufreq_notifier
990 };
991 
992 static int __init cpufreq_register_tsc_scaling(void)
993 {
994 	if (!boot_cpu_has(X86_FEATURE_TSC))
995 		return 0;
996 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
997 		return 0;
998 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
999 				CPUFREQ_TRANSITION_NOTIFIER);
1000 	return 0;
1001 }
1002 
1003 core_initcall(cpufreq_register_tsc_scaling);
1004 
1005 #endif /* CONFIG_CPU_FREQ */
1006 
1007 #define ART_CPUID_LEAF (0x15)
1008 #define ART_MIN_DENOMINATOR (1)
1009 
1010 
1011 /*
1012  * If ART is present detect the numerator:denominator to convert to TSC
1013  */
1014 static void __init detect_art(void)
1015 {
1016 	unsigned int unused[2];
1017 
1018 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1019 		return;
1020 
1021 	/*
1022 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1023 	 * and the TSC counter resets must not occur asynchronously.
1024 	 */
1025 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1026 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1027 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1028 	    tsc_async_resets)
1029 		return;
1030 
1031 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1032 	      &art_to_tsc_numerator, unused, unused+1);
1033 
1034 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1035 		return;
1036 
1037 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1038 
1039 	/* Make this sticky over multiple CPU init calls */
1040 	setup_force_cpu_cap(X86_FEATURE_ART);
1041 }
1042 
1043 
1044 /* clocksource code */
1045 
1046 static void tsc_resume(struct clocksource *cs)
1047 {
1048 	tsc_verify_tsc_adjust(true);
1049 }
1050 
1051 /*
1052  * We used to compare the TSC to the cycle_last value in the clocksource
1053  * structure to avoid a nasty time-warp. This can be observed in a
1054  * very small window right after one CPU updated cycle_last under
1055  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1056  * is smaller than the cycle_last reference value due to a TSC which
1057  * is slighty behind. This delta is nowhere else observable, but in
1058  * that case it results in a forward time jump in the range of hours
1059  * due to the unsigned delta calculation of the time keeping core
1060  * code, which is necessary to support wrapping clocksources like pm
1061  * timer.
1062  *
1063  * This sanity check is now done in the core timekeeping code.
1064  * checking the result of read_tsc() - cycle_last for being negative.
1065  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1066  */
1067 static u64 read_tsc(struct clocksource *cs)
1068 {
1069 	return (u64)rdtsc_ordered();
1070 }
1071 
1072 static void tsc_cs_mark_unstable(struct clocksource *cs)
1073 {
1074 	if (tsc_unstable)
1075 		return;
1076 
1077 	tsc_unstable = 1;
1078 	if (using_native_sched_clock())
1079 		clear_sched_clock_stable();
1080 	disable_sched_clock_irqtime();
1081 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1082 }
1083 
1084 static void tsc_cs_tick_stable(struct clocksource *cs)
1085 {
1086 	if (tsc_unstable)
1087 		return;
1088 
1089 	if (using_native_sched_clock())
1090 		sched_clock_tick_stable();
1091 }
1092 
1093 /*
1094  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1095  */
1096 static struct clocksource clocksource_tsc_early = {
1097 	.name                   = "tsc-early",
1098 	.rating                 = 299,
1099 	.read                   = read_tsc,
1100 	.mask                   = CLOCKSOURCE_MASK(64),
1101 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1102 				  CLOCK_SOURCE_MUST_VERIFY,
1103 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1104 	.resume			= tsc_resume,
1105 	.mark_unstable		= tsc_cs_mark_unstable,
1106 	.tick_stable		= tsc_cs_tick_stable,
1107 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1108 };
1109 
1110 /*
1111  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1112  * this one will immediately take over. We will only register if TSC has
1113  * been found good.
1114  */
1115 static struct clocksource clocksource_tsc = {
1116 	.name                   = "tsc",
1117 	.rating                 = 300,
1118 	.read                   = read_tsc,
1119 	.mask                   = CLOCKSOURCE_MASK(64),
1120 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1121 				  CLOCK_SOURCE_VALID_FOR_HRES |
1122 				  CLOCK_SOURCE_MUST_VERIFY,
1123 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1124 	.resume			= tsc_resume,
1125 	.mark_unstable		= tsc_cs_mark_unstable,
1126 	.tick_stable		= tsc_cs_tick_stable,
1127 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1128 };
1129 
1130 void mark_tsc_unstable(char *reason)
1131 {
1132 	if (tsc_unstable)
1133 		return;
1134 
1135 	tsc_unstable = 1;
1136 	if (using_native_sched_clock())
1137 		clear_sched_clock_stable();
1138 	disable_sched_clock_irqtime();
1139 	pr_info("Marking TSC unstable due to %s\n", reason);
1140 
1141 	clocksource_mark_unstable(&clocksource_tsc_early);
1142 	clocksource_mark_unstable(&clocksource_tsc);
1143 }
1144 
1145 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1146 
1147 static void __init check_system_tsc_reliable(void)
1148 {
1149 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1150 	if (is_geode_lx()) {
1151 		/* RTSC counts during suspend */
1152 #define RTSC_SUSP 0x100
1153 		unsigned long res_low, res_high;
1154 
1155 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1156 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1157 		if (res_low & RTSC_SUSP)
1158 			tsc_clocksource_reliable = 1;
1159 	}
1160 #endif
1161 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1162 		tsc_clocksource_reliable = 1;
1163 }
1164 
1165 /*
1166  * Make an educated guess if the TSC is trustworthy and synchronized
1167  * over all CPUs.
1168  */
1169 int unsynchronized_tsc(void)
1170 {
1171 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1172 		return 1;
1173 
1174 #ifdef CONFIG_SMP
1175 	if (apic_is_clustered_box())
1176 		return 1;
1177 #endif
1178 
1179 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1180 		return 0;
1181 
1182 	if (tsc_clocksource_reliable)
1183 		return 0;
1184 	/*
1185 	 * Intel systems are normally all synchronized.
1186 	 * Exceptions must mark TSC as unstable:
1187 	 */
1188 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1189 		/* assume multi socket systems are not synchronized: */
1190 		if (num_possible_cpus() > 1)
1191 			return 1;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Convert ART to TSC given numerator/denominator found in detect_art()
1199  */
1200 struct system_counterval_t convert_art_to_tsc(u64 art)
1201 {
1202 	u64 tmp, res, rem;
1203 
1204 	rem = do_div(art, art_to_tsc_denominator);
1205 
1206 	res = art * art_to_tsc_numerator;
1207 	tmp = rem * art_to_tsc_numerator;
1208 
1209 	do_div(tmp, art_to_tsc_denominator);
1210 	res += tmp + art_to_tsc_offset;
1211 
1212 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1213 			.cycles = res};
1214 }
1215 EXPORT_SYMBOL(convert_art_to_tsc);
1216 
1217 /**
1218  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1219  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1220  *
1221  * PTM requires all timestamps to be in units of nanoseconds. When user
1222  * software requests a cross-timestamp, this function converts system timestamp
1223  * to TSC.
1224  *
1225  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1226  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1227  * that this flag is set before conversion to TSC is attempted.
1228  *
1229  * Return:
1230  * struct system_counterval_t - system counter value with the pointer to the
1231  *	corresponding clocksource
1232  *	@cycles:	System counter value
1233  *	@cs:		Clocksource corresponding to system counter value. Used
1234  *			by timekeeping code to verify comparibility of two cycle
1235  *			values.
1236  */
1237 
1238 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1239 {
1240 	u64 tmp, res, rem;
1241 
1242 	rem = do_div(art_ns, USEC_PER_SEC);
1243 
1244 	res = art_ns * tsc_khz;
1245 	tmp = rem * tsc_khz;
1246 
1247 	do_div(tmp, USEC_PER_SEC);
1248 	res += tmp;
1249 
1250 	return (struct system_counterval_t) { .cs = art_related_clocksource,
1251 					      .cycles = res};
1252 }
1253 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1254 
1255 
1256 static void tsc_refine_calibration_work(struct work_struct *work);
1257 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1258 /**
1259  * tsc_refine_calibration_work - Further refine tsc freq calibration
1260  * @work - ignored.
1261  *
1262  * This functions uses delayed work over a period of a
1263  * second to further refine the TSC freq value. Since this is
1264  * timer based, instead of loop based, we don't block the boot
1265  * process while this longer calibration is done.
1266  *
1267  * If there are any calibration anomalies (too many SMIs, etc),
1268  * or the refined calibration is off by 1% of the fast early
1269  * calibration, we throw out the new calibration and use the
1270  * early calibration.
1271  */
1272 static void tsc_refine_calibration_work(struct work_struct *work)
1273 {
1274 	static u64 tsc_start = ULLONG_MAX, ref_start;
1275 	static int hpet;
1276 	u64 tsc_stop, ref_stop, delta;
1277 	unsigned long freq;
1278 	int cpu;
1279 
1280 	/* Don't bother refining TSC on unstable systems */
1281 	if (tsc_unstable)
1282 		goto unreg;
1283 
1284 	/*
1285 	 * Since the work is started early in boot, we may be
1286 	 * delayed the first time we expire. So set the workqueue
1287 	 * again once we know timers are working.
1288 	 */
1289 	if (tsc_start == ULLONG_MAX) {
1290 restart:
1291 		/*
1292 		 * Only set hpet once, to avoid mixing hardware
1293 		 * if the hpet becomes enabled later.
1294 		 */
1295 		hpet = is_hpet_enabled();
1296 		tsc_start = tsc_read_refs(&ref_start, hpet);
1297 		schedule_delayed_work(&tsc_irqwork, HZ);
1298 		return;
1299 	}
1300 
1301 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1302 
1303 	/* hpet or pmtimer available ? */
1304 	if (ref_start == ref_stop)
1305 		goto out;
1306 
1307 	/* Check, whether the sampling was disturbed */
1308 	if (tsc_stop == ULLONG_MAX)
1309 		goto restart;
1310 
1311 	delta = tsc_stop - tsc_start;
1312 	delta *= 1000000LL;
1313 	if (hpet)
1314 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1315 	else
1316 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1317 
1318 	/* Make sure we're within 1% */
1319 	if (abs(tsc_khz - freq) > tsc_khz/100)
1320 		goto out;
1321 
1322 	tsc_khz = freq;
1323 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1324 		(unsigned long)tsc_khz / 1000,
1325 		(unsigned long)tsc_khz % 1000);
1326 
1327 	/* Inform the TSC deadline clockevent devices about the recalibration */
1328 	lapic_update_tsc_freq();
1329 
1330 	/* Update the sched_clock() rate to match the clocksource one */
1331 	for_each_possible_cpu(cpu)
1332 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1333 
1334 out:
1335 	if (tsc_unstable)
1336 		goto unreg;
1337 
1338 	if (boot_cpu_has(X86_FEATURE_ART))
1339 		art_related_clocksource = &clocksource_tsc;
1340 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1341 unreg:
1342 	clocksource_unregister(&clocksource_tsc_early);
1343 }
1344 
1345 
1346 static int __init init_tsc_clocksource(void)
1347 {
1348 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1349 		return 0;
1350 
1351 	if (tsc_unstable)
1352 		goto unreg;
1353 
1354 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1355 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1356 
1357 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1358 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1359 
1360 	/*
1361 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1362 	 * the refined calibration and directly register it as a clocksource.
1363 	 */
1364 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1365 		if (boot_cpu_has(X86_FEATURE_ART))
1366 			art_related_clocksource = &clocksource_tsc;
1367 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1368 unreg:
1369 		clocksource_unregister(&clocksource_tsc_early);
1370 		return 0;
1371 	}
1372 
1373 	schedule_delayed_work(&tsc_irqwork, 0);
1374 	return 0;
1375 }
1376 /*
1377  * We use device_initcall here, to ensure we run after the hpet
1378  * is fully initialized, which may occur at fs_initcall time.
1379  */
1380 device_initcall(init_tsc_clocksource);
1381 
1382 static bool __init determine_cpu_tsc_frequencies(bool early)
1383 {
1384 	/* Make sure that cpu and tsc are not already calibrated */
1385 	WARN_ON(cpu_khz || tsc_khz);
1386 
1387 	if (early) {
1388 		cpu_khz = x86_platform.calibrate_cpu();
1389 		tsc_khz = x86_platform.calibrate_tsc();
1390 	} else {
1391 		/* We should not be here with non-native cpu calibration */
1392 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1393 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1394 	}
1395 
1396 	/*
1397 	 * Trust non-zero tsc_khz as authoritative,
1398 	 * and use it to sanity check cpu_khz,
1399 	 * which will be off if system timer is off.
1400 	 */
1401 	if (tsc_khz == 0)
1402 		tsc_khz = cpu_khz;
1403 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1404 		cpu_khz = tsc_khz;
1405 
1406 	if (tsc_khz == 0)
1407 		return false;
1408 
1409 	pr_info("Detected %lu.%03lu MHz processor\n",
1410 		(unsigned long)cpu_khz / KHZ,
1411 		(unsigned long)cpu_khz % KHZ);
1412 
1413 	if (cpu_khz != tsc_khz) {
1414 		pr_info("Detected %lu.%03lu MHz TSC",
1415 			(unsigned long)tsc_khz / KHZ,
1416 			(unsigned long)tsc_khz % KHZ);
1417 	}
1418 	return true;
1419 }
1420 
1421 static unsigned long __init get_loops_per_jiffy(void)
1422 {
1423 	u64 lpj = (u64)tsc_khz * KHZ;
1424 
1425 	do_div(lpj, HZ);
1426 	return lpj;
1427 }
1428 
1429 static void __init tsc_enable_sched_clock(void)
1430 {
1431 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1432 	tsc_store_and_check_tsc_adjust(true);
1433 	cyc2ns_init_boot_cpu();
1434 	static_branch_enable(&__use_tsc);
1435 }
1436 
1437 void __init tsc_early_init(void)
1438 {
1439 	if (!boot_cpu_has(X86_FEATURE_TSC))
1440 		return;
1441 	/* Don't change UV TSC multi-chassis synchronization */
1442 	if (is_early_uv_system())
1443 		return;
1444 	if (!determine_cpu_tsc_frequencies(true))
1445 		return;
1446 	loops_per_jiffy = get_loops_per_jiffy();
1447 
1448 	tsc_enable_sched_clock();
1449 }
1450 
1451 void __init tsc_init(void)
1452 {
1453 	/*
1454 	 * native_calibrate_cpu_early can only calibrate using methods that are
1455 	 * available early in boot.
1456 	 */
1457 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1458 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1459 
1460 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1461 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1462 		return;
1463 	}
1464 
1465 	if (!tsc_khz) {
1466 		/* We failed to determine frequencies earlier, try again */
1467 		if (!determine_cpu_tsc_frequencies(false)) {
1468 			mark_tsc_unstable("could not calculate TSC khz");
1469 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1470 			return;
1471 		}
1472 		tsc_enable_sched_clock();
1473 	}
1474 
1475 	cyc2ns_init_secondary_cpus();
1476 
1477 	if (!no_sched_irq_time)
1478 		enable_sched_clock_irqtime();
1479 
1480 	lpj_fine = get_loops_per_jiffy();
1481 	use_tsc_delay();
1482 
1483 	check_system_tsc_reliable();
1484 
1485 	if (unsynchronized_tsc()) {
1486 		mark_tsc_unstable("TSCs unsynchronized");
1487 		return;
1488 	}
1489 
1490 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1491 	detect_art();
1492 }
1493 
1494 #ifdef CONFIG_SMP
1495 /*
1496  * If we have a constant TSC and are using the TSC for the delay loop,
1497  * we can skip clock calibration if another cpu in the same socket has already
1498  * been calibrated. This assumes that CONSTANT_TSC applies to all
1499  * cpus in the socket - this should be a safe assumption.
1500  */
1501 unsigned long calibrate_delay_is_known(void)
1502 {
1503 	int sibling, cpu = smp_processor_id();
1504 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1505 	const struct cpumask *mask = topology_core_cpumask(cpu);
1506 
1507 	if (!constant_tsc || !mask)
1508 		return 0;
1509 
1510 	sibling = cpumask_any_but(mask, cpu);
1511 	if (sibling < nr_cpu_ids)
1512 		return cpu_data(sibling).loops_per_jiffy;
1513 	return 0;
1514 }
1515 #endif
1516