xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16 
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 #include <asm/uv/uv.h>
30 
31 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
32 EXPORT_SYMBOL(cpu_khz);
33 
34 unsigned int __read_mostly tsc_khz;
35 EXPORT_SYMBOL(tsc_khz);
36 
37 #define KHZ	1000
38 
39 /*
40  * TSC can be unstable due to cpufreq or due to unsynced TSCs
41  */
42 static int __read_mostly tsc_unstable;
43 
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45 
46 int tsc_clocksource_reliable;
47 
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
52 
53 struct cyc2ns {
54 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
55 	seqcount_t	   seq;		/* 32 + 4    = 36 */
56 
57 }; /* fits one cacheline */
58 
59 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
60 
61 void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
62 {
63 	int seq, idx;
64 
65 	preempt_disable_notrace();
66 
67 	do {
68 		seq = this_cpu_read(cyc2ns.seq.sequence);
69 		idx = seq & 1;
70 
71 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
72 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
73 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
74 
75 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
76 }
77 
78 void __always_inline cyc2ns_read_end(void)
79 {
80 	preempt_enable_notrace();
81 }
82 
83 /*
84  * Accelerators for sched_clock()
85  * convert from cycles(64bits) => nanoseconds (64bits)
86  *  basic equation:
87  *              ns = cycles / (freq / ns_per_sec)
88  *              ns = cycles * (ns_per_sec / freq)
89  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
90  *              ns = cycles * (10^6 / cpu_khz)
91  *
92  *      Then we use scaling math (suggested by george@mvista.com) to get:
93  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
94  *              ns = cycles * cyc2ns_scale / SC
95  *
96  *      And since SC is a constant power of two, we can convert the div
97  *  into a shift. The larger SC is, the more accurate the conversion, but
98  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99  *  (64-bit result) can be used.
100  *
101  *  We can use khz divisor instead of mhz to keep a better precision.
102  *  (mathieu.desnoyers@polymtl.ca)
103  *
104  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
105  */
106 
107 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
108 {
109 	struct cyc2ns_data data;
110 	unsigned long long ns;
111 
112 	cyc2ns_read_begin(&data);
113 
114 	ns = data.cyc2ns_offset;
115 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
116 
117 	cyc2ns_read_end();
118 
119 	return ns;
120 }
121 
122 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
123 {
124 	unsigned long long ns_now;
125 	struct cyc2ns_data data;
126 	struct cyc2ns *c2n;
127 
128 	ns_now = cycles_2_ns(tsc_now);
129 
130 	/*
131 	 * Compute a new multiplier as per the above comment and ensure our
132 	 * time function is continuous; see the comment near struct
133 	 * cyc2ns_data.
134 	 */
135 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
136 			       NSEC_PER_MSEC, 0);
137 
138 	/*
139 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140 	 * not expected to be greater than 31 due to the original published
141 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
143 	 */
144 	if (data.cyc2ns_shift == 32) {
145 		data.cyc2ns_shift = 31;
146 		data.cyc2ns_mul >>= 1;
147 	}
148 
149 	data.cyc2ns_offset = ns_now -
150 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
151 
152 	c2n = per_cpu_ptr(&cyc2ns, cpu);
153 
154 	raw_write_seqcount_latch(&c2n->seq);
155 	c2n->data[0] = data;
156 	raw_write_seqcount_latch(&c2n->seq);
157 	c2n->data[1] = data;
158 }
159 
160 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
161 {
162 	unsigned long flags;
163 
164 	local_irq_save(flags);
165 	sched_clock_idle_sleep_event();
166 
167 	if (khz)
168 		__set_cyc2ns_scale(khz, cpu, tsc_now);
169 
170 	sched_clock_idle_wakeup_event();
171 	local_irq_restore(flags);
172 }
173 
174 /*
175  * Initialize cyc2ns for boot cpu
176  */
177 static void __init cyc2ns_init_boot_cpu(void)
178 {
179 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
180 
181 	seqcount_init(&c2n->seq);
182 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
183 }
184 
185 /*
186  * Secondary CPUs do not run through tsc_init(), so set up
187  * all the scale factors for all CPUs, assuming the same
188  * speed as the bootup CPU. (cpufreq notifiers will fix this
189  * up if their speed diverges)
190  */
191 static void __init cyc2ns_init_secondary_cpus(void)
192 {
193 	unsigned int cpu, this_cpu = smp_processor_id();
194 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
195 	struct cyc2ns_data *data = c2n->data;
196 
197 	for_each_possible_cpu(cpu) {
198 		if (cpu != this_cpu) {
199 			seqcount_init(&c2n->seq);
200 			c2n = per_cpu_ptr(&cyc2ns, cpu);
201 			c2n->data[0] = data[0];
202 			c2n->data[1] = data[1];
203 		}
204 	}
205 }
206 
207 /*
208  * Scheduler clock - returns current time in nanosec units.
209  */
210 u64 native_sched_clock(void)
211 {
212 	if (static_branch_likely(&__use_tsc)) {
213 		u64 tsc_now = rdtsc();
214 
215 		/* return the value in ns */
216 		return cycles_2_ns(tsc_now);
217 	}
218 
219 	/*
220 	 * Fall back to jiffies if there's no TSC available:
221 	 * ( But note that we still use it if the TSC is marked
222 	 *   unstable. We do this because unlike Time Of Day,
223 	 *   the scheduler clock tolerates small errors and it's
224 	 *   very important for it to be as fast as the platform
225 	 *   can achieve it. )
226 	 */
227 
228 	/* No locking but a rare wrong value is not a big deal: */
229 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
230 }
231 
232 /*
233  * Generate a sched_clock if you already have a TSC value.
234  */
235 u64 native_sched_clock_from_tsc(u64 tsc)
236 {
237 	return cycles_2_ns(tsc);
238 }
239 
240 /* We need to define a real function for sched_clock, to override the
241    weak default version */
242 #ifdef CONFIG_PARAVIRT
243 unsigned long long sched_clock(void)
244 {
245 	return paravirt_sched_clock();
246 }
247 
248 bool using_native_sched_clock(void)
249 {
250 	return pv_ops.time.sched_clock == native_sched_clock;
251 }
252 #else
253 unsigned long long
254 sched_clock(void) __attribute__((alias("native_sched_clock")));
255 
256 bool using_native_sched_clock(void) { return true; }
257 #endif
258 
259 int check_tsc_unstable(void)
260 {
261 	return tsc_unstable;
262 }
263 EXPORT_SYMBOL_GPL(check_tsc_unstable);
264 
265 #ifdef CONFIG_X86_TSC
266 int __init notsc_setup(char *str)
267 {
268 	mark_tsc_unstable("boot parameter notsc");
269 	return 1;
270 }
271 #else
272 /*
273  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
274  * in cpu/common.c
275  */
276 int __init notsc_setup(char *str)
277 {
278 	setup_clear_cpu_cap(X86_FEATURE_TSC);
279 	return 1;
280 }
281 #endif
282 
283 __setup("notsc", notsc_setup);
284 
285 static int no_sched_irq_time;
286 
287 static int __init tsc_setup(char *str)
288 {
289 	if (!strcmp(str, "reliable"))
290 		tsc_clocksource_reliable = 1;
291 	if (!strncmp(str, "noirqtime", 9))
292 		no_sched_irq_time = 1;
293 	if (!strcmp(str, "unstable"))
294 		mark_tsc_unstable("boot parameter");
295 	return 1;
296 }
297 
298 __setup("tsc=", tsc_setup);
299 
300 #define MAX_RETRIES		5
301 #define TSC_DEFAULT_THRESHOLD	0x20000
302 
303 /*
304  * Read TSC and the reference counters. Take care of any disturbances
305  */
306 static u64 tsc_read_refs(u64 *p, int hpet)
307 {
308 	u64 t1, t2;
309 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
310 	int i;
311 
312 	for (i = 0; i < MAX_RETRIES; i++) {
313 		t1 = get_cycles();
314 		if (hpet)
315 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
316 		else
317 			*p = acpi_pm_read_early();
318 		t2 = get_cycles();
319 		if ((t2 - t1) < thresh)
320 			return t2;
321 	}
322 	return ULLONG_MAX;
323 }
324 
325 /*
326  * Calculate the TSC frequency from HPET reference
327  */
328 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
329 {
330 	u64 tmp;
331 
332 	if (hpet2 < hpet1)
333 		hpet2 += 0x100000000ULL;
334 	hpet2 -= hpet1;
335 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
336 	do_div(tmp, 1000000);
337 	deltatsc = div64_u64(deltatsc, tmp);
338 
339 	return (unsigned long) deltatsc;
340 }
341 
342 /*
343  * Calculate the TSC frequency from PMTimer reference
344  */
345 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
346 {
347 	u64 tmp;
348 
349 	if (!pm1 && !pm2)
350 		return ULONG_MAX;
351 
352 	if (pm2 < pm1)
353 		pm2 += (u64)ACPI_PM_OVRRUN;
354 	pm2 -= pm1;
355 	tmp = pm2 * 1000000000LL;
356 	do_div(tmp, PMTMR_TICKS_PER_SEC);
357 	do_div(deltatsc, tmp);
358 
359 	return (unsigned long) deltatsc;
360 }
361 
362 #define CAL_MS		10
363 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
364 #define CAL_PIT_LOOPS	1000
365 
366 #define CAL2_MS		50
367 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
368 #define CAL2_PIT_LOOPS	5000
369 
370 
371 /*
372  * Try to calibrate the TSC against the Programmable
373  * Interrupt Timer and return the frequency of the TSC
374  * in kHz.
375  *
376  * Return ULONG_MAX on failure to calibrate.
377  */
378 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
379 {
380 	u64 tsc, t1, t2, delta;
381 	unsigned long tscmin, tscmax;
382 	int pitcnt;
383 
384 	if (!has_legacy_pic()) {
385 		/*
386 		 * Relies on tsc_early_delay_calibrate() to have given us semi
387 		 * usable udelay(), wait for the same 50ms we would have with
388 		 * the PIT loop below.
389 		 */
390 		udelay(10 * USEC_PER_MSEC);
391 		udelay(10 * USEC_PER_MSEC);
392 		udelay(10 * USEC_PER_MSEC);
393 		udelay(10 * USEC_PER_MSEC);
394 		udelay(10 * USEC_PER_MSEC);
395 		return ULONG_MAX;
396 	}
397 
398 	/* Set the Gate high, disable speaker */
399 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
400 
401 	/*
402 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
403 	 * count mode), binary count. Set the latch register to 50ms
404 	 * (LSB then MSB) to begin countdown.
405 	 */
406 	outb(0xb0, 0x43);
407 	outb(latch & 0xff, 0x42);
408 	outb(latch >> 8, 0x42);
409 
410 	tsc = t1 = t2 = get_cycles();
411 
412 	pitcnt = 0;
413 	tscmax = 0;
414 	tscmin = ULONG_MAX;
415 	while ((inb(0x61) & 0x20) == 0) {
416 		t2 = get_cycles();
417 		delta = t2 - tsc;
418 		tsc = t2;
419 		if ((unsigned long) delta < tscmin)
420 			tscmin = (unsigned int) delta;
421 		if ((unsigned long) delta > tscmax)
422 			tscmax = (unsigned int) delta;
423 		pitcnt++;
424 	}
425 
426 	/*
427 	 * Sanity checks:
428 	 *
429 	 * If we were not able to read the PIT more than loopmin
430 	 * times, then we have been hit by a massive SMI
431 	 *
432 	 * If the maximum is 10 times larger than the minimum,
433 	 * then we got hit by an SMI as well.
434 	 */
435 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
436 		return ULONG_MAX;
437 
438 	/* Calculate the PIT value */
439 	delta = t2 - t1;
440 	do_div(delta, ms);
441 	return delta;
442 }
443 
444 /*
445  * This reads the current MSB of the PIT counter, and
446  * checks if we are running on sufficiently fast and
447  * non-virtualized hardware.
448  *
449  * Our expectations are:
450  *
451  *  - the PIT is running at roughly 1.19MHz
452  *
453  *  - each IO is going to take about 1us on real hardware,
454  *    but we allow it to be much faster (by a factor of 10) or
455  *    _slightly_ slower (ie we allow up to a 2us read+counter
456  *    update - anything else implies a unacceptably slow CPU
457  *    or PIT for the fast calibration to work.
458  *
459  *  - with 256 PIT ticks to read the value, we have 214us to
460  *    see the same MSB (and overhead like doing a single TSC
461  *    read per MSB value etc).
462  *
463  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
464  *    them each to take about a microsecond on real hardware.
465  *    So we expect a count value of around 100. But we'll be
466  *    generous, and accept anything over 50.
467  *
468  *  - if the PIT is stuck, and we see *many* more reads, we
469  *    return early (and the next caller of pit_expect_msb()
470  *    then consider it a failure when they don't see the
471  *    next expected value).
472  *
473  * These expectations mean that we know that we have seen the
474  * transition from one expected value to another with a fairly
475  * high accuracy, and we didn't miss any events. We can thus
476  * use the TSC value at the transitions to calculate a pretty
477  * good value for the TSC frequencty.
478  */
479 static inline int pit_verify_msb(unsigned char val)
480 {
481 	/* Ignore LSB */
482 	inb(0x42);
483 	return inb(0x42) == val;
484 }
485 
486 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
487 {
488 	int count;
489 	u64 tsc = 0, prev_tsc = 0;
490 
491 	for (count = 0; count < 50000; count++) {
492 		if (!pit_verify_msb(val))
493 			break;
494 		prev_tsc = tsc;
495 		tsc = get_cycles();
496 	}
497 	*deltap = get_cycles() - prev_tsc;
498 	*tscp = tsc;
499 
500 	/*
501 	 * We require _some_ success, but the quality control
502 	 * will be based on the error terms on the TSC values.
503 	 */
504 	return count > 5;
505 }
506 
507 /*
508  * How many MSB values do we want to see? We aim for
509  * a maximum error rate of 500ppm (in practice the
510  * real error is much smaller), but refuse to spend
511  * more than 50ms on it.
512  */
513 #define MAX_QUICK_PIT_MS 50
514 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
515 
516 static unsigned long quick_pit_calibrate(void)
517 {
518 	int i;
519 	u64 tsc, delta;
520 	unsigned long d1, d2;
521 
522 	if (!has_legacy_pic())
523 		return 0;
524 
525 	/* Set the Gate high, disable speaker */
526 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
527 
528 	/*
529 	 * Counter 2, mode 0 (one-shot), binary count
530 	 *
531 	 * NOTE! Mode 2 decrements by two (and then the
532 	 * output is flipped each time, giving the same
533 	 * final output frequency as a decrement-by-one),
534 	 * so mode 0 is much better when looking at the
535 	 * individual counts.
536 	 */
537 	outb(0xb0, 0x43);
538 
539 	/* Start at 0xffff */
540 	outb(0xff, 0x42);
541 	outb(0xff, 0x42);
542 
543 	/*
544 	 * The PIT starts counting at the next edge, so we
545 	 * need to delay for a microsecond. The easiest way
546 	 * to do that is to just read back the 16-bit counter
547 	 * once from the PIT.
548 	 */
549 	pit_verify_msb(0);
550 
551 	if (pit_expect_msb(0xff, &tsc, &d1)) {
552 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
553 			if (!pit_expect_msb(0xff-i, &delta, &d2))
554 				break;
555 
556 			delta -= tsc;
557 
558 			/*
559 			 * Extrapolate the error and fail fast if the error will
560 			 * never be below 500 ppm.
561 			 */
562 			if (i == 1 &&
563 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
564 				return 0;
565 
566 			/*
567 			 * Iterate until the error is less than 500 ppm
568 			 */
569 			if (d1+d2 >= delta >> 11)
570 				continue;
571 
572 			/*
573 			 * Check the PIT one more time to verify that
574 			 * all TSC reads were stable wrt the PIT.
575 			 *
576 			 * This also guarantees serialization of the
577 			 * last cycle read ('d2') in pit_expect_msb.
578 			 */
579 			if (!pit_verify_msb(0xfe - i))
580 				break;
581 			goto success;
582 		}
583 	}
584 	pr_info("Fast TSC calibration failed\n");
585 	return 0;
586 
587 success:
588 	/*
589 	 * Ok, if we get here, then we've seen the
590 	 * MSB of the PIT decrement 'i' times, and the
591 	 * error has shrunk to less than 500 ppm.
592 	 *
593 	 * As a result, we can depend on there not being
594 	 * any odd delays anywhere, and the TSC reads are
595 	 * reliable (within the error).
596 	 *
597 	 * kHz = ticks / time-in-seconds / 1000;
598 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
599 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
600 	 */
601 	delta *= PIT_TICK_RATE;
602 	do_div(delta, i*256*1000);
603 	pr_info("Fast TSC calibration using PIT\n");
604 	return delta;
605 }
606 
607 /**
608  * native_calibrate_tsc
609  * Determine TSC frequency via CPUID, else return 0.
610  */
611 unsigned long native_calibrate_tsc(void)
612 {
613 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
614 	unsigned int crystal_khz;
615 
616 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
617 		return 0;
618 
619 	if (boot_cpu_data.cpuid_level < 0x15)
620 		return 0;
621 
622 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
623 
624 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
625 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
626 
627 	if (ebx_numerator == 0 || eax_denominator == 0)
628 		return 0;
629 
630 	crystal_khz = ecx_hz / 1000;
631 
632 	if (crystal_khz == 0) {
633 		switch (boot_cpu_data.x86_model) {
634 		case INTEL_FAM6_SKYLAKE_MOBILE:
635 		case INTEL_FAM6_SKYLAKE_DESKTOP:
636 		case INTEL_FAM6_KABYLAKE_MOBILE:
637 		case INTEL_FAM6_KABYLAKE_DESKTOP:
638 			crystal_khz = 24000;	/* 24.0 MHz */
639 			break;
640 		case INTEL_FAM6_ATOM_GOLDMONT_X:
641 			crystal_khz = 25000;	/* 25.0 MHz */
642 			break;
643 		case INTEL_FAM6_ATOM_GOLDMONT:
644 			crystal_khz = 19200;	/* 19.2 MHz */
645 			break;
646 		}
647 	}
648 
649 	if (crystal_khz == 0)
650 		return 0;
651 	/*
652 	 * TSC frequency determined by CPUID is a "hardware reported"
653 	 * frequency and is the most accurate one so far we have. This
654 	 * is considered a known frequency.
655 	 */
656 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
657 
658 	/*
659 	 * For Atom SoCs TSC is the only reliable clocksource.
660 	 * Mark TSC reliable so no watchdog on it.
661 	 */
662 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
663 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
664 
665 	return crystal_khz * ebx_numerator / eax_denominator;
666 }
667 
668 static unsigned long cpu_khz_from_cpuid(void)
669 {
670 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
671 
672 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
673 		return 0;
674 
675 	if (boot_cpu_data.cpuid_level < 0x16)
676 		return 0;
677 
678 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
679 
680 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
681 
682 	return eax_base_mhz * 1000;
683 }
684 
685 /*
686  * calibrate cpu using pit, hpet, and ptimer methods. They are available
687  * later in boot after acpi is initialized.
688  */
689 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
690 {
691 	u64 tsc1, tsc2, delta, ref1, ref2;
692 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
693 	unsigned long flags, latch, ms;
694 	int hpet = is_hpet_enabled(), i, loopmin;
695 
696 	/*
697 	 * Run 5 calibration loops to get the lowest frequency value
698 	 * (the best estimate). We use two different calibration modes
699 	 * here:
700 	 *
701 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
702 	 * load a timeout of 50ms. We read the time right after we
703 	 * started the timer and wait until the PIT count down reaches
704 	 * zero. In each wait loop iteration we read the TSC and check
705 	 * the delta to the previous read. We keep track of the min
706 	 * and max values of that delta. The delta is mostly defined
707 	 * by the IO time of the PIT access, so we can detect when
708 	 * any disturbance happened between the two reads. If the
709 	 * maximum time is significantly larger than the minimum time,
710 	 * then we discard the result and have another try.
711 	 *
712 	 * 2) Reference counter. If available we use the HPET or the
713 	 * PMTIMER as a reference to check the sanity of that value.
714 	 * We use separate TSC readouts and check inside of the
715 	 * reference read for any possible disturbance. We dicard
716 	 * disturbed values here as well. We do that around the PIT
717 	 * calibration delay loop as we have to wait for a certain
718 	 * amount of time anyway.
719 	 */
720 
721 	/* Preset PIT loop values */
722 	latch = CAL_LATCH;
723 	ms = CAL_MS;
724 	loopmin = CAL_PIT_LOOPS;
725 
726 	for (i = 0; i < 3; i++) {
727 		unsigned long tsc_pit_khz;
728 
729 		/*
730 		 * Read the start value and the reference count of
731 		 * hpet/pmtimer when available. Then do the PIT
732 		 * calibration, which will take at least 50ms, and
733 		 * read the end value.
734 		 */
735 		local_irq_save(flags);
736 		tsc1 = tsc_read_refs(&ref1, hpet);
737 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
738 		tsc2 = tsc_read_refs(&ref2, hpet);
739 		local_irq_restore(flags);
740 
741 		/* Pick the lowest PIT TSC calibration so far */
742 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
743 
744 		/* hpet or pmtimer available ? */
745 		if (ref1 == ref2)
746 			continue;
747 
748 		/* Check, whether the sampling was disturbed */
749 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
750 			continue;
751 
752 		tsc2 = (tsc2 - tsc1) * 1000000LL;
753 		if (hpet)
754 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
755 		else
756 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
757 
758 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
759 
760 		/* Check the reference deviation */
761 		delta = ((u64) tsc_pit_min) * 100;
762 		do_div(delta, tsc_ref_min);
763 
764 		/*
765 		 * If both calibration results are inside a 10% window
766 		 * then we can be sure, that the calibration
767 		 * succeeded. We break out of the loop right away. We
768 		 * use the reference value, as it is more precise.
769 		 */
770 		if (delta >= 90 && delta <= 110) {
771 			pr_info("PIT calibration matches %s. %d loops\n",
772 				hpet ? "HPET" : "PMTIMER", i + 1);
773 			return tsc_ref_min;
774 		}
775 
776 		/*
777 		 * Check whether PIT failed more than once. This
778 		 * happens in virtualized environments. We need to
779 		 * give the virtual PC a slightly longer timeframe for
780 		 * the HPET/PMTIMER to make the result precise.
781 		 */
782 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
783 			latch = CAL2_LATCH;
784 			ms = CAL2_MS;
785 			loopmin = CAL2_PIT_LOOPS;
786 		}
787 	}
788 
789 	/*
790 	 * Now check the results.
791 	 */
792 	if (tsc_pit_min == ULONG_MAX) {
793 		/* PIT gave no useful value */
794 		pr_warn("Unable to calibrate against PIT\n");
795 
796 		/* We don't have an alternative source, disable TSC */
797 		if (!hpet && !ref1 && !ref2) {
798 			pr_notice("No reference (HPET/PMTIMER) available\n");
799 			return 0;
800 		}
801 
802 		/* The alternative source failed as well, disable TSC */
803 		if (tsc_ref_min == ULONG_MAX) {
804 			pr_warn("HPET/PMTIMER calibration failed\n");
805 			return 0;
806 		}
807 
808 		/* Use the alternative source */
809 		pr_info("using %s reference calibration\n",
810 			hpet ? "HPET" : "PMTIMER");
811 
812 		return tsc_ref_min;
813 	}
814 
815 	/* We don't have an alternative source, use the PIT calibration value */
816 	if (!hpet && !ref1 && !ref2) {
817 		pr_info("Using PIT calibration value\n");
818 		return tsc_pit_min;
819 	}
820 
821 	/* The alternative source failed, use the PIT calibration value */
822 	if (tsc_ref_min == ULONG_MAX) {
823 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
824 		return tsc_pit_min;
825 	}
826 
827 	/*
828 	 * The calibration values differ too much. In doubt, we use
829 	 * the PIT value as we know that there are PMTIMERs around
830 	 * running at double speed. At least we let the user know:
831 	 */
832 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
833 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
834 	pr_info("Using PIT calibration value\n");
835 	return tsc_pit_min;
836 }
837 
838 /**
839  * native_calibrate_cpu_early - can calibrate the cpu early in boot
840  */
841 unsigned long native_calibrate_cpu_early(void)
842 {
843 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
844 
845 	if (!fast_calibrate)
846 		fast_calibrate = cpu_khz_from_msr();
847 	if (!fast_calibrate) {
848 		local_irq_save(flags);
849 		fast_calibrate = quick_pit_calibrate();
850 		local_irq_restore(flags);
851 	}
852 	return fast_calibrate;
853 }
854 
855 
856 /**
857  * native_calibrate_cpu - calibrate the cpu
858  */
859 static unsigned long native_calibrate_cpu(void)
860 {
861 	unsigned long tsc_freq = native_calibrate_cpu_early();
862 
863 	if (!tsc_freq)
864 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
865 
866 	return tsc_freq;
867 }
868 
869 void recalibrate_cpu_khz(void)
870 {
871 #ifndef CONFIG_SMP
872 	unsigned long cpu_khz_old = cpu_khz;
873 
874 	if (!boot_cpu_has(X86_FEATURE_TSC))
875 		return;
876 
877 	cpu_khz = x86_platform.calibrate_cpu();
878 	tsc_khz = x86_platform.calibrate_tsc();
879 	if (tsc_khz == 0)
880 		tsc_khz = cpu_khz;
881 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
882 		cpu_khz = tsc_khz;
883 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
884 						    cpu_khz_old, cpu_khz);
885 #endif
886 }
887 
888 EXPORT_SYMBOL(recalibrate_cpu_khz);
889 
890 
891 static unsigned long long cyc2ns_suspend;
892 
893 void tsc_save_sched_clock_state(void)
894 {
895 	if (!sched_clock_stable())
896 		return;
897 
898 	cyc2ns_suspend = sched_clock();
899 }
900 
901 /*
902  * Even on processors with invariant TSC, TSC gets reset in some the
903  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
904  * arbitrary value (still sync'd across cpu's) during resume from such sleep
905  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
906  * that sched_clock() continues from the point where it was left off during
907  * suspend.
908  */
909 void tsc_restore_sched_clock_state(void)
910 {
911 	unsigned long long offset;
912 	unsigned long flags;
913 	int cpu;
914 
915 	if (!sched_clock_stable())
916 		return;
917 
918 	local_irq_save(flags);
919 
920 	/*
921 	 * We're coming out of suspend, there's no concurrency yet; don't
922 	 * bother being nice about the RCU stuff, just write to both
923 	 * data fields.
924 	 */
925 
926 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
927 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
928 
929 	offset = cyc2ns_suspend - sched_clock();
930 
931 	for_each_possible_cpu(cpu) {
932 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
933 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
934 	}
935 
936 	local_irq_restore(flags);
937 }
938 
939 #ifdef CONFIG_CPU_FREQ
940 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
941  * changes.
942  *
943  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
944  * not that important because current Opteron setups do not support
945  * scaling on SMP anyroads.
946  *
947  * Should fix up last_tsc too. Currently gettimeofday in the
948  * first tick after the change will be slightly wrong.
949  */
950 
951 static unsigned int  ref_freq;
952 static unsigned long loops_per_jiffy_ref;
953 static unsigned long tsc_khz_ref;
954 
955 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
956 				void *data)
957 {
958 	struct cpufreq_freqs *freq = data;
959 	unsigned long *lpj;
960 
961 	lpj = &boot_cpu_data.loops_per_jiffy;
962 #ifdef CONFIG_SMP
963 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
964 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
965 #endif
966 
967 	if (!ref_freq) {
968 		ref_freq = freq->old;
969 		loops_per_jiffy_ref = *lpj;
970 		tsc_khz_ref = tsc_khz;
971 	}
972 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
973 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
974 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
975 
976 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
977 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
978 			mark_tsc_unstable("cpufreq changes");
979 
980 		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
981 	}
982 
983 	return 0;
984 }
985 
986 static struct notifier_block time_cpufreq_notifier_block = {
987 	.notifier_call  = time_cpufreq_notifier
988 };
989 
990 static int __init cpufreq_register_tsc_scaling(void)
991 {
992 	if (!boot_cpu_has(X86_FEATURE_TSC))
993 		return 0;
994 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
995 		return 0;
996 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
997 				CPUFREQ_TRANSITION_NOTIFIER);
998 	return 0;
999 }
1000 
1001 core_initcall(cpufreq_register_tsc_scaling);
1002 
1003 #endif /* CONFIG_CPU_FREQ */
1004 
1005 #define ART_CPUID_LEAF (0x15)
1006 #define ART_MIN_DENOMINATOR (1)
1007 
1008 
1009 /*
1010  * If ART is present detect the numerator:denominator to convert to TSC
1011  */
1012 static void __init detect_art(void)
1013 {
1014 	unsigned int unused[2];
1015 
1016 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1017 		return;
1018 
1019 	/*
1020 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1021 	 * and the TSC counter resets must not occur asynchronously.
1022 	 */
1023 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1024 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1025 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1026 	    tsc_async_resets)
1027 		return;
1028 
1029 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1030 	      &art_to_tsc_numerator, unused, unused+1);
1031 
1032 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1033 		return;
1034 
1035 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1036 
1037 	/* Make this sticky over multiple CPU init calls */
1038 	setup_force_cpu_cap(X86_FEATURE_ART);
1039 }
1040 
1041 
1042 /* clocksource code */
1043 
1044 static void tsc_resume(struct clocksource *cs)
1045 {
1046 	tsc_verify_tsc_adjust(true);
1047 }
1048 
1049 /*
1050  * We used to compare the TSC to the cycle_last value in the clocksource
1051  * structure to avoid a nasty time-warp. This can be observed in a
1052  * very small window right after one CPU updated cycle_last under
1053  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1054  * is smaller than the cycle_last reference value due to a TSC which
1055  * is slighty behind. This delta is nowhere else observable, but in
1056  * that case it results in a forward time jump in the range of hours
1057  * due to the unsigned delta calculation of the time keeping core
1058  * code, which is necessary to support wrapping clocksources like pm
1059  * timer.
1060  *
1061  * This sanity check is now done in the core timekeeping code.
1062  * checking the result of read_tsc() - cycle_last for being negative.
1063  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1064  */
1065 static u64 read_tsc(struct clocksource *cs)
1066 {
1067 	return (u64)rdtsc_ordered();
1068 }
1069 
1070 static void tsc_cs_mark_unstable(struct clocksource *cs)
1071 {
1072 	if (tsc_unstable)
1073 		return;
1074 
1075 	tsc_unstable = 1;
1076 	if (using_native_sched_clock())
1077 		clear_sched_clock_stable();
1078 	disable_sched_clock_irqtime();
1079 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1080 }
1081 
1082 static void tsc_cs_tick_stable(struct clocksource *cs)
1083 {
1084 	if (tsc_unstable)
1085 		return;
1086 
1087 	if (using_native_sched_clock())
1088 		sched_clock_tick_stable();
1089 }
1090 
1091 /*
1092  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1093  */
1094 static struct clocksource clocksource_tsc_early = {
1095 	.name                   = "tsc-early",
1096 	.rating                 = 299,
1097 	.read                   = read_tsc,
1098 	.mask                   = CLOCKSOURCE_MASK(64),
1099 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1100 				  CLOCK_SOURCE_MUST_VERIFY,
1101 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1102 	.resume			= tsc_resume,
1103 	.mark_unstable		= tsc_cs_mark_unstable,
1104 	.tick_stable		= tsc_cs_tick_stable,
1105 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1106 };
1107 
1108 /*
1109  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1110  * this one will immediately take over. We will only register if TSC has
1111  * been found good.
1112  */
1113 static struct clocksource clocksource_tsc = {
1114 	.name                   = "tsc",
1115 	.rating                 = 300,
1116 	.read                   = read_tsc,
1117 	.mask                   = CLOCKSOURCE_MASK(64),
1118 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1119 				  CLOCK_SOURCE_VALID_FOR_HRES |
1120 				  CLOCK_SOURCE_MUST_VERIFY,
1121 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1122 	.resume			= tsc_resume,
1123 	.mark_unstable		= tsc_cs_mark_unstable,
1124 	.tick_stable		= tsc_cs_tick_stable,
1125 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1126 };
1127 
1128 void mark_tsc_unstable(char *reason)
1129 {
1130 	if (tsc_unstable)
1131 		return;
1132 
1133 	tsc_unstable = 1;
1134 	if (using_native_sched_clock())
1135 		clear_sched_clock_stable();
1136 	disable_sched_clock_irqtime();
1137 	pr_info("Marking TSC unstable due to %s\n", reason);
1138 
1139 	clocksource_mark_unstable(&clocksource_tsc_early);
1140 	clocksource_mark_unstable(&clocksource_tsc);
1141 }
1142 
1143 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1144 
1145 static void __init check_system_tsc_reliable(void)
1146 {
1147 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1148 	if (is_geode_lx()) {
1149 		/* RTSC counts during suspend */
1150 #define RTSC_SUSP 0x100
1151 		unsigned long res_low, res_high;
1152 
1153 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1154 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1155 		if (res_low & RTSC_SUSP)
1156 			tsc_clocksource_reliable = 1;
1157 	}
1158 #endif
1159 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1160 		tsc_clocksource_reliable = 1;
1161 }
1162 
1163 /*
1164  * Make an educated guess if the TSC is trustworthy and synchronized
1165  * over all CPUs.
1166  */
1167 int unsynchronized_tsc(void)
1168 {
1169 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1170 		return 1;
1171 
1172 #ifdef CONFIG_SMP
1173 	if (apic_is_clustered_box())
1174 		return 1;
1175 #endif
1176 
1177 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1178 		return 0;
1179 
1180 	if (tsc_clocksource_reliable)
1181 		return 0;
1182 	/*
1183 	 * Intel systems are normally all synchronized.
1184 	 * Exceptions must mark TSC as unstable:
1185 	 */
1186 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1187 		/* assume multi socket systems are not synchronized: */
1188 		if (num_possible_cpus() > 1)
1189 			return 1;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Convert ART to TSC given numerator/denominator found in detect_art()
1197  */
1198 struct system_counterval_t convert_art_to_tsc(u64 art)
1199 {
1200 	u64 tmp, res, rem;
1201 
1202 	rem = do_div(art, art_to_tsc_denominator);
1203 
1204 	res = art * art_to_tsc_numerator;
1205 	tmp = rem * art_to_tsc_numerator;
1206 
1207 	do_div(tmp, art_to_tsc_denominator);
1208 	res += tmp + art_to_tsc_offset;
1209 
1210 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1211 			.cycles = res};
1212 }
1213 EXPORT_SYMBOL(convert_art_to_tsc);
1214 
1215 /**
1216  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1217  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1218  *
1219  * PTM requires all timestamps to be in units of nanoseconds. When user
1220  * software requests a cross-timestamp, this function converts system timestamp
1221  * to TSC.
1222  *
1223  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1224  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1225  * that this flag is set before conversion to TSC is attempted.
1226  *
1227  * Return:
1228  * struct system_counterval_t - system counter value with the pointer to the
1229  *	corresponding clocksource
1230  *	@cycles:	System counter value
1231  *	@cs:		Clocksource corresponding to system counter value. Used
1232  *			by timekeeping code to verify comparibility of two cycle
1233  *			values.
1234  */
1235 
1236 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1237 {
1238 	u64 tmp, res, rem;
1239 
1240 	rem = do_div(art_ns, USEC_PER_SEC);
1241 
1242 	res = art_ns * tsc_khz;
1243 	tmp = rem * tsc_khz;
1244 
1245 	do_div(tmp, USEC_PER_SEC);
1246 	res += tmp;
1247 
1248 	return (struct system_counterval_t) { .cs = art_related_clocksource,
1249 					      .cycles = res};
1250 }
1251 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1252 
1253 
1254 static void tsc_refine_calibration_work(struct work_struct *work);
1255 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1256 /**
1257  * tsc_refine_calibration_work - Further refine tsc freq calibration
1258  * @work - ignored.
1259  *
1260  * This functions uses delayed work over a period of a
1261  * second to further refine the TSC freq value. Since this is
1262  * timer based, instead of loop based, we don't block the boot
1263  * process while this longer calibration is done.
1264  *
1265  * If there are any calibration anomalies (too many SMIs, etc),
1266  * or the refined calibration is off by 1% of the fast early
1267  * calibration, we throw out the new calibration and use the
1268  * early calibration.
1269  */
1270 static void tsc_refine_calibration_work(struct work_struct *work)
1271 {
1272 	static u64 tsc_start = ULLONG_MAX, ref_start;
1273 	static int hpet;
1274 	u64 tsc_stop, ref_stop, delta;
1275 	unsigned long freq;
1276 	int cpu;
1277 
1278 	/* Don't bother refining TSC on unstable systems */
1279 	if (tsc_unstable)
1280 		goto unreg;
1281 
1282 	/*
1283 	 * Since the work is started early in boot, we may be
1284 	 * delayed the first time we expire. So set the workqueue
1285 	 * again once we know timers are working.
1286 	 */
1287 	if (tsc_start == ULLONG_MAX) {
1288 restart:
1289 		/*
1290 		 * Only set hpet once, to avoid mixing hardware
1291 		 * if the hpet becomes enabled later.
1292 		 */
1293 		hpet = is_hpet_enabled();
1294 		tsc_start = tsc_read_refs(&ref_start, hpet);
1295 		schedule_delayed_work(&tsc_irqwork, HZ);
1296 		return;
1297 	}
1298 
1299 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1300 
1301 	/* hpet or pmtimer available ? */
1302 	if (ref_start == ref_stop)
1303 		goto out;
1304 
1305 	/* Check, whether the sampling was disturbed */
1306 	if (tsc_stop == ULLONG_MAX)
1307 		goto restart;
1308 
1309 	delta = tsc_stop - tsc_start;
1310 	delta *= 1000000LL;
1311 	if (hpet)
1312 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1313 	else
1314 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1315 
1316 	/* Make sure we're within 1% */
1317 	if (abs(tsc_khz - freq) > tsc_khz/100)
1318 		goto out;
1319 
1320 	tsc_khz = freq;
1321 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1322 		(unsigned long)tsc_khz / 1000,
1323 		(unsigned long)tsc_khz % 1000);
1324 
1325 	/* Inform the TSC deadline clockevent devices about the recalibration */
1326 	lapic_update_tsc_freq();
1327 
1328 	/* Update the sched_clock() rate to match the clocksource one */
1329 	for_each_possible_cpu(cpu)
1330 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1331 
1332 out:
1333 	if (tsc_unstable)
1334 		goto unreg;
1335 
1336 	if (boot_cpu_has(X86_FEATURE_ART))
1337 		art_related_clocksource = &clocksource_tsc;
1338 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1339 unreg:
1340 	clocksource_unregister(&clocksource_tsc_early);
1341 }
1342 
1343 
1344 static int __init init_tsc_clocksource(void)
1345 {
1346 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1347 		return 0;
1348 
1349 	if (tsc_unstable)
1350 		goto unreg;
1351 
1352 	if (tsc_clocksource_reliable)
1353 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1354 
1355 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1356 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1357 
1358 	/*
1359 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1360 	 * the refined calibration and directly register it as a clocksource.
1361 	 */
1362 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1363 		if (boot_cpu_has(X86_FEATURE_ART))
1364 			art_related_clocksource = &clocksource_tsc;
1365 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1366 unreg:
1367 		clocksource_unregister(&clocksource_tsc_early);
1368 		return 0;
1369 	}
1370 
1371 	schedule_delayed_work(&tsc_irqwork, 0);
1372 	return 0;
1373 }
1374 /*
1375  * We use device_initcall here, to ensure we run after the hpet
1376  * is fully initialized, which may occur at fs_initcall time.
1377  */
1378 device_initcall(init_tsc_clocksource);
1379 
1380 static bool __init determine_cpu_tsc_frequencies(bool early)
1381 {
1382 	/* Make sure that cpu and tsc are not already calibrated */
1383 	WARN_ON(cpu_khz || tsc_khz);
1384 
1385 	if (early) {
1386 		cpu_khz = x86_platform.calibrate_cpu();
1387 		tsc_khz = x86_platform.calibrate_tsc();
1388 	} else {
1389 		/* We should not be here with non-native cpu calibration */
1390 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1391 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1392 	}
1393 
1394 	/*
1395 	 * Trust non-zero tsc_khz as authoritative,
1396 	 * and use it to sanity check cpu_khz,
1397 	 * which will be off if system timer is off.
1398 	 */
1399 	if (tsc_khz == 0)
1400 		tsc_khz = cpu_khz;
1401 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1402 		cpu_khz = tsc_khz;
1403 
1404 	if (tsc_khz == 0)
1405 		return false;
1406 
1407 	pr_info("Detected %lu.%03lu MHz processor\n",
1408 		(unsigned long)cpu_khz / KHZ,
1409 		(unsigned long)cpu_khz % KHZ);
1410 
1411 	if (cpu_khz != tsc_khz) {
1412 		pr_info("Detected %lu.%03lu MHz TSC",
1413 			(unsigned long)tsc_khz / KHZ,
1414 			(unsigned long)tsc_khz % KHZ);
1415 	}
1416 	return true;
1417 }
1418 
1419 static unsigned long __init get_loops_per_jiffy(void)
1420 {
1421 	u64 lpj = (u64)tsc_khz * KHZ;
1422 
1423 	do_div(lpj, HZ);
1424 	return lpj;
1425 }
1426 
1427 static void __init tsc_enable_sched_clock(void)
1428 {
1429 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1430 	tsc_store_and_check_tsc_adjust(true);
1431 	cyc2ns_init_boot_cpu();
1432 	static_branch_enable(&__use_tsc);
1433 }
1434 
1435 void __init tsc_early_init(void)
1436 {
1437 	if (!boot_cpu_has(X86_FEATURE_TSC))
1438 		return;
1439 	/* Don't change UV TSC multi-chassis synchronization */
1440 	if (is_early_uv_system())
1441 		return;
1442 	if (!determine_cpu_tsc_frequencies(true))
1443 		return;
1444 	loops_per_jiffy = get_loops_per_jiffy();
1445 
1446 	tsc_enable_sched_clock();
1447 }
1448 
1449 void __init tsc_init(void)
1450 {
1451 	/*
1452 	 * native_calibrate_cpu_early can only calibrate using methods that are
1453 	 * available early in boot.
1454 	 */
1455 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1456 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1457 
1458 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1459 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1460 		return;
1461 	}
1462 
1463 	if (!tsc_khz) {
1464 		/* We failed to determine frequencies earlier, try again */
1465 		if (!determine_cpu_tsc_frequencies(false)) {
1466 			mark_tsc_unstable("could not calculate TSC khz");
1467 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1468 			return;
1469 		}
1470 		tsc_enable_sched_clock();
1471 	}
1472 
1473 	cyc2ns_init_secondary_cpus();
1474 
1475 	if (!no_sched_irq_time)
1476 		enable_sched_clock_irqtime();
1477 
1478 	lpj_fine = get_loops_per_jiffy();
1479 	use_tsc_delay();
1480 
1481 	check_system_tsc_reliable();
1482 
1483 	if (unsynchronized_tsc()) {
1484 		mark_tsc_unstable("TSCs unsynchronized");
1485 		return;
1486 	}
1487 
1488 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1489 	detect_art();
1490 }
1491 
1492 #ifdef CONFIG_SMP
1493 /*
1494  * If we have a constant TSC and are using the TSC for the delay loop,
1495  * we can skip clock calibration if another cpu in the same socket has already
1496  * been calibrated. This assumes that CONSTANT_TSC applies to all
1497  * cpus in the socket - this should be a safe assumption.
1498  */
1499 unsigned long calibrate_delay_is_known(void)
1500 {
1501 	int sibling, cpu = smp_processor_id();
1502 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1503 	const struct cpumask *mask = topology_core_cpumask(cpu);
1504 
1505 	if (!constant_tsc || !mask)
1506 		return 0;
1507 
1508 	sibling = cpumask_any_but(mask, cpu);
1509 	if (sibling < nr_cpu_ids)
1510 		return cpu_data(sibling).loops_per_jiffy;
1511 	return 0;
1512 }
1513 #endif
1514