xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision f220d3eb)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16 
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 
30 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
31 EXPORT_SYMBOL(cpu_khz);
32 
33 unsigned int __read_mostly tsc_khz;
34 EXPORT_SYMBOL(tsc_khz);
35 
36 #define KHZ	1000
37 
38 /*
39  * TSC can be unstable due to cpufreq or due to unsynced TSCs
40  */
41 static int __read_mostly tsc_unstable;
42 
43 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
44 
45 int tsc_clocksource_reliable;
46 
47 static u32 art_to_tsc_numerator;
48 static u32 art_to_tsc_denominator;
49 static u64 art_to_tsc_offset;
50 struct clocksource *art_related_clocksource;
51 
52 struct cyc2ns {
53 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
54 	seqcount_t	   seq;		/* 32 + 4    = 36 */
55 
56 }; /* fits one cacheline */
57 
58 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
59 
60 void cyc2ns_read_begin(struct cyc2ns_data *data)
61 {
62 	int seq, idx;
63 
64 	preempt_disable_notrace();
65 
66 	do {
67 		seq = this_cpu_read(cyc2ns.seq.sequence);
68 		idx = seq & 1;
69 
70 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
71 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
72 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
73 
74 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
75 }
76 
77 void cyc2ns_read_end(void)
78 {
79 	preempt_enable_notrace();
80 }
81 
82 /*
83  * Accelerators for sched_clock()
84  * convert from cycles(64bits) => nanoseconds (64bits)
85  *  basic equation:
86  *              ns = cycles / (freq / ns_per_sec)
87  *              ns = cycles * (ns_per_sec / freq)
88  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
89  *              ns = cycles * (10^6 / cpu_khz)
90  *
91  *      Then we use scaling math (suggested by george@mvista.com) to get:
92  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
93  *              ns = cycles * cyc2ns_scale / SC
94  *
95  *      And since SC is a constant power of two, we can convert the div
96  *  into a shift. The larger SC is, the more accurate the conversion, but
97  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
98  *  (64-bit result) can be used.
99  *
100  *  We can use khz divisor instead of mhz to keep a better precision.
101  *  (mathieu.desnoyers@polymtl.ca)
102  *
103  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
104  */
105 
106 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
107 {
108 	struct cyc2ns_data data;
109 	unsigned long long ns;
110 
111 	cyc2ns_read_begin(&data);
112 
113 	ns = data.cyc2ns_offset;
114 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
115 
116 	cyc2ns_read_end();
117 
118 	return ns;
119 }
120 
121 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
122 {
123 	unsigned long long ns_now;
124 	struct cyc2ns_data data;
125 	struct cyc2ns *c2n;
126 
127 	ns_now = cycles_2_ns(tsc_now);
128 
129 	/*
130 	 * Compute a new multiplier as per the above comment and ensure our
131 	 * time function is continuous; see the comment near struct
132 	 * cyc2ns_data.
133 	 */
134 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
135 			       NSEC_PER_MSEC, 0);
136 
137 	/*
138 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
139 	 * not expected to be greater than 31 due to the original published
140 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
141 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
142 	 */
143 	if (data.cyc2ns_shift == 32) {
144 		data.cyc2ns_shift = 31;
145 		data.cyc2ns_mul >>= 1;
146 	}
147 
148 	data.cyc2ns_offset = ns_now -
149 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
150 
151 	c2n = per_cpu_ptr(&cyc2ns, cpu);
152 
153 	raw_write_seqcount_latch(&c2n->seq);
154 	c2n->data[0] = data;
155 	raw_write_seqcount_latch(&c2n->seq);
156 	c2n->data[1] = data;
157 }
158 
159 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
160 {
161 	unsigned long flags;
162 
163 	local_irq_save(flags);
164 	sched_clock_idle_sleep_event();
165 
166 	if (khz)
167 		__set_cyc2ns_scale(khz, cpu, tsc_now);
168 
169 	sched_clock_idle_wakeup_event();
170 	local_irq_restore(flags);
171 }
172 
173 /*
174  * Initialize cyc2ns for boot cpu
175  */
176 static void __init cyc2ns_init_boot_cpu(void)
177 {
178 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
179 
180 	seqcount_init(&c2n->seq);
181 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
182 }
183 
184 /*
185  * Secondary CPUs do not run through tsc_init(), so set up
186  * all the scale factors for all CPUs, assuming the same
187  * speed as the bootup CPU. (cpufreq notifiers will fix this
188  * up if their speed diverges)
189  */
190 static void __init cyc2ns_init_secondary_cpus(void)
191 {
192 	unsigned int cpu, this_cpu = smp_processor_id();
193 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
194 	struct cyc2ns_data *data = c2n->data;
195 
196 	for_each_possible_cpu(cpu) {
197 		if (cpu != this_cpu) {
198 			seqcount_init(&c2n->seq);
199 			c2n = per_cpu_ptr(&cyc2ns, cpu);
200 			c2n->data[0] = data[0];
201 			c2n->data[1] = data[1];
202 		}
203 	}
204 }
205 
206 /*
207  * Scheduler clock - returns current time in nanosec units.
208  */
209 u64 native_sched_clock(void)
210 {
211 	if (static_branch_likely(&__use_tsc)) {
212 		u64 tsc_now = rdtsc();
213 
214 		/* return the value in ns */
215 		return cycles_2_ns(tsc_now);
216 	}
217 
218 	/*
219 	 * Fall back to jiffies if there's no TSC available:
220 	 * ( But note that we still use it if the TSC is marked
221 	 *   unstable. We do this because unlike Time Of Day,
222 	 *   the scheduler clock tolerates small errors and it's
223 	 *   very important for it to be as fast as the platform
224 	 *   can achieve it. )
225 	 */
226 
227 	/* No locking but a rare wrong value is not a big deal: */
228 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
229 }
230 
231 /*
232  * Generate a sched_clock if you already have a TSC value.
233  */
234 u64 native_sched_clock_from_tsc(u64 tsc)
235 {
236 	return cycles_2_ns(tsc);
237 }
238 
239 /* We need to define a real function for sched_clock, to override the
240    weak default version */
241 #ifdef CONFIG_PARAVIRT
242 unsigned long long sched_clock(void)
243 {
244 	return paravirt_sched_clock();
245 }
246 
247 bool using_native_sched_clock(void)
248 {
249 	return pv_time_ops.sched_clock == native_sched_clock;
250 }
251 #else
252 unsigned long long
253 sched_clock(void) __attribute__((alias("native_sched_clock")));
254 
255 bool using_native_sched_clock(void) { return true; }
256 #endif
257 
258 int check_tsc_unstable(void)
259 {
260 	return tsc_unstable;
261 }
262 EXPORT_SYMBOL_GPL(check_tsc_unstable);
263 
264 #ifdef CONFIG_X86_TSC
265 int __init notsc_setup(char *str)
266 {
267 	mark_tsc_unstable("boot parameter notsc");
268 	return 1;
269 }
270 #else
271 /*
272  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
273  * in cpu/common.c
274  */
275 int __init notsc_setup(char *str)
276 {
277 	setup_clear_cpu_cap(X86_FEATURE_TSC);
278 	return 1;
279 }
280 #endif
281 
282 __setup("notsc", notsc_setup);
283 
284 static int no_sched_irq_time;
285 
286 static int __init tsc_setup(char *str)
287 {
288 	if (!strcmp(str, "reliable"))
289 		tsc_clocksource_reliable = 1;
290 	if (!strncmp(str, "noirqtime", 9))
291 		no_sched_irq_time = 1;
292 	if (!strcmp(str, "unstable"))
293 		mark_tsc_unstable("boot parameter");
294 	return 1;
295 }
296 
297 __setup("tsc=", tsc_setup);
298 
299 #define MAX_RETRIES     5
300 #define SMI_TRESHOLD    50000
301 
302 /*
303  * Read TSC and the reference counters. Take care of SMI disturbance
304  */
305 static u64 tsc_read_refs(u64 *p, int hpet)
306 {
307 	u64 t1, t2;
308 	int i;
309 
310 	for (i = 0; i < MAX_RETRIES; i++) {
311 		t1 = get_cycles();
312 		if (hpet)
313 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
314 		else
315 			*p = acpi_pm_read_early();
316 		t2 = get_cycles();
317 		if ((t2 - t1) < SMI_TRESHOLD)
318 			return t2;
319 	}
320 	return ULLONG_MAX;
321 }
322 
323 /*
324  * Calculate the TSC frequency from HPET reference
325  */
326 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
327 {
328 	u64 tmp;
329 
330 	if (hpet2 < hpet1)
331 		hpet2 += 0x100000000ULL;
332 	hpet2 -= hpet1;
333 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
334 	do_div(tmp, 1000000);
335 	deltatsc = div64_u64(deltatsc, tmp);
336 
337 	return (unsigned long) deltatsc;
338 }
339 
340 /*
341  * Calculate the TSC frequency from PMTimer reference
342  */
343 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
344 {
345 	u64 tmp;
346 
347 	if (!pm1 && !pm2)
348 		return ULONG_MAX;
349 
350 	if (pm2 < pm1)
351 		pm2 += (u64)ACPI_PM_OVRRUN;
352 	pm2 -= pm1;
353 	tmp = pm2 * 1000000000LL;
354 	do_div(tmp, PMTMR_TICKS_PER_SEC);
355 	do_div(deltatsc, tmp);
356 
357 	return (unsigned long) deltatsc;
358 }
359 
360 #define CAL_MS		10
361 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
362 #define CAL_PIT_LOOPS	1000
363 
364 #define CAL2_MS		50
365 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
366 #define CAL2_PIT_LOOPS	5000
367 
368 
369 /*
370  * Try to calibrate the TSC against the Programmable
371  * Interrupt Timer and return the frequency of the TSC
372  * in kHz.
373  *
374  * Return ULONG_MAX on failure to calibrate.
375  */
376 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
377 {
378 	u64 tsc, t1, t2, delta;
379 	unsigned long tscmin, tscmax;
380 	int pitcnt;
381 
382 	if (!has_legacy_pic()) {
383 		/*
384 		 * Relies on tsc_early_delay_calibrate() to have given us semi
385 		 * usable udelay(), wait for the same 50ms we would have with
386 		 * the PIT loop below.
387 		 */
388 		udelay(10 * USEC_PER_MSEC);
389 		udelay(10 * USEC_PER_MSEC);
390 		udelay(10 * USEC_PER_MSEC);
391 		udelay(10 * USEC_PER_MSEC);
392 		udelay(10 * USEC_PER_MSEC);
393 		return ULONG_MAX;
394 	}
395 
396 	/* Set the Gate high, disable speaker */
397 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
398 
399 	/*
400 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
401 	 * count mode), binary count. Set the latch register to 50ms
402 	 * (LSB then MSB) to begin countdown.
403 	 */
404 	outb(0xb0, 0x43);
405 	outb(latch & 0xff, 0x42);
406 	outb(latch >> 8, 0x42);
407 
408 	tsc = t1 = t2 = get_cycles();
409 
410 	pitcnt = 0;
411 	tscmax = 0;
412 	tscmin = ULONG_MAX;
413 	while ((inb(0x61) & 0x20) == 0) {
414 		t2 = get_cycles();
415 		delta = t2 - tsc;
416 		tsc = t2;
417 		if ((unsigned long) delta < tscmin)
418 			tscmin = (unsigned int) delta;
419 		if ((unsigned long) delta > tscmax)
420 			tscmax = (unsigned int) delta;
421 		pitcnt++;
422 	}
423 
424 	/*
425 	 * Sanity checks:
426 	 *
427 	 * If we were not able to read the PIT more than loopmin
428 	 * times, then we have been hit by a massive SMI
429 	 *
430 	 * If the maximum is 10 times larger than the minimum,
431 	 * then we got hit by an SMI as well.
432 	 */
433 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
434 		return ULONG_MAX;
435 
436 	/* Calculate the PIT value */
437 	delta = t2 - t1;
438 	do_div(delta, ms);
439 	return delta;
440 }
441 
442 /*
443  * This reads the current MSB of the PIT counter, and
444  * checks if we are running on sufficiently fast and
445  * non-virtualized hardware.
446  *
447  * Our expectations are:
448  *
449  *  - the PIT is running at roughly 1.19MHz
450  *
451  *  - each IO is going to take about 1us on real hardware,
452  *    but we allow it to be much faster (by a factor of 10) or
453  *    _slightly_ slower (ie we allow up to a 2us read+counter
454  *    update - anything else implies a unacceptably slow CPU
455  *    or PIT for the fast calibration to work.
456  *
457  *  - with 256 PIT ticks to read the value, we have 214us to
458  *    see the same MSB (and overhead like doing a single TSC
459  *    read per MSB value etc).
460  *
461  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
462  *    them each to take about a microsecond on real hardware.
463  *    So we expect a count value of around 100. But we'll be
464  *    generous, and accept anything over 50.
465  *
466  *  - if the PIT is stuck, and we see *many* more reads, we
467  *    return early (and the next caller of pit_expect_msb()
468  *    then consider it a failure when they don't see the
469  *    next expected value).
470  *
471  * These expectations mean that we know that we have seen the
472  * transition from one expected value to another with a fairly
473  * high accuracy, and we didn't miss any events. We can thus
474  * use the TSC value at the transitions to calculate a pretty
475  * good value for the TSC frequencty.
476  */
477 static inline int pit_verify_msb(unsigned char val)
478 {
479 	/* Ignore LSB */
480 	inb(0x42);
481 	return inb(0x42) == val;
482 }
483 
484 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
485 {
486 	int count;
487 	u64 tsc = 0, prev_tsc = 0;
488 
489 	for (count = 0; count < 50000; count++) {
490 		if (!pit_verify_msb(val))
491 			break;
492 		prev_tsc = tsc;
493 		tsc = get_cycles();
494 	}
495 	*deltap = get_cycles() - prev_tsc;
496 	*tscp = tsc;
497 
498 	/*
499 	 * We require _some_ success, but the quality control
500 	 * will be based on the error terms on the TSC values.
501 	 */
502 	return count > 5;
503 }
504 
505 /*
506  * How many MSB values do we want to see? We aim for
507  * a maximum error rate of 500ppm (in practice the
508  * real error is much smaller), but refuse to spend
509  * more than 50ms on it.
510  */
511 #define MAX_QUICK_PIT_MS 50
512 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
513 
514 static unsigned long quick_pit_calibrate(void)
515 {
516 	int i;
517 	u64 tsc, delta;
518 	unsigned long d1, d2;
519 
520 	if (!has_legacy_pic())
521 		return 0;
522 
523 	/* Set the Gate high, disable speaker */
524 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
525 
526 	/*
527 	 * Counter 2, mode 0 (one-shot), binary count
528 	 *
529 	 * NOTE! Mode 2 decrements by two (and then the
530 	 * output is flipped each time, giving the same
531 	 * final output frequency as a decrement-by-one),
532 	 * so mode 0 is much better when looking at the
533 	 * individual counts.
534 	 */
535 	outb(0xb0, 0x43);
536 
537 	/* Start at 0xffff */
538 	outb(0xff, 0x42);
539 	outb(0xff, 0x42);
540 
541 	/*
542 	 * The PIT starts counting at the next edge, so we
543 	 * need to delay for a microsecond. The easiest way
544 	 * to do that is to just read back the 16-bit counter
545 	 * once from the PIT.
546 	 */
547 	pit_verify_msb(0);
548 
549 	if (pit_expect_msb(0xff, &tsc, &d1)) {
550 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
551 			if (!pit_expect_msb(0xff-i, &delta, &d2))
552 				break;
553 
554 			delta -= tsc;
555 
556 			/*
557 			 * Extrapolate the error and fail fast if the error will
558 			 * never be below 500 ppm.
559 			 */
560 			if (i == 1 &&
561 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
562 				return 0;
563 
564 			/*
565 			 * Iterate until the error is less than 500 ppm
566 			 */
567 			if (d1+d2 >= delta >> 11)
568 				continue;
569 
570 			/*
571 			 * Check the PIT one more time to verify that
572 			 * all TSC reads were stable wrt the PIT.
573 			 *
574 			 * This also guarantees serialization of the
575 			 * last cycle read ('d2') in pit_expect_msb.
576 			 */
577 			if (!pit_verify_msb(0xfe - i))
578 				break;
579 			goto success;
580 		}
581 	}
582 	pr_info("Fast TSC calibration failed\n");
583 	return 0;
584 
585 success:
586 	/*
587 	 * Ok, if we get here, then we've seen the
588 	 * MSB of the PIT decrement 'i' times, and the
589 	 * error has shrunk to less than 500 ppm.
590 	 *
591 	 * As a result, we can depend on there not being
592 	 * any odd delays anywhere, and the TSC reads are
593 	 * reliable (within the error).
594 	 *
595 	 * kHz = ticks / time-in-seconds / 1000;
596 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
597 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
598 	 */
599 	delta *= PIT_TICK_RATE;
600 	do_div(delta, i*256*1000);
601 	pr_info("Fast TSC calibration using PIT\n");
602 	return delta;
603 }
604 
605 /**
606  * native_calibrate_tsc
607  * Determine TSC frequency via CPUID, else return 0.
608  */
609 unsigned long native_calibrate_tsc(void)
610 {
611 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
612 	unsigned int crystal_khz;
613 
614 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
615 		return 0;
616 
617 	if (boot_cpu_data.cpuid_level < 0x15)
618 		return 0;
619 
620 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
621 
622 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
623 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
624 
625 	if (ebx_numerator == 0 || eax_denominator == 0)
626 		return 0;
627 
628 	crystal_khz = ecx_hz / 1000;
629 
630 	if (crystal_khz == 0) {
631 		switch (boot_cpu_data.x86_model) {
632 		case INTEL_FAM6_SKYLAKE_MOBILE:
633 		case INTEL_FAM6_SKYLAKE_DESKTOP:
634 		case INTEL_FAM6_KABYLAKE_MOBILE:
635 		case INTEL_FAM6_KABYLAKE_DESKTOP:
636 			crystal_khz = 24000;	/* 24.0 MHz */
637 			break;
638 		case INTEL_FAM6_ATOM_DENVERTON:
639 			crystal_khz = 25000;	/* 25.0 MHz */
640 			break;
641 		case INTEL_FAM6_ATOM_GOLDMONT:
642 			crystal_khz = 19200;	/* 19.2 MHz */
643 			break;
644 		}
645 	}
646 
647 	if (crystal_khz == 0)
648 		return 0;
649 	/*
650 	 * TSC frequency determined by CPUID is a "hardware reported"
651 	 * frequency and is the most accurate one so far we have. This
652 	 * is considered a known frequency.
653 	 */
654 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
655 
656 	/*
657 	 * For Atom SoCs TSC is the only reliable clocksource.
658 	 * Mark TSC reliable so no watchdog on it.
659 	 */
660 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
661 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
662 
663 	return crystal_khz * ebx_numerator / eax_denominator;
664 }
665 
666 static unsigned long cpu_khz_from_cpuid(void)
667 {
668 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
669 
670 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
671 		return 0;
672 
673 	if (boot_cpu_data.cpuid_level < 0x16)
674 		return 0;
675 
676 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
677 
678 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
679 
680 	return eax_base_mhz * 1000;
681 }
682 
683 /*
684  * calibrate cpu using pit, hpet, and ptimer methods. They are available
685  * later in boot after acpi is initialized.
686  */
687 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
688 {
689 	u64 tsc1, tsc2, delta, ref1, ref2;
690 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
691 	unsigned long flags, latch, ms;
692 	int hpet = is_hpet_enabled(), i, loopmin;
693 
694 	/*
695 	 * Run 5 calibration loops to get the lowest frequency value
696 	 * (the best estimate). We use two different calibration modes
697 	 * here:
698 	 *
699 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
700 	 * load a timeout of 50ms. We read the time right after we
701 	 * started the timer and wait until the PIT count down reaches
702 	 * zero. In each wait loop iteration we read the TSC and check
703 	 * the delta to the previous read. We keep track of the min
704 	 * and max values of that delta. The delta is mostly defined
705 	 * by the IO time of the PIT access, so we can detect when a
706 	 * SMI/SMM disturbance happened between the two reads. If the
707 	 * maximum time is significantly larger than the minimum time,
708 	 * then we discard the result and have another try.
709 	 *
710 	 * 2) Reference counter. If available we use the HPET or the
711 	 * PMTIMER as a reference to check the sanity of that value.
712 	 * We use separate TSC readouts and check inside of the
713 	 * reference read for a SMI/SMM disturbance. We dicard
714 	 * disturbed values here as well. We do that around the PIT
715 	 * calibration delay loop as we have to wait for a certain
716 	 * amount of time anyway.
717 	 */
718 
719 	/* Preset PIT loop values */
720 	latch = CAL_LATCH;
721 	ms = CAL_MS;
722 	loopmin = CAL_PIT_LOOPS;
723 
724 	for (i = 0; i < 3; i++) {
725 		unsigned long tsc_pit_khz;
726 
727 		/*
728 		 * Read the start value and the reference count of
729 		 * hpet/pmtimer when available. Then do the PIT
730 		 * calibration, which will take at least 50ms, and
731 		 * read the end value.
732 		 */
733 		local_irq_save(flags);
734 		tsc1 = tsc_read_refs(&ref1, hpet);
735 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
736 		tsc2 = tsc_read_refs(&ref2, hpet);
737 		local_irq_restore(flags);
738 
739 		/* Pick the lowest PIT TSC calibration so far */
740 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
741 
742 		/* hpet or pmtimer available ? */
743 		if (ref1 == ref2)
744 			continue;
745 
746 		/* Check, whether the sampling was disturbed by an SMI */
747 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
748 			continue;
749 
750 		tsc2 = (tsc2 - tsc1) * 1000000LL;
751 		if (hpet)
752 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
753 		else
754 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
755 
756 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
757 
758 		/* Check the reference deviation */
759 		delta = ((u64) tsc_pit_min) * 100;
760 		do_div(delta, tsc_ref_min);
761 
762 		/*
763 		 * If both calibration results are inside a 10% window
764 		 * then we can be sure, that the calibration
765 		 * succeeded. We break out of the loop right away. We
766 		 * use the reference value, as it is more precise.
767 		 */
768 		if (delta >= 90 && delta <= 110) {
769 			pr_info("PIT calibration matches %s. %d loops\n",
770 				hpet ? "HPET" : "PMTIMER", i + 1);
771 			return tsc_ref_min;
772 		}
773 
774 		/*
775 		 * Check whether PIT failed more than once. This
776 		 * happens in virtualized environments. We need to
777 		 * give the virtual PC a slightly longer timeframe for
778 		 * the HPET/PMTIMER to make the result precise.
779 		 */
780 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
781 			latch = CAL2_LATCH;
782 			ms = CAL2_MS;
783 			loopmin = CAL2_PIT_LOOPS;
784 		}
785 	}
786 
787 	/*
788 	 * Now check the results.
789 	 */
790 	if (tsc_pit_min == ULONG_MAX) {
791 		/* PIT gave no useful value */
792 		pr_warn("Unable to calibrate against PIT\n");
793 
794 		/* We don't have an alternative source, disable TSC */
795 		if (!hpet && !ref1 && !ref2) {
796 			pr_notice("No reference (HPET/PMTIMER) available\n");
797 			return 0;
798 		}
799 
800 		/* The alternative source failed as well, disable TSC */
801 		if (tsc_ref_min == ULONG_MAX) {
802 			pr_warn("HPET/PMTIMER calibration failed\n");
803 			return 0;
804 		}
805 
806 		/* Use the alternative source */
807 		pr_info("using %s reference calibration\n",
808 			hpet ? "HPET" : "PMTIMER");
809 
810 		return tsc_ref_min;
811 	}
812 
813 	/* We don't have an alternative source, use the PIT calibration value */
814 	if (!hpet && !ref1 && !ref2) {
815 		pr_info("Using PIT calibration value\n");
816 		return tsc_pit_min;
817 	}
818 
819 	/* The alternative source failed, use the PIT calibration value */
820 	if (tsc_ref_min == ULONG_MAX) {
821 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
822 		return tsc_pit_min;
823 	}
824 
825 	/*
826 	 * The calibration values differ too much. In doubt, we use
827 	 * the PIT value as we know that there are PMTIMERs around
828 	 * running at double speed. At least we let the user know:
829 	 */
830 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
831 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
832 	pr_info("Using PIT calibration value\n");
833 	return tsc_pit_min;
834 }
835 
836 /**
837  * native_calibrate_cpu_early - can calibrate the cpu early in boot
838  */
839 unsigned long native_calibrate_cpu_early(void)
840 {
841 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
842 
843 	if (!fast_calibrate)
844 		fast_calibrate = cpu_khz_from_msr();
845 	if (!fast_calibrate) {
846 		local_irq_save(flags);
847 		fast_calibrate = quick_pit_calibrate();
848 		local_irq_restore(flags);
849 	}
850 	return fast_calibrate;
851 }
852 
853 
854 /**
855  * native_calibrate_cpu - calibrate the cpu
856  */
857 static unsigned long native_calibrate_cpu(void)
858 {
859 	unsigned long tsc_freq = native_calibrate_cpu_early();
860 
861 	if (!tsc_freq)
862 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
863 
864 	return tsc_freq;
865 }
866 
867 void recalibrate_cpu_khz(void)
868 {
869 #ifndef CONFIG_SMP
870 	unsigned long cpu_khz_old = cpu_khz;
871 
872 	if (!boot_cpu_has(X86_FEATURE_TSC))
873 		return;
874 
875 	cpu_khz = x86_platform.calibrate_cpu();
876 	tsc_khz = x86_platform.calibrate_tsc();
877 	if (tsc_khz == 0)
878 		tsc_khz = cpu_khz;
879 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
880 		cpu_khz = tsc_khz;
881 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
882 						    cpu_khz_old, cpu_khz);
883 #endif
884 }
885 
886 EXPORT_SYMBOL(recalibrate_cpu_khz);
887 
888 
889 static unsigned long long cyc2ns_suspend;
890 
891 void tsc_save_sched_clock_state(void)
892 {
893 	if (!sched_clock_stable())
894 		return;
895 
896 	cyc2ns_suspend = sched_clock();
897 }
898 
899 /*
900  * Even on processors with invariant TSC, TSC gets reset in some the
901  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
902  * arbitrary value (still sync'd across cpu's) during resume from such sleep
903  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
904  * that sched_clock() continues from the point where it was left off during
905  * suspend.
906  */
907 void tsc_restore_sched_clock_state(void)
908 {
909 	unsigned long long offset;
910 	unsigned long flags;
911 	int cpu;
912 
913 	if (!sched_clock_stable())
914 		return;
915 
916 	local_irq_save(flags);
917 
918 	/*
919 	 * We're coming out of suspend, there's no concurrency yet; don't
920 	 * bother being nice about the RCU stuff, just write to both
921 	 * data fields.
922 	 */
923 
924 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
925 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
926 
927 	offset = cyc2ns_suspend - sched_clock();
928 
929 	for_each_possible_cpu(cpu) {
930 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
931 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
932 	}
933 
934 	local_irq_restore(flags);
935 }
936 
937 #ifdef CONFIG_CPU_FREQ
938 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
939  * changes.
940  *
941  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
942  * not that important because current Opteron setups do not support
943  * scaling on SMP anyroads.
944  *
945  * Should fix up last_tsc too. Currently gettimeofday in the
946  * first tick after the change will be slightly wrong.
947  */
948 
949 static unsigned int  ref_freq;
950 static unsigned long loops_per_jiffy_ref;
951 static unsigned long tsc_khz_ref;
952 
953 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
954 				void *data)
955 {
956 	struct cpufreq_freqs *freq = data;
957 	unsigned long *lpj;
958 
959 	lpj = &boot_cpu_data.loops_per_jiffy;
960 #ifdef CONFIG_SMP
961 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
962 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
963 #endif
964 
965 	if (!ref_freq) {
966 		ref_freq = freq->old;
967 		loops_per_jiffy_ref = *lpj;
968 		tsc_khz_ref = tsc_khz;
969 	}
970 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
971 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
972 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
973 
974 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
975 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
976 			mark_tsc_unstable("cpufreq changes");
977 
978 		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
979 	}
980 
981 	return 0;
982 }
983 
984 static struct notifier_block time_cpufreq_notifier_block = {
985 	.notifier_call  = time_cpufreq_notifier
986 };
987 
988 static int __init cpufreq_register_tsc_scaling(void)
989 {
990 	if (!boot_cpu_has(X86_FEATURE_TSC))
991 		return 0;
992 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
993 		return 0;
994 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
995 				CPUFREQ_TRANSITION_NOTIFIER);
996 	return 0;
997 }
998 
999 core_initcall(cpufreq_register_tsc_scaling);
1000 
1001 #endif /* CONFIG_CPU_FREQ */
1002 
1003 #define ART_CPUID_LEAF (0x15)
1004 #define ART_MIN_DENOMINATOR (1)
1005 
1006 
1007 /*
1008  * If ART is present detect the numerator:denominator to convert to TSC
1009  */
1010 static void __init detect_art(void)
1011 {
1012 	unsigned int unused[2];
1013 
1014 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1015 		return;
1016 
1017 	/*
1018 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1019 	 * and the TSC counter resets must not occur asynchronously.
1020 	 */
1021 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1022 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1023 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1024 	    tsc_async_resets)
1025 		return;
1026 
1027 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1028 	      &art_to_tsc_numerator, unused, unused+1);
1029 
1030 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1031 		return;
1032 
1033 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1034 
1035 	/* Make this sticky over multiple CPU init calls */
1036 	setup_force_cpu_cap(X86_FEATURE_ART);
1037 }
1038 
1039 
1040 /* clocksource code */
1041 
1042 static void tsc_resume(struct clocksource *cs)
1043 {
1044 	tsc_verify_tsc_adjust(true);
1045 }
1046 
1047 /*
1048  * We used to compare the TSC to the cycle_last value in the clocksource
1049  * structure to avoid a nasty time-warp. This can be observed in a
1050  * very small window right after one CPU updated cycle_last under
1051  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1052  * is smaller than the cycle_last reference value due to a TSC which
1053  * is slighty behind. This delta is nowhere else observable, but in
1054  * that case it results in a forward time jump in the range of hours
1055  * due to the unsigned delta calculation of the time keeping core
1056  * code, which is necessary to support wrapping clocksources like pm
1057  * timer.
1058  *
1059  * This sanity check is now done in the core timekeeping code.
1060  * checking the result of read_tsc() - cycle_last for being negative.
1061  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1062  */
1063 static u64 read_tsc(struct clocksource *cs)
1064 {
1065 	return (u64)rdtsc_ordered();
1066 }
1067 
1068 static void tsc_cs_mark_unstable(struct clocksource *cs)
1069 {
1070 	if (tsc_unstable)
1071 		return;
1072 
1073 	tsc_unstable = 1;
1074 	if (using_native_sched_clock())
1075 		clear_sched_clock_stable();
1076 	disable_sched_clock_irqtime();
1077 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1078 }
1079 
1080 static void tsc_cs_tick_stable(struct clocksource *cs)
1081 {
1082 	if (tsc_unstable)
1083 		return;
1084 
1085 	if (using_native_sched_clock())
1086 		sched_clock_tick_stable();
1087 }
1088 
1089 /*
1090  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1091  */
1092 static struct clocksource clocksource_tsc_early = {
1093 	.name                   = "tsc-early",
1094 	.rating                 = 299,
1095 	.read                   = read_tsc,
1096 	.mask                   = CLOCKSOURCE_MASK(64),
1097 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1098 				  CLOCK_SOURCE_MUST_VERIFY,
1099 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1100 	.resume			= tsc_resume,
1101 	.mark_unstable		= tsc_cs_mark_unstable,
1102 	.tick_stable		= tsc_cs_tick_stable,
1103 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1104 };
1105 
1106 /*
1107  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1108  * this one will immediately take over. We will only register if TSC has
1109  * been found good.
1110  */
1111 static struct clocksource clocksource_tsc = {
1112 	.name                   = "tsc",
1113 	.rating                 = 300,
1114 	.read                   = read_tsc,
1115 	.mask                   = CLOCKSOURCE_MASK(64),
1116 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1117 				  CLOCK_SOURCE_VALID_FOR_HRES |
1118 				  CLOCK_SOURCE_MUST_VERIFY,
1119 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1120 	.resume			= tsc_resume,
1121 	.mark_unstable		= tsc_cs_mark_unstable,
1122 	.tick_stable		= tsc_cs_tick_stable,
1123 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1124 };
1125 
1126 void mark_tsc_unstable(char *reason)
1127 {
1128 	if (tsc_unstable)
1129 		return;
1130 
1131 	tsc_unstable = 1;
1132 	if (using_native_sched_clock())
1133 		clear_sched_clock_stable();
1134 	disable_sched_clock_irqtime();
1135 	pr_info("Marking TSC unstable due to %s\n", reason);
1136 
1137 	clocksource_mark_unstable(&clocksource_tsc_early);
1138 	clocksource_mark_unstable(&clocksource_tsc);
1139 }
1140 
1141 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1142 
1143 static void __init check_system_tsc_reliable(void)
1144 {
1145 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1146 	if (is_geode_lx()) {
1147 		/* RTSC counts during suspend */
1148 #define RTSC_SUSP 0x100
1149 		unsigned long res_low, res_high;
1150 
1151 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1152 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1153 		if (res_low & RTSC_SUSP)
1154 			tsc_clocksource_reliable = 1;
1155 	}
1156 #endif
1157 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1158 		tsc_clocksource_reliable = 1;
1159 }
1160 
1161 /*
1162  * Make an educated guess if the TSC is trustworthy and synchronized
1163  * over all CPUs.
1164  */
1165 int unsynchronized_tsc(void)
1166 {
1167 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1168 		return 1;
1169 
1170 #ifdef CONFIG_SMP
1171 	if (apic_is_clustered_box())
1172 		return 1;
1173 #endif
1174 
1175 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1176 		return 0;
1177 
1178 	if (tsc_clocksource_reliable)
1179 		return 0;
1180 	/*
1181 	 * Intel systems are normally all synchronized.
1182 	 * Exceptions must mark TSC as unstable:
1183 	 */
1184 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1185 		/* assume multi socket systems are not synchronized: */
1186 		if (num_possible_cpus() > 1)
1187 			return 1;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Convert ART to TSC given numerator/denominator found in detect_art()
1195  */
1196 struct system_counterval_t convert_art_to_tsc(u64 art)
1197 {
1198 	u64 tmp, res, rem;
1199 
1200 	rem = do_div(art, art_to_tsc_denominator);
1201 
1202 	res = art * art_to_tsc_numerator;
1203 	tmp = rem * art_to_tsc_numerator;
1204 
1205 	do_div(tmp, art_to_tsc_denominator);
1206 	res += tmp + art_to_tsc_offset;
1207 
1208 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1209 			.cycles = res};
1210 }
1211 EXPORT_SYMBOL(convert_art_to_tsc);
1212 
1213 /**
1214  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1215  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1216  *
1217  * PTM requires all timestamps to be in units of nanoseconds. When user
1218  * software requests a cross-timestamp, this function converts system timestamp
1219  * to TSC.
1220  *
1221  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1222  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1223  * that this flag is set before conversion to TSC is attempted.
1224  *
1225  * Return:
1226  * struct system_counterval_t - system counter value with the pointer to the
1227  *	corresponding clocksource
1228  *	@cycles:	System counter value
1229  *	@cs:		Clocksource corresponding to system counter value. Used
1230  *			by timekeeping code to verify comparibility of two cycle
1231  *			values.
1232  */
1233 
1234 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1235 {
1236 	u64 tmp, res, rem;
1237 
1238 	rem = do_div(art_ns, USEC_PER_SEC);
1239 
1240 	res = art_ns * tsc_khz;
1241 	tmp = rem * tsc_khz;
1242 
1243 	do_div(tmp, USEC_PER_SEC);
1244 	res += tmp;
1245 
1246 	return (struct system_counterval_t) { .cs = art_related_clocksource,
1247 					      .cycles = res};
1248 }
1249 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1250 
1251 
1252 static void tsc_refine_calibration_work(struct work_struct *work);
1253 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1254 /**
1255  * tsc_refine_calibration_work - Further refine tsc freq calibration
1256  * @work - ignored.
1257  *
1258  * This functions uses delayed work over a period of a
1259  * second to further refine the TSC freq value. Since this is
1260  * timer based, instead of loop based, we don't block the boot
1261  * process while this longer calibration is done.
1262  *
1263  * If there are any calibration anomalies (too many SMIs, etc),
1264  * or the refined calibration is off by 1% of the fast early
1265  * calibration, we throw out the new calibration and use the
1266  * early calibration.
1267  */
1268 static void tsc_refine_calibration_work(struct work_struct *work)
1269 {
1270 	static u64 tsc_start = -1, ref_start;
1271 	static int hpet;
1272 	u64 tsc_stop, ref_stop, delta;
1273 	unsigned long freq;
1274 	int cpu;
1275 
1276 	/* Don't bother refining TSC on unstable systems */
1277 	if (tsc_unstable)
1278 		goto unreg;
1279 
1280 	/*
1281 	 * Since the work is started early in boot, we may be
1282 	 * delayed the first time we expire. So set the workqueue
1283 	 * again once we know timers are working.
1284 	 */
1285 	if (tsc_start == -1) {
1286 		/*
1287 		 * Only set hpet once, to avoid mixing hardware
1288 		 * if the hpet becomes enabled later.
1289 		 */
1290 		hpet = is_hpet_enabled();
1291 		schedule_delayed_work(&tsc_irqwork, HZ);
1292 		tsc_start = tsc_read_refs(&ref_start, hpet);
1293 		return;
1294 	}
1295 
1296 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1297 
1298 	/* hpet or pmtimer available ? */
1299 	if (ref_start == ref_stop)
1300 		goto out;
1301 
1302 	/* Check, whether the sampling was disturbed by an SMI */
1303 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1304 		goto out;
1305 
1306 	delta = tsc_stop - tsc_start;
1307 	delta *= 1000000LL;
1308 	if (hpet)
1309 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1310 	else
1311 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1312 
1313 	/* Make sure we're within 1% */
1314 	if (abs(tsc_khz - freq) > tsc_khz/100)
1315 		goto out;
1316 
1317 	tsc_khz = freq;
1318 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1319 		(unsigned long)tsc_khz / 1000,
1320 		(unsigned long)tsc_khz % 1000);
1321 
1322 	/* Inform the TSC deadline clockevent devices about the recalibration */
1323 	lapic_update_tsc_freq();
1324 
1325 	/* Update the sched_clock() rate to match the clocksource one */
1326 	for_each_possible_cpu(cpu)
1327 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1328 
1329 out:
1330 	if (tsc_unstable)
1331 		goto unreg;
1332 
1333 	if (boot_cpu_has(X86_FEATURE_ART))
1334 		art_related_clocksource = &clocksource_tsc;
1335 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1336 unreg:
1337 	clocksource_unregister(&clocksource_tsc_early);
1338 }
1339 
1340 
1341 static int __init init_tsc_clocksource(void)
1342 {
1343 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1344 		return 0;
1345 
1346 	if (tsc_unstable)
1347 		goto unreg;
1348 
1349 	if (tsc_clocksource_reliable)
1350 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1351 
1352 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1353 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1354 
1355 	/*
1356 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1357 	 * the refined calibration and directly register it as a clocksource.
1358 	 */
1359 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1360 		if (boot_cpu_has(X86_FEATURE_ART))
1361 			art_related_clocksource = &clocksource_tsc;
1362 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1363 unreg:
1364 		clocksource_unregister(&clocksource_tsc_early);
1365 		return 0;
1366 	}
1367 
1368 	schedule_delayed_work(&tsc_irqwork, 0);
1369 	return 0;
1370 }
1371 /*
1372  * We use device_initcall here, to ensure we run after the hpet
1373  * is fully initialized, which may occur at fs_initcall time.
1374  */
1375 device_initcall(init_tsc_clocksource);
1376 
1377 static bool __init determine_cpu_tsc_frequencies(bool early)
1378 {
1379 	/* Make sure that cpu and tsc are not already calibrated */
1380 	WARN_ON(cpu_khz || tsc_khz);
1381 
1382 	if (early) {
1383 		cpu_khz = x86_platform.calibrate_cpu();
1384 		tsc_khz = x86_platform.calibrate_tsc();
1385 	} else {
1386 		/* We should not be here with non-native cpu calibration */
1387 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1388 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1389 	}
1390 
1391 	/*
1392 	 * Trust non-zero tsc_khz as authoritative,
1393 	 * and use it to sanity check cpu_khz,
1394 	 * which will be off if system timer is off.
1395 	 */
1396 	if (tsc_khz == 0)
1397 		tsc_khz = cpu_khz;
1398 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1399 		cpu_khz = tsc_khz;
1400 
1401 	if (tsc_khz == 0)
1402 		return false;
1403 
1404 	pr_info("Detected %lu.%03lu MHz processor\n",
1405 		(unsigned long)cpu_khz / KHZ,
1406 		(unsigned long)cpu_khz % KHZ);
1407 
1408 	if (cpu_khz != tsc_khz) {
1409 		pr_info("Detected %lu.%03lu MHz TSC",
1410 			(unsigned long)tsc_khz / KHZ,
1411 			(unsigned long)tsc_khz % KHZ);
1412 	}
1413 	return true;
1414 }
1415 
1416 static unsigned long __init get_loops_per_jiffy(void)
1417 {
1418 	unsigned long lpj = tsc_khz * KHZ;
1419 
1420 	do_div(lpj, HZ);
1421 	return lpj;
1422 }
1423 
1424 static void __init tsc_enable_sched_clock(void)
1425 {
1426 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1427 	tsc_store_and_check_tsc_adjust(true);
1428 	cyc2ns_init_boot_cpu();
1429 	static_branch_enable(&__use_tsc);
1430 }
1431 
1432 void __init tsc_early_init(void)
1433 {
1434 	if (!boot_cpu_has(X86_FEATURE_TSC))
1435 		return;
1436 	if (!determine_cpu_tsc_frequencies(true))
1437 		return;
1438 	loops_per_jiffy = get_loops_per_jiffy();
1439 
1440 	tsc_enable_sched_clock();
1441 }
1442 
1443 void __init tsc_init(void)
1444 {
1445 	/*
1446 	 * native_calibrate_cpu_early can only calibrate using methods that are
1447 	 * available early in boot.
1448 	 */
1449 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1450 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1451 
1452 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1453 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1454 		return;
1455 	}
1456 
1457 	if (!tsc_khz) {
1458 		/* We failed to determine frequencies earlier, try again */
1459 		if (!determine_cpu_tsc_frequencies(false)) {
1460 			mark_tsc_unstable("could not calculate TSC khz");
1461 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1462 			return;
1463 		}
1464 		tsc_enable_sched_clock();
1465 	}
1466 
1467 	cyc2ns_init_secondary_cpus();
1468 
1469 	if (!no_sched_irq_time)
1470 		enable_sched_clock_irqtime();
1471 
1472 	lpj_fine = get_loops_per_jiffy();
1473 	use_tsc_delay();
1474 
1475 	check_system_tsc_reliable();
1476 
1477 	if (unsynchronized_tsc()) {
1478 		mark_tsc_unstable("TSCs unsynchronized");
1479 		return;
1480 	}
1481 
1482 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1483 	detect_art();
1484 }
1485 
1486 #ifdef CONFIG_SMP
1487 /*
1488  * If we have a constant TSC and are using the TSC for the delay loop,
1489  * we can skip clock calibration if another cpu in the same socket has already
1490  * been calibrated. This assumes that CONSTANT_TSC applies to all
1491  * cpus in the socket - this should be a safe assumption.
1492  */
1493 unsigned long calibrate_delay_is_known(void)
1494 {
1495 	int sibling, cpu = smp_processor_id();
1496 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1497 	const struct cpumask *mask = topology_core_cpumask(cpu);
1498 
1499 	if (!constant_tsc || !mask)
1500 		return 0;
1501 
1502 	sibling = cpumask_any_but(mask, cpu);
1503 	if (sibling < nr_cpu_ids)
1504 		return cpu_data(sibling).loops_per_jiffy;
1505 	return 0;
1506 }
1507 #endif
1508