1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 #include <linux/init.h> 7 #include <linux/export.h> 8 #include <linux/timer.h> 9 #include <linux/acpi_pmtmr.h> 10 #include <linux/cpufreq.h> 11 #include <linux/delay.h> 12 #include <linux/clocksource.h> 13 #include <linux/percpu.h> 14 #include <linux/timex.h> 15 #include <linux/static_key.h> 16 17 #include <asm/hpet.h> 18 #include <asm/timer.h> 19 #include <asm/vgtod.h> 20 #include <asm/time.h> 21 #include <asm/delay.h> 22 #include <asm/hypervisor.h> 23 #include <asm/nmi.h> 24 #include <asm/x86_init.h> 25 #include <asm/geode.h> 26 #include <asm/apic.h> 27 #include <asm/intel-family.h> 28 #include <asm/i8259.h> 29 30 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 31 EXPORT_SYMBOL(cpu_khz); 32 33 unsigned int __read_mostly tsc_khz; 34 EXPORT_SYMBOL(tsc_khz); 35 36 /* 37 * TSC can be unstable due to cpufreq or due to unsynced TSCs 38 */ 39 static int __read_mostly tsc_unstable; 40 41 /* native_sched_clock() is called before tsc_init(), so 42 we must start with the TSC soft disabled to prevent 43 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */ 44 static int __read_mostly tsc_disabled = -1; 45 46 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 47 48 int tsc_clocksource_reliable; 49 50 static u32 art_to_tsc_numerator; 51 static u32 art_to_tsc_denominator; 52 static u64 art_to_tsc_offset; 53 struct clocksource *art_related_clocksource; 54 55 struct cyc2ns { 56 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ 57 seqcount_t seq; /* 32 + 4 = 36 */ 58 59 }; /* fits one cacheline */ 60 61 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 62 63 void cyc2ns_read_begin(struct cyc2ns_data *data) 64 { 65 int seq, idx; 66 67 preempt_disable_notrace(); 68 69 do { 70 seq = this_cpu_read(cyc2ns.seq.sequence); 71 idx = seq & 1; 72 73 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); 74 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); 75 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); 76 77 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence))); 78 } 79 80 void cyc2ns_read_end(void) 81 { 82 preempt_enable_notrace(); 83 } 84 85 /* 86 * Accelerators for sched_clock() 87 * convert from cycles(64bits) => nanoseconds (64bits) 88 * basic equation: 89 * ns = cycles / (freq / ns_per_sec) 90 * ns = cycles * (ns_per_sec / freq) 91 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 92 * ns = cycles * (10^6 / cpu_khz) 93 * 94 * Then we use scaling math (suggested by george@mvista.com) to get: 95 * ns = cycles * (10^6 * SC / cpu_khz) / SC 96 * ns = cycles * cyc2ns_scale / SC 97 * 98 * And since SC is a constant power of two, we can convert the div 99 * into a shift. The larger SC is, the more accurate the conversion, but 100 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 101 * (64-bit result) can be used. 102 * 103 * We can use khz divisor instead of mhz to keep a better precision. 104 * (mathieu.desnoyers@polymtl.ca) 105 * 106 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 107 */ 108 109 static void cyc2ns_data_init(struct cyc2ns_data *data) 110 { 111 data->cyc2ns_mul = 0; 112 data->cyc2ns_shift = 0; 113 data->cyc2ns_offset = 0; 114 } 115 116 static void __init cyc2ns_init(int cpu) 117 { 118 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 119 120 cyc2ns_data_init(&c2n->data[0]); 121 cyc2ns_data_init(&c2n->data[1]); 122 123 seqcount_init(&c2n->seq); 124 } 125 126 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 127 { 128 struct cyc2ns_data data; 129 unsigned long long ns; 130 131 cyc2ns_read_begin(&data); 132 133 ns = data.cyc2ns_offset; 134 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); 135 136 cyc2ns_read_end(); 137 138 return ns; 139 } 140 141 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 142 { 143 unsigned long long ns_now; 144 struct cyc2ns_data data; 145 struct cyc2ns *c2n; 146 unsigned long flags; 147 148 local_irq_save(flags); 149 sched_clock_idle_sleep_event(); 150 151 if (!khz) 152 goto done; 153 154 ns_now = cycles_2_ns(tsc_now); 155 156 /* 157 * Compute a new multiplier as per the above comment and ensure our 158 * time function is continuous; see the comment near struct 159 * cyc2ns_data. 160 */ 161 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, 162 NSEC_PER_MSEC, 0); 163 164 /* 165 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 166 * not expected to be greater than 31 due to the original published 167 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 168 * value) - refer perf_event_mmap_page documentation in perf_event.h. 169 */ 170 if (data.cyc2ns_shift == 32) { 171 data.cyc2ns_shift = 31; 172 data.cyc2ns_mul >>= 1; 173 } 174 175 data.cyc2ns_offset = ns_now - 176 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); 177 178 c2n = per_cpu_ptr(&cyc2ns, cpu); 179 180 raw_write_seqcount_latch(&c2n->seq); 181 c2n->data[0] = data; 182 raw_write_seqcount_latch(&c2n->seq); 183 c2n->data[1] = data; 184 185 done: 186 sched_clock_idle_wakeup_event(); 187 local_irq_restore(flags); 188 } 189 190 /* 191 * Scheduler clock - returns current time in nanosec units. 192 */ 193 u64 native_sched_clock(void) 194 { 195 if (static_branch_likely(&__use_tsc)) { 196 u64 tsc_now = rdtsc(); 197 198 /* return the value in ns */ 199 return cycles_2_ns(tsc_now); 200 } 201 202 /* 203 * Fall back to jiffies if there's no TSC available: 204 * ( But note that we still use it if the TSC is marked 205 * unstable. We do this because unlike Time Of Day, 206 * the scheduler clock tolerates small errors and it's 207 * very important for it to be as fast as the platform 208 * can achieve it. ) 209 */ 210 211 /* No locking but a rare wrong value is not a big deal: */ 212 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 213 } 214 215 /* 216 * Generate a sched_clock if you already have a TSC value. 217 */ 218 u64 native_sched_clock_from_tsc(u64 tsc) 219 { 220 return cycles_2_ns(tsc); 221 } 222 223 /* We need to define a real function for sched_clock, to override the 224 weak default version */ 225 #ifdef CONFIG_PARAVIRT 226 unsigned long long sched_clock(void) 227 { 228 return paravirt_sched_clock(); 229 } 230 231 bool using_native_sched_clock(void) 232 { 233 return pv_time_ops.sched_clock == native_sched_clock; 234 } 235 #else 236 unsigned long long 237 sched_clock(void) __attribute__((alias("native_sched_clock"))); 238 239 bool using_native_sched_clock(void) { return true; } 240 #endif 241 242 int check_tsc_unstable(void) 243 { 244 return tsc_unstable; 245 } 246 EXPORT_SYMBOL_GPL(check_tsc_unstable); 247 248 #ifdef CONFIG_X86_TSC 249 int __init notsc_setup(char *str) 250 { 251 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 252 tsc_disabled = 1; 253 return 1; 254 } 255 #else 256 /* 257 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 258 * in cpu/common.c 259 */ 260 int __init notsc_setup(char *str) 261 { 262 setup_clear_cpu_cap(X86_FEATURE_TSC); 263 return 1; 264 } 265 #endif 266 267 __setup("notsc", notsc_setup); 268 269 static int no_sched_irq_time; 270 271 static int __init tsc_setup(char *str) 272 { 273 if (!strcmp(str, "reliable")) 274 tsc_clocksource_reliable = 1; 275 if (!strncmp(str, "noirqtime", 9)) 276 no_sched_irq_time = 1; 277 if (!strcmp(str, "unstable")) 278 mark_tsc_unstable("boot parameter"); 279 return 1; 280 } 281 282 __setup("tsc=", tsc_setup); 283 284 #define MAX_RETRIES 5 285 #define SMI_TRESHOLD 50000 286 287 /* 288 * Read TSC and the reference counters. Take care of SMI disturbance 289 */ 290 static u64 tsc_read_refs(u64 *p, int hpet) 291 { 292 u64 t1, t2; 293 int i; 294 295 for (i = 0; i < MAX_RETRIES; i++) { 296 t1 = get_cycles(); 297 if (hpet) 298 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 299 else 300 *p = acpi_pm_read_early(); 301 t2 = get_cycles(); 302 if ((t2 - t1) < SMI_TRESHOLD) 303 return t2; 304 } 305 return ULLONG_MAX; 306 } 307 308 /* 309 * Calculate the TSC frequency from HPET reference 310 */ 311 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 312 { 313 u64 tmp; 314 315 if (hpet2 < hpet1) 316 hpet2 += 0x100000000ULL; 317 hpet2 -= hpet1; 318 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 319 do_div(tmp, 1000000); 320 do_div(deltatsc, tmp); 321 322 return (unsigned long) deltatsc; 323 } 324 325 /* 326 * Calculate the TSC frequency from PMTimer reference 327 */ 328 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 329 { 330 u64 tmp; 331 332 if (!pm1 && !pm2) 333 return ULONG_MAX; 334 335 if (pm2 < pm1) 336 pm2 += (u64)ACPI_PM_OVRRUN; 337 pm2 -= pm1; 338 tmp = pm2 * 1000000000LL; 339 do_div(tmp, PMTMR_TICKS_PER_SEC); 340 do_div(deltatsc, tmp); 341 342 return (unsigned long) deltatsc; 343 } 344 345 #define CAL_MS 10 346 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 347 #define CAL_PIT_LOOPS 1000 348 349 #define CAL2_MS 50 350 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 351 #define CAL2_PIT_LOOPS 5000 352 353 354 /* 355 * Try to calibrate the TSC against the Programmable 356 * Interrupt Timer and return the frequency of the TSC 357 * in kHz. 358 * 359 * Return ULONG_MAX on failure to calibrate. 360 */ 361 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 362 { 363 u64 tsc, t1, t2, delta; 364 unsigned long tscmin, tscmax; 365 int pitcnt; 366 367 if (!has_legacy_pic()) { 368 /* 369 * Relies on tsc_early_delay_calibrate() to have given us semi 370 * usable udelay(), wait for the same 50ms we would have with 371 * the PIT loop below. 372 */ 373 udelay(10 * USEC_PER_MSEC); 374 udelay(10 * USEC_PER_MSEC); 375 udelay(10 * USEC_PER_MSEC); 376 udelay(10 * USEC_PER_MSEC); 377 udelay(10 * USEC_PER_MSEC); 378 return ULONG_MAX; 379 } 380 381 /* Set the Gate high, disable speaker */ 382 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 383 384 /* 385 * Setup CTC channel 2* for mode 0, (interrupt on terminal 386 * count mode), binary count. Set the latch register to 50ms 387 * (LSB then MSB) to begin countdown. 388 */ 389 outb(0xb0, 0x43); 390 outb(latch & 0xff, 0x42); 391 outb(latch >> 8, 0x42); 392 393 tsc = t1 = t2 = get_cycles(); 394 395 pitcnt = 0; 396 tscmax = 0; 397 tscmin = ULONG_MAX; 398 while ((inb(0x61) & 0x20) == 0) { 399 t2 = get_cycles(); 400 delta = t2 - tsc; 401 tsc = t2; 402 if ((unsigned long) delta < tscmin) 403 tscmin = (unsigned int) delta; 404 if ((unsigned long) delta > tscmax) 405 tscmax = (unsigned int) delta; 406 pitcnt++; 407 } 408 409 /* 410 * Sanity checks: 411 * 412 * If we were not able to read the PIT more than loopmin 413 * times, then we have been hit by a massive SMI 414 * 415 * If the maximum is 10 times larger than the minimum, 416 * then we got hit by an SMI as well. 417 */ 418 if (pitcnt < loopmin || tscmax > 10 * tscmin) 419 return ULONG_MAX; 420 421 /* Calculate the PIT value */ 422 delta = t2 - t1; 423 do_div(delta, ms); 424 return delta; 425 } 426 427 /* 428 * This reads the current MSB of the PIT counter, and 429 * checks if we are running on sufficiently fast and 430 * non-virtualized hardware. 431 * 432 * Our expectations are: 433 * 434 * - the PIT is running at roughly 1.19MHz 435 * 436 * - each IO is going to take about 1us on real hardware, 437 * but we allow it to be much faster (by a factor of 10) or 438 * _slightly_ slower (ie we allow up to a 2us read+counter 439 * update - anything else implies a unacceptably slow CPU 440 * or PIT for the fast calibration to work. 441 * 442 * - with 256 PIT ticks to read the value, we have 214us to 443 * see the same MSB (and overhead like doing a single TSC 444 * read per MSB value etc). 445 * 446 * - We're doing 2 reads per loop (LSB, MSB), and we expect 447 * them each to take about a microsecond on real hardware. 448 * So we expect a count value of around 100. But we'll be 449 * generous, and accept anything over 50. 450 * 451 * - if the PIT is stuck, and we see *many* more reads, we 452 * return early (and the next caller of pit_expect_msb() 453 * then consider it a failure when they don't see the 454 * next expected value). 455 * 456 * These expectations mean that we know that we have seen the 457 * transition from one expected value to another with a fairly 458 * high accuracy, and we didn't miss any events. We can thus 459 * use the TSC value at the transitions to calculate a pretty 460 * good value for the TSC frequencty. 461 */ 462 static inline int pit_verify_msb(unsigned char val) 463 { 464 /* Ignore LSB */ 465 inb(0x42); 466 return inb(0x42) == val; 467 } 468 469 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 470 { 471 int count; 472 u64 tsc = 0, prev_tsc = 0; 473 474 for (count = 0; count < 50000; count++) { 475 if (!pit_verify_msb(val)) 476 break; 477 prev_tsc = tsc; 478 tsc = get_cycles(); 479 } 480 *deltap = get_cycles() - prev_tsc; 481 *tscp = tsc; 482 483 /* 484 * We require _some_ success, but the quality control 485 * will be based on the error terms on the TSC values. 486 */ 487 return count > 5; 488 } 489 490 /* 491 * How many MSB values do we want to see? We aim for 492 * a maximum error rate of 500ppm (in practice the 493 * real error is much smaller), but refuse to spend 494 * more than 50ms on it. 495 */ 496 #define MAX_QUICK_PIT_MS 50 497 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 498 499 static unsigned long quick_pit_calibrate(void) 500 { 501 int i; 502 u64 tsc, delta; 503 unsigned long d1, d2; 504 505 if (!has_legacy_pic()) 506 return 0; 507 508 /* Set the Gate high, disable speaker */ 509 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 510 511 /* 512 * Counter 2, mode 0 (one-shot), binary count 513 * 514 * NOTE! Mode 2 decrements by two (and then the 515 * output is flipped each time, giving the same 516 * final output frequency as a decrement-by-one), 517 * so mode 0 is much better when looking at the 518 * individual counts. 519 */ 520 outb(0xb0, 0x43); 521 522 /* Start at 0xffff */ 523 outb(0xff, 0x42); 524 outb(0xff, 0x42); 525 526 /* 527 * The PIT starts counting at the next edge, so we 528 * need to delay for a microsecond. The easiest way 529 * to do that is to just read back the 16-bit counter 530 * once from the PIT. 531 */ 532 pit_verify_msb(0); 533 534 if (pit_expect_msb(0xff, &tsc, &d1)) { 535 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 536 if (!pit_expect_msb(0xff-i, &delta, &d2)) 537 break; 538 539 delta -= tsc; 540 541 /* 542 * Extrapolate the error and fail fast if the error will 543 * never be below 500 ppm. 544 */ 545 if (i == 1 && 546 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 547 return 0; 548 549 /* 550 * Iterate until the error is less than 500 ppm 551 */ 552 if (d1+d2 >= delta >> 11) 553 continue; 554 555 /* 556 * Check the PIT one more time to verify that 557 * all TSC reads were stable wrt the PIT. 558 * 559 * This also guarantees serialization of the 560 * last cycle read ('d2') in pit_expect_msb. 561 */ 562 if (!pit_verify_msb(0xfe - i)) 563 break; 564 goto success; 565 } 566 } 567 pr_info("Fast TSC calibration failed\n"); 568 return 0; 569 570 success: 571 /* 572 * Ok, if we get here, then we've seen the 573 * MSB of the PIT decrement 'i' times, and the 574 * error has shrunk to less than 500 ppm. 575 * 576 * As a result, we can depend on there not being 577 * any odd delays anywhere, and the TSC reads are 578 * reliable (within the error). 579 * 580 * kHz = ticks / time-in-seconds / 1000; 581 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 582 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 583 */ 584 delta *= PIT_TICK_RATE; 585 do_div(delta, i*256*1000); 586 pr_info("Fast TSC calibration using PIT\n"); 587 return delta; 588 } 589 590 /** 591 * native_calibrate_tsc 592 * Determine TSC frequency via CPUID, else return 0. 593 */ 594 unsigned long native_calibrate_tsc(void) 595 { 596 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 597 unsigned int crystal_khz; 598 599 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 600 return 0; 601 602 if (boot_cpu_data.cpuid_level < 0x15) 603 return 0; 604 605 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 606 607 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 608 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 609 610 if (ebx_numerator == 0 || eax_denominator == 0) 611 return 0; 612 613 crystal_khz = ecx_hz / 1000; 614 615 if (crystal_khz == 0) { 616 switch (boot_cpu_data.x86_model) { 617 case INTEL_FAM6_SKYLAKE_MOBILE: 618 case INTEL_FAM6_SKYLAKE_DESKTOP: 619 case INTEL_FAM6_KABYLAKE_MOBILE: 620 case INTEL_FAM6_KABYLAKE_DESKTOP: 621 crystal_khz = 24000; /* 24.0 MHz */ 622 break; 623 case INTEL_FAM6_ATOM_DENVERTON: 624 crystal_khz = 25000; /* 25.0 MHz */ 625 break; 626 case INTEL_FAM6_ATOM_GOLDMONT: 627 crystal_khz = 19200; /* 19.2 MHz */ 628 break; 629 } 630 } 631 632 if (crystal_khz == 0) 633 return 0; 634 /* 635 * TSC frequency determined by CPUID is a "hardware reported" 636 * frequency and is the most accurate one so far we have. This 637 * is considered a known frequency. 638 */ 639 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 640 641 /* 642 * For Atom SoCs TSC is the only reliable clocksource. 643 * Mark TSC reliable so no watchdog on it. 644 */ 645 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) 646 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 647 648 return crystal_khz * ebx_numerator / eax_denominator; 649 } 650 651 static unsigned long cpu_khz_from_cpuid(void) 652 { 653 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 654 655 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 656 return 0; 657 658 if (boot_cpu_data.cpuid_level < 0x16) 659 return 0; 660 661 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 662 663 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 664 665 return eax_base_mhz * 1000; 666 } 667 668 /** 669 * native_calibrate_cpu - calibrate the cpu on boot 670 */ 671 unsigned long native_calibrate_cpu(void) 672 { 673 u64 tsc1, tsc2, delta, ref1, ref2; 674 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 675 unsigned long flags, latch, ms, fast_calibrate; 676 int hpet = is_hpet_enabled(), i, loopmin; 677 678 fast_calibrate = cpu_khz_from_cpuid(); 679 if (fast_calibrate) 680 return fast_calibrate; 681 682 fast_calibrate = cpu_khz_from_msr(); 683 if (fast_calibrate) 684 return fast_calibrate; 685 686 local_irq_save(flags); 687 fast_calibrate = quick_pit_calibrate(); 688 local_irq_restore(flags); 689 if (fast_calibrate) 690 return fast_calibrate; 691 692 /* 693 * Run 5 calibration loops to get the lowest frequency value 694 * (the best estimate). We use two different calibration modes 695 * here: 696 * 697 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 698 * load a timeout of 50ms. We read the time right after we 699 * started the timer and wait until the PIT count down reaches 700 * zero. In each wait loop iteration we read the TSC and check 701 * the delta to the previous read. We keep track of the min 702 * and max values of that delta. The delta is mostly defined 703 * by the IO time of the PIT access, so we can detect when a 704 * SMI/SMM disturbance happened between the two reads. If the 705 * maximum time is significantly larger than the minimum time, 706 * then we discard the result and have another try. 707 * 708 * 2) Reference counter. If available we use the HPET or the 709 * PMTIMER as a reference to check the sanity of that value. 710 * We use separate TSC readouts and check inside of the 711 * reference read for a SMI/SMM disturbance. We dicard 712 * disturbed values here as well. We do that around the PIT 713 * calibration delay loop as we have to wait for a certain 714 * amount of time anyway. 715 */ 716 717 /* Preset PIT loop values */ 718 latch = CAL_LATCH; 719 ms = CAL_MS; 720 loopmin = CAL_PIT_LOOPS; 721 722 for (i = 0; i < 3; i++) { 723 unsigned long tsc_pit_khz; 724 725 /* 726 * Read the start value and the reference count of 727 * hpet/pmtimer when available. Then do the PIT 728 * calibration, which will take at least 50ms, and 729 * read the end value. 730 */ 731 local_irq_save(flags); 732 tsc1 = tsc_read_refs(&ref1, hpet); 733 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 734 tsc2 = tsc_read_refs(&ref2, hpet); 735 local_irq_restore(flags); 736 737 /* Pick the lowest PIT TSC calibration so far */ 738 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 739 740 /* hpet or pmtimer available ? */ 741 if (ref1 == ref2) 742 continue; 743 744 /* Check, whether the sampling was disturbed by an SMI */ 745 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 746 continue; 747 748 tsc2 = (tsc2 - tsc1) * 1000000LL; 749 if (hpet) 750 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 751 else 752 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 753 754 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 755 756 /* Check the reference deviation */ 757 delta = ((u64) tsc_pit_min) * 100; 758 do_div(delta, tsc_ref_min); 759 760 /* 761 * If both calibration results are inside a 10% window 762 * then we can be sure, that the calibration 763 * succeeded. We break out of the loop right away. We 764 * use the reference value, as it is more precise. 765 */ 766 if (delta >= 90 && delta <= 110) { 767 pr_info("PIT calibration matches %s. %d loops\n", 768 hpet ? "HPET" : "PMTIMER", i + 1); 769 return tsc_ref_min; 770 } 771 772 /* 773 * Check whether PIT failed more than once. This 774 * happens in virtualized environments. We need to 775 * give the virtual PC a slightly longer timeframe for 776 * the HPET/PMTIMER to make the result precise. 777 */ 778 if (i == 1 && tsc_pit_min == ULONG_MAX) { 779 latch = CAL2_LATCH; 780 ms = CAL2_MS; 781 loopmin = CAL2_PIT_LOOPS; 782 } 783 } 784 785 /* 786 * Now check the results. 787 */ 788 if (tsc_pit_min == ULONG_MAX) { 789 /* PIT gave no useful value */ 790 pr_warn("Unable to calibrate against PIT\n"); 791 792 /* We don't have an alternative source, disable TSC */ 793 if (!hpet && !ref1 && !ref2) { 794 pr_notice("No reference (HPET/PMTIMER) available\n"); 795 return 0; 796 } 797 798 /* The alternative source failed as well, disable TSC */ 799 if (tsc_ref_min == ULONG_MAX) { 800 pr_warn("HPET/PMTIMER calibration failed\n"); 801 return 0; 802 } 803 804 /* Use the alternative source */ 805 pr_info("using %s reference calibration\n", 806 hpet ? "HPET" : "PMTIMER"); 807 808 return tsc_ref_min; 809 } 810 811 /* We don't have an alternative source, use the PIT calibration value */ 812 if (!hpet && !ref1 && !ref2) { 813 pr_info("Using PIT calibration value\n"); 814 return tsc_pit_min; 815 } 816 817 /* The alternative source failed, use the PIT calibration value */ 818 if (tsc_ref_min == ULONG_MAX) { 819 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 820 return tsc_pit_min; 821 } 822 823 /* 824 * The calibration values differ too much. In doubt, we use 825 * the PIT value as we know that there are PMTIMERs around 826 * running at double speed. At least we let the user know: 827 */ 828 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 829 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 830 pr_info("Using PIT calibration value\n"); 831 return tsc_pit_min; 832 } 833 834 void recalibrate_cpu_khz(void) 835 { 836 #ifndef CONFIG_SMP 837 unsigned long cpu_khz_old = cpu_khz; 838 839 if (!boot_cpu_has(X86_FEATURE_TSC)) 840 return; 841 842 cpu_khz = x86_platform.calibrate_cpu(); 843 tsc_khz = x86_platform.calibrate_tsc(); 844 if (tsc_khz == 0) 845 tsc_khz = cpu_khz; 846 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 847 cpu_khz = tsc_khz; 848 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 849 cpu_khz_old, cpu_khz); 850 #endif 851 } 852 853 EXPORT_SYMBOL(recalibrate_cpu_khz); 854 855 856 static unsigned long long cyc2ns_suspend; 857 858 void tsc_save_sched_clock_state(void) 859 { 860 if (!sched_clock_stable()) 861 return; 862 863 cyc2ns_suspend = sched_clock(); 864 } 865 866 /* 867 * Even on processors with invariant TSC, TSC gets reset in some the 868 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 869 * arbitrary value (still sync'd across cpu's) during resume from such sleep 870 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 871 * that sched_clock() continues from the point where it was left off during 872 * suspend. 873 */ 874 void tsc_restore_sched_clock_state(void) 875 { 876 unsigned long long offset; 877 unsigned long flags; 878 int cpu; 879 880 if (!sched_clock_stable()) 881 return; 882 883 local_irq_save(flags); 884 885 /* 886 * We're coming out of suspend, there's no concurrency yet; don't 887 * bother being nice about the RCU stuff, just write to both 888 * data fields. 889 */ 890 891 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 892 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 893 894 offset = cyc2ns_suspend - sched_clock(); 895 896 for_each_possible_cpu(cpu) { 897 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 898 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 899 } 900 901 local_irq_restore(flags); 902 } 903 904 #ifdef CONFIG_CPU_FREQ 905 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 906 * changes. 907 * 908 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 909 * not that important because current Opteron setups do not support 910 * scaling on SMP anyroads. 911 * 912 * Should fix up last_tsc too. Currently gettimeofday in the 913 * first tick after the change will be slightly wrong. 914 */ 915 916 static unsigned int ref_freq; 917 static unsigned long loops_per_jiffy_ref; 918 static unsigned long tsc_khz_ref; 919 920 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 921 void *data) 922 { 923 struct cpufreq_freqs *freq = data; 924 unsigned long *lpj; 925 926 lpj = &boot_cpu_data.loops_per_jiffy; 927 #ifdef CONFIG_SMP 928 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 929 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 930 #endif 931 932 if (!ref_freq) { 933 ref_freq = freq->old; 934 loops_per_jiffy_ref = *lpj; 935 tsc_khz_ref = tsc_khz; 936 } 937 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 938 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 939 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 940 941 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 942 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 943 mark_tsc_unstable("cpufreq changes"); 944 945 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc()); 946 } 947 948 return 0; 949 } 950 951 static struct notifier_block time_cpufreq_notifier_block = { 952 .notifier_call = time_cpufreq_notifier 953 }; 954 955 static int __init cpufreq_register_tsc_scaling(void) 956 { 957 if (!boot_cpu_has(X86_FEATURE_TSC)) 958 return 0; 959 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 960 return 0; 961 cpufreq_register_notifier(&time_cpufreq_notifier_block, 962 CPUFREQ_TRANSITION_NOTIFIER); 963 return 0; 964 } 965 966 core_initcall(cpufreq_register_tsc_scaling); 967 968 #endif /* CONFIG_CPU_FREQ */ 969 970 #define ART_CPUID_LEAF (0x15) 971 #define ART_MIN_DENOMINATOR (1) 972 973 974 /* 975 * If ART is present detect the numerator:denominator to convert to TSC 976 */ 977 static void __init detect_art(void) 978 { 979 unsigned int unused[2]; 980 981 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 982 return; 983 984 /* 985 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, 986 * and the TSC counter resets must not occur asynchronously. 987 */ 988 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 989 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 990 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || 991 tsc_async_resets) 992 return; 993 994 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 995 &art_to_tsc_numerator, unused, unused+1); 996 997 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) 998 return; 999 1000 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); 1001 1002 /* Make this sticky over multiple CPU init calls */ 1003 setup_force_cpu_cap(X86_FEATURE_ART); 1004 } 1005 1006 1007 /* clocksource code */ 1008 1009 static void tsc_resume(struct clocksource *cs) 1010 { 1011 tsc_verify_tsc_adjust(true); 1012 } 1013 1014 /* 1015 * We used to compare the TSC to the cycle_last value in the clocksource 1016 * structure to avoid a nasty time-warp. This can be observed in a 1017 * very small window right after one CPU updated cycle_last under 1018 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1019 * is smaller than the cycle_last reference value due to a TSC which 1020 * is slighty behind. This delta is nowhere else observable, but in 1021 * that case it results in a forward time jump in the range of hours 1022 * due to the unsigned delta calculation of the time keeping core 1023 * code, which is necessary to support wrapping clocksources like pm 1024 * timer. 1025 * 1026 * This sanity check is now done in the core timekeeping code. 1027 * checking the result of read_tsc() - cycle_last for being negative. 1028 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1029 */ 1030 static u64 read_tsc(struct clocksource *cs) 1031 { 1032 return (u64)rdtsc_ordered(); 1033 } 1034 1035 static void tsc_cs_mark_unstable(struct clocksource *cs) 1036 { 1037 if (tsc_unstable) 1038 return; 1039 1040 tsc_unstable = 1; 1041 if (using_native_sched_clock()) 1042 clear_sched_clock_stable(); 1043 disable_sched_clock_irqtime(); 1044 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1045 } 1046 1047 static void tsc_cs_tick_stable(struct clocksource *cs) 1048 { 1049 if (tsc_unstable) 1050 return; 1051 1052 if (using_native_sched_clock()) 1053 sched_clock_tick_stable(); 1054 } 1055 1056 /* 1057 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1058 */ 1059 static struct clocksource clocksource_tsc_early = { 1060 .name = "tsc-early", 1061 .rating = 299, 1062 .read = read_tsc, 1063 .mask = CLOCKSOURCE_MASK(64), 1064 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1065 CLOCK_SOURCE_MUST_VERIFY, 1066 .archdata = { .vclock_mode = VCLOCK_TSC }, 1067 .resume = tsc_resume, 1068 .mark_unstable = tsc_cs_mark_unstable, 1069 .tick_stable = tsc_cs_tick_stable, 1070 }; 1071 1072 /* 1073 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early 1074 * this one will immediately take over. We will only register if TSC has 1075 * been found good. 1076 */ 1077 static struct clocksource clocksource_tsc = { 1078 .name = "tsc", 1079 .rating = 300, 1080 .read = read_tsc, 1081 .mask = CLOCKSOURCE_MASK(64), 1082 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1083 CLOCK_SOURCE_VALID_FOR_HRES | 1084 CLOCK_SOURCE_MUST_VERIFY, 1085 .archdata = { .vclock_mode = VCLOCK_TSC }, 1086 .resume = tsc_resume, 1087 .mark_unstable = tsc_cs_mark_unstable, 1088 .tick_stable = tsc_cs_tick_stable, 1089 }; 1090 1091 void mark_tsc_unstable(char *reason) 1092 { 1093 if (tsc_unstable) 1094 return; 1095 1096 tsc_unstable = 1; 1097 if (using_native_sched_clock()) 1098 clear_sched_clock_stable(); 1099 disable_sched_clock_irqtime(); 1100 pr_info("Marking TSC unstable due to %s\n", reason); 1101 /* Change only the rating, when not registered */ 1102 if (clocksource_tsc.mult) { 1103 clocksource_mark_unstable(&clocksource_tsc); 1104 } else { 1105 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1106 clocksource_tsc.rating = 0; 1107 } 1108 } 1109 1110 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1111 1112 static void __init check_system_tsc_reliable(void) 1113 { 1114 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1115 if (is_geode_lx()) { 1116 /* RTSC counts during suspend */ 1117 #define RTSC_SUSP 0x100 1118 unsigned long res_low, res_high; 1119 1120 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1121 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1122 if (res_low & RTSC_SUSP) 1123 tsc_clocksource_reliable = 1; 1124 } 1125 #endif 1126 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1127 tsc_clocksource_reliable = 1; 1128 } 1129 1130 /* 1131 * Make an educated guess if the TSC is trustworthy and synchronized 1132 * over all CPUs. 1133 */ 1134 int unsynchronized_tsc(void) 1135 { 1136 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1137 return 1; 1138 1139 #ifdef CONFIG_SMP 1140 if (apic_is_clustered_box()) 1141 return 1; 1142 #endif 1143 1144 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1145 return 0; 1146 1147 if (tsc_clocksource_reliable) 1148 return 0; 1149 /* 1150 * Intel systems are normally all synchronized. 1151 * Exceptions must mark TSC as unstable: 1152 */ 1153 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1154 /* assume multi socket systems are not synchronized: */ 1155 if (num_possible_cpus() > 1) 1156 return 1; 1157 } 1158 1159 return 0; 1160 } 1161 1162 /* 1163 * Convert ART to TSC given numerator/denominator found in detect_art() 1164 */ 1165 struct system_counterval_t convert_art_to_tsc(u64 art) 1166 { 1167 u64 tmp, res, rem; 1168 1169 rem = do_div(art, art_to_tsc_denominator); 1170 1171 res = art * art_to_tsc_numerator; 1172 tmp = rem * art_to_tsc_numerator; 1173 1174 do_div(tmp, art_to_tsc_denominator); 1175 res += tmp + art_to_tsc_offset; 1176 1177 return (struct system_counterval_t) {.cs = art_related_clocksource, 1178 .cycles = res}; 1179 } 1180 EXPORT_SYMBOL(convert_art_to_tsc); 1181 1182 static void tsc_refine_calibration_work(struct work_struct *work); 1183 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1184 /** 1185 * tsc_refine_calibration_work - Further refine tsc freq calibration 1186 * @work - ignored. 1187 * 1188 * This functions uses delayed work over a period of a 1189 * second to further refine the TSC freq value. Since this is 1190 * timer based, instead of loop based, we don't block the boot 1191 * process while this longer calibration is done. 1192 * 1193 * If there are any calibration anomalies (too many SMIs, etc), 1194 * or the refined calibration is off by 1% of the fast early 1195 * calibration, we throw out the new calibration and use the 1196 * early calibration. 1197 */ 1198 static void tsc_refine_calibration_work(struct work_struct *work) 1199 { 1200 static u64 tsc_start = -1, ref_start; 1201 static int hpet; 1202 u64 tsc_stop, ref_stop, delta; 1203 unsigned long freq; 1204 int cpu; 1205 1206 /* Don't bother refining TSC on unstable systems */ 1207 if (tsc_unstable) 1208 return; 1209 1210 /* 1211 * Since the work is started early in boot, we may be 1212 * delayed the first time we expire. So set the workqueue 1213 * again once we know timers are working. 1214 */ 1215 if (tsc_start == -1) { 1216 /* 1217 * Only set hpet once, to avoid mixing hardware 1218 * if the hpet becomes enabled later. 1219 */ 1220 hpet = is_hpet_enabled(); 1221 schedule_delayed_work(&tsc_irqwork, HZ); 1222 tsc_start = tsc_read_refs(&ref_start, hpet); 1223 return; 1224 } 1225 1226 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1227 1228 /* hpet or pmtimer available ? */ 1229 if (ref_start == ref_stop) 1230 goto out; 1231 1232 /* Check, whether the sampling was disturbed by an SMI */ 1233 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1234 goto out; 1235 1236 delta = tsc_stop - tsc_start; 1237 delta *= 1000000LL; 1238 if (hpet) 1239 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1240 else 1241 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1242 1243 /* Make sure we're within 1% */ 1244 if (abs(tsc_khz - freq) > tsc_khz/100) 1245 goto out; 1246 1247 tsc_khz = freq; 1248 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1249 (unsigned long)tsc_khz / 1000, 1250 (unsigned long)tsc_khz % 1000); 1251 1252 /* Inform the TSC deadline clockevent devices about the recalibration */ 1253 lapic_update_tsc_freq(); 1254 1255 /* Update the sched_clock() rate to match the clocksource one */ 1256 for_each_possible_cpu(cpu) 1257 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); 1258 1259 out: 1260 if (tsc_unstable) 1261 return; 1262 1263 if (boot_cpu_has(X86_FEATURE_ART)) 1264 art_related_clocksource = &clocksource_tsc; 1265 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1266 clocksource_unregister(&clocksource_tsc_early); 1267 } 1268 1269 1270 static int __init init_tsc_clocksource(void) 1271 { 1272 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz) 1273 return 0; 1274 1275 if (check_tsc_unstable()) 1276 return 0; 1277 1278 if (tsc_clocksource_reliable) 1279 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1280 1281 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1282 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1283 1284 /* 1285 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1286 * the refined calibration and directly register it as a clocksource. 1287 */ 1288 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1289 if (boot_cpu_has(X86_FEATURE_ART)) 1290 art_related_clocksource = &clocksource_tsc; 1291 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1292 clocksource_unregister(&clocksource_tsc_early); 1293 return 0; 1294 } 1295 1296 schedule_delayed_work(&tsc_irqwork, 0); 1297 return 0; 1298 } 1299 /* 1300 * We use device_initcall here, to ensure we run after the hpet 1301 * is fully initialized, which may occur at fs_initcall time. 1302 */ 1303 device_initcall(init_tsc_clocksource); 1304 1305 void __init tsc_early_delay_calibrate(void) 1306 { 1307 unsigned long lpj; 1308 1309 if (!boot_cpu_has(X86_FEATURE_TSC)) 1310 return; 1311 1312 cpu_khz = x86_platform.calibrate_cpu(); 1313 tsc_khz = x86_platform.calibrate_tsc(); 1314 1315 tsc_khz = tsc_khz ? : cpu_khz; 1316 if (!tsc_khz) 1317 return; 1318 1319 lpj = tsc_khz * 1000; 1320 do_div(lpj, HZ); 1321 loops_per_jiffy = lpj; 1322 } 1323 1324 void __init tsc_init(void) 1325 { 1326 u64 lpj, cyc; 1327 int cpu; 1328 1329 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1330 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1331 return; 1332 } 1333 1334 cpu_khz = x86_platform.calibrate_cpu(); 1335 tsc_khz = x86_platform.calibrate_tsc(); 1336 1337 /* 1338 * Trust non-zero tsc_khz as authorative, 1339 * and use it to sanity check cpu_khz, 1340 * which will be off if system timer is off. 1341 */ 1342 if (tsc_khz == 0) 1343 tsc_khz = cpu_khz; 1344 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1345 cpu_khz = tsc_khz; 1346 1347 if (!tsc_khz) { 1348 mark_tsc_unstable("could not calculate TSC khz"); 1349 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1350 return; 1351 } 1352 1353 pr_info("Detected %lu.%03lu MHz processor\n", 1354 (unsigned long)cpu_khz / 1000, 1355 (unsigned long)cpu_khz % 1000); 1356 1357 if (cpu_khz != tsc_khz) { 1358 pr_info("Detected %lu.%03lu MHz TSC", 1359 (unsigned long)tsc_khz / 1000, 1360 (unsigned long)tsc_khz % 1000); 1361 } 1362 1363 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1364 tsc_store_and_check_tsc_adjust(true); 1365 1366 /* 1367 * Secondary CPUs do not run through tsc_init(), so set up 1368 * all the scale factors for all CPUs, assuming the same 1369 * speed as the bootup CPU. (cpufreq notifiers will fix this 1370 * up if their speed diverges) 1371 */ 1372 cyc = rdtsc(); 1373 for_each_possible_cpu(cpu) { 1374 cyc2ns_init(cpu); 1375 set_cyc2ns_scale(tsc_khz, cpu, cyc); 1376 } 1377 1378 if (tsc_disabled > 0) 1379 return; 1380 1381 /* now allow native_sched_clock() to use rdtsc */ 1382 1383 tsc_disabled = 0; 1384 static_branch_enable(&__use_tsc); 1385 1386 if (!no_sched_irq_time) 1387 enable_sched_clock_irqtime(); 1388 1389 lpj = ((u64)tsc_khz * 1000); 1390 do_div(lpj, HZ); 1391 lpj_fine = lpj; 1392 1393 use_tsc_delay(); 1394 1395 check_system_tsc_reliable(); 1396 1397 if (unsynchronized_tsc()) { 1398 mark_tsc_unstable("TSCs unsynchronized"); 1399 return; 1400 } 1401 1402 clocksource_register_khz(&clocksource_tsc_early, tsc_khz); 1403 detect_art(); 1404 } 1405 1406 #ifdef CONFIG_SMP 1407 /* 1408 * If we have a constant TSC and are using the TSC for the delay loop, 1409 * we can skip clock calibration if another cpu in the same socket has already 1410 * been calibrated. This assumes that CONSTANT_TSC applies to all 1411 * cpus in the socket - this should be a safe assumption. 1412 */ 1413 unsigned long calibrate_delay_is_known(void) 1414 { 1415 int sibling, cpu = smp_processor_id(); 1416 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); 1417 const struct cpumask *mask = topology_core_cpumask(cpu); 1418 1419 if (tsc_disabled || !constant_tsc || !mask) 1420 return 0; 1421 1422 sibling = cpumask_any_but(mask, cpu); 1423 if (sibling < nr_cpu_ids) 1424 return cpu_data(sibling).loops_per_jiffy; 1425 return 0; 1426 } 1427 #endif 1428