1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/export.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 #include <asm/geode.h> 25 #include <asm/apic.h> 26 27 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 28 EXPORT_SYMBOL(cpu_khz); 29 30 unsigned int __read_mostly tsc_khz; 31 EXPORT_SYMBOL(tsc_khz); 32 33 /* 34 * TSC can be unstable due to cpufreq or due to unsynced TSCs 35 */ 36 static int __read_mostly tsc_unstable; 37 38 /* native_sched_clock() is called before tsc_init(), so 39 we must start with the TSC soft disabled to prevent 40 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */ 41 static int __read_mostly tsc_disabled = -1; 42 43 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 44 45 int tsc_clocksource_reliable; 46 47 static u32 art_to_tsc_numerator; 48 static u32 art_to_tsc_denominator; 49 static u64 art_to_tsc_offset; 50 struct clocksource *art_related_clocksource; 51 52 /* 53 * Use a ring-buffer like data structure, where a writer advances the head by 54 * writing a new data entry and a reader advances the tail when it observes a 55 * new entry. 56 * 57 * Writers are made to wait on readers until there's space to write a new 58 * entry. 59 * 60 * This means that we can always use an {offset, mul} pair to compute a ns 61 * value that is 'roughly' in the right direction, even if we're writing a new 62 * {offset, mul} pair during the clock read. 63 * 64 * The down-side is that we can no longer guarantee strict monotonicity anymore 65 * (assuming the TSC was that to begin with), because while we compute the 66 * intersection point of the two clock slopes and make sure the time is 67 * continuous at the point of switching; we can no longer guarantee a reader is 68 * strictly before or after the switch point. 69 * 70 * It does mean a reader no longer needs to disable IRQs in order to avoid 71 * CPU-Freq updates messing with his times, and similarly an NMI reader will 72 * no longer run the risk of hitting half-written state. 73 */ 74 75 struct cyc2ns { 76 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 77 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 78 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 79 }; /* exactly fits one cacheline */ 80 81 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 82 83 struct cyc2ns_data *cyc2ns_read_begin(void) 84 { 85 struct cyc2ns_data *head; 86 87 preempt_disable(); 88 89 head = this_cpu_read(cyc2ns.head); 90 /* 91 * Ensure we observe the entry when we observe the pointer to it. 92 * matches the wmb from cyc2ns_write_end(). 93 */ 94 smp_read_barrier_depends(); 95 head->__count++; 96 barrier(); 97 98 return head; 99 } 100 101 void cyc2ns_read_end(struct cyc2ns_data *head) 102 { 103 barrier(); 104 /* 105 * If we're the outer most nested read; update the tail pointer 106 * when we're done. This notifies possible pending writers 107 * that we've observed the head pointer and that the other 108 * entry is now free. 109 */ 110 if (!--head->__count) { 111 /* 112 * x86-TSO does not reorder writes with older reads; 113 * therefore once this write becomes visible to another 114 * cpu, we must be finished reading the cyc2ns_data. 115 * 116 * matches with cyc2ns_write_begin(). 117 */ 118 this_cpu_write(cyc2ns.tail, head); 119 } 120 preempt_enable(); 121 } 122 123 /* 124 * Begin writing a new @data entry for @cpu. 125 * 126 * Assumes some sort of write side lock; currently 'provided' by the assumption 127 * that cpufreq will call its notifiers sequentially. 128 */ 129 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 130 { 131 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 132 struct cyc2ns_data *data = c2n->data; 133 134 if (data == c2n->head) 135 data++; 136 137 /* XXX send an IPI to @cpu in order to guarantee a read? */ 138 139 /* 140 * When we observe the tail write from cyc2ns_read_end(), 141 * the cpu must be done with that entry and its safe 142 * to start writing to it. 143 */ 144 while (c2n->tail == data) 145 cpu_relax(); 146 147 return data; 148 } 149 150 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 151 { 152 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 153 154 /* 155 * Ensure the @data writes are visible before we publish the 156 * entry. Matches the data-depencency in cyc2ns_read_begin(). 157 */ 158 smp_wmb(); 159 160 ACCESS_ONCE(c2n->head) = data; 161 } 162 163 /* 164 * Accelerators for sched_clock() 165 * convert from cycles(64bits) => nanoseconds (64bits) 166 * basic equation: 167 * ns = cycles / (freq / ns_per_sec) 168 * ns = cycles * (ns_per_sec / freq) 169 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 170 * ns = cycles * (10^6 / cpu_khz) 171 * 172 * Then we use scaling math (suggested by george@mvista.com) to get: 173 * ns = cycles * (10^6 * SC / cpu_khz) / SC 174 * ns = cycles * cyc2ns_scale / SC 175 * 176 * And since SC is a constant power of two, we can convert the div 177 * into a shift. The larger SC is, the more accurate the conversion, but 178 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 179 * (64-bit result) can be used. 180 * 181 * We can use khz divisor instead of mhz to keep a better precision. 182 * (mathieu.desnoyers@polymtl.ca) 183 * 184 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 185 */ 186 187 static void cyc2ns_data_init(struct cyc2ns_data *data) 188 { 189 data->cyc2ns_mul = 0; 190 data->cyc2ns_shift = 0; 191 data->cyc2ns_offset = 0; 192 data->__count = 0; 193 } 194 195 static void cyc2ns_init(int cpu) 196 { 197 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 198 199 cyc2ns_data_init(&c2n->data[0]); 200 cyc2ns_data_init(&c2n->data[1]); 201 202 c2n->head = c2n->data; 203 c2n->tail = c2n->data; 204 } 205 206 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 207 { 208 struct cyc2ns_data *data, *tail; 209 unsigned long long ns; 210 211 /* 212 * See cyc2ns_read_*() for details; replicated in order to avoid 213 * an extra few instructions that came with the abstraction. 214 * Notable, it allows us to only do the __count and tail update 215 * dance when its actually needed. 216 */ 217 218 preempt_disable_notrace(); 219 data = this_cpu_read(cyc2ns.head); 220 tail = this_cpu_read(cyc2ns.tail); 221 222 if (likely(data == tail)) { 223 ns = data->cyc2ns_offset; 224 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 225 } else { 226 data->__count++; 227 228 barrier(); 229 230 ns = data->cyc2ns_offset; 231 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 232 233 barrier(); 234 235 if (!--data->__count) 236 this_cpu_write(cyc2ns.tail, data); 237 } 238 preempt_enable_notrace(); 239 240 return ns; 241 } 242 243 static void set_cyc2ns_scale(unsigned long khz, int cpu) 244 { 245 unsigned long long tsc_now, ns_now; 246 struct cyc2ns_data *data; 247 unsigned long flags; 248 249 local_irq_save(flags); 250 sched_clock_idle_sleep_event(); 251 252 if (!khz) 253 goto done; 254 255 data = cyc2ns_write_begin(cpu); 256 257 tsc_now = rdtsc(); 258 ns_now = cycles_2_ns(tsc_now); 259 260 /* 261 * Compute a new multiplier as per the above comment and ensure our 262 * time function is continuous; see the comment near struct 263 * cyc2ns_data. 264 */ 265 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz, 266 NSEC_PER_MSEC, 0); 267 268 /* 269 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 270 * not expected to be greater than 31 due to the original published 271 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 272 * value) - refer perf_event_mmap_page documentation in perf_event.h. 273 */ 274 if (data->cyc2ns_shift == 32) { 275 data->cyc2ns_shift = 31; 276 data->cyc2ns_mul >>= 1; 277 } 278 279 data->cyc2ns_offset = ns_now - 280 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift); 281 282 cyc2ns_write_end(cpu, data); 283 284 done: 285 sched_clock_idle_wakeup_event(0); 286 local_irq_restore(flags); 287 } 288 /* 289 * Scheduler clock - returns current time in nanosec units. 290 */ 291 u64 native_sched_clock(void) 292 { 293 if (static_branch_likely(&__use_tsc)) { 294 u64 tsc_now = rdtsc(); 295 296 /* return the value in ns */ 297 return cycles_2_ns(tsc_now); 298 } 299 300 /* 301 * Fall back to jiffies if there's no TSC available: 302 * ( But note that we still use it if the TSC is marked 303 * unstable. We do this because unlike Time Of Day, 304 * the scheduler clock tolerates small errors and it's 305 * very important for it to be as fast as the platform 306 * can achieve it. ) 307 */ 308 309 /* No locking but a rare wrong value is not a big deal: */ 310 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 311 } 312 313 /* 314 * Generate a sched_clock if you already have a TSC value. 315 */ 316 u64 native_sched_clock_from_tsc(u64 tsc) 317 { 318 return cycles_2_ns(tsc); 319 } 320 321 /* We need to define a real function for sched_clock, to override the 322 weak default version */ 323 #ifdef CONFIG_PARAVIRT 324 unsigned long long sched_clock(void) 325 { 326 return paravirt_sched_clock(); 327 } 328 #else 329 unsigned long long 330 sched_clock(void) __attribute__((alias("native_sched_clock"))); 331 #endif 332 333 int check_tsc_unstable(void) 334 { 335 return tsc_unstable; 336 } 337 EXPORT_SYMBOL_GPL(check_tsc_unstable); 338 339 #ifdef CONFIG_X86_TSC 340 int __init notsc_setup(char *str) 341 { 342 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 343 tsc_disabled = 1; 344 return 1; 345 } 346 #else 347 /* 348 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 349 * in cpu/common.c 350 */ 351 int __init notsc_setup(char *str) 352 { 353 setup_clear_cpu_cap(X86_FEATURE_TSC); 354 return 1; 355 } 356 #endif 357 358 __setup("notsc", notsc_setup); 359 360 static int no_sched_irq_time; 361 362 static int __init tsc_setup(char *str) 363 { 364 if (!strcmp(str, "reliable")) 365 tsc_clocksource_reliable = 1; 366 if (!strncmp(str, "noirqtime", 9)) 367 no_sched_irq_time = 1; 368 return 1; 369 } 370 371 __setup("tsc=", tsc_setup); 372 373 #define MAX_RETRIES 5 374 #define SMI_TRESHOLD 50000 375 376 /* 377 * Read TSC and the reference counters. Take care of SMI disturbance 378 */ 379 static u64 tsc_read_refs(u64 *p, int hpet) 380 { 381 u64 t1, t2; 382 int i; 383 384 for (i = 0; i < MAX_RETRIES; i++) { 385 t1 = get_cycles(); 386 if (hpet) 387 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 388 else 389 *p = acpi_pm_read_early(); 390 t2 = get_cycles(); 391 if ((t2 - t1) < SMI_TRESHOLD) 392 return t2; 393 } 394 return ULLONG_MAX; 395 } 396 397 /* 398 * Calculate the TSC frequency from HPET reference 399 */ 400 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 401 { 402 u64 tmp; 403 404 if (hpet2 < hpet1) 405 hpet2 += 0x100000000ULL; 406 hpet2 -= hpet1; 407 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 408 do_div(tmp, 1000000); 409 do_div(deltatsc, tmp); 410 411 return (unsigned long) deltatsc; 412 } 413 414 /* 415 * Calculate the TSC frequency from PMTimer reference 416 */ 417 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 418 { 419 u64 tmp; 420 421 if (!pm1 && !pm2) 422 return ULONG_MAX; 423 424 if (pm2 < pm1) 425 pm2 += (u64)ACPI_PM_OVRRUN; 426 pm2 -= pm1; 427 tmp = pm2 * 1000000000LL; 428 do_div(tmp, PMTMR_TICKS_PER_SEC); 429 do_div(deltatsc, tmp); 430 431 return (unsigned long) deltatsc; 432 } 433 434 #define CAL_MS 10 435 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 436 #define CAL_PIT_LOOPS 1000 437 438 #define CAL2_MS 50 439 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 440 #define CAL2_PIT_LOOPS 5000 441 442 443 /* 444 * Try to calibrate the TSC against the Programmable 445 * Interrupt Timer and return the frequency of the TSC 446 * in kHz. 447 * 448 * Return ULONG_MAX on failure to calibrate. 449 */ 450 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 451 { 452 u64 tsc, t1, t2, delta; 453 unsigned long tscmin, tscmax; 454 int pitcnt; 455 456 /* Set the Gate high, disable speaker */ 457 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 458 459 /* 460 * Setup CTC channel 2* for mode 0, (interrupt on terminal 461 * count mode), binary count. Set the latch register to 50ms 462 * (LSB then MSB) to begin countdown. 463 */ 464 outb(0xb0, 0x43); 465 outb(latch & 0xff, 0x42); 466 outb(latch >> 8, 0x42); 467 468 tsc = t1 = t2 = get_cycles(); 469 470 pitcnt = 0; 471 tscmax = 0; 472 tscmin = ULONG_MAX; 473 while ((inb(0x61) & 0x20) == 0) { 474 t2 = get_cycles(); 475 delta = t2 - tsc; 476 tsc = t2; 477 if ((unsigned long) delta < tscmin) 478 tscmin = (unsigned int) delta; 479 if ((unsigned long) delta > tscmax) 480 tscmax = (unsigned int) delta; 481 pitcnt++; 482 } 483 484 /* 485 * Sanity checks: 486 * 487 * If we were not able to read the PIT more than loopmin 488 * times, then we have been hit by a massive SMI 489 * 490 * If the maximum is 10 times larger than the minimum, 491 * then we got hit by an SMI as well. 492 */ 493 if (pitcnt < loopmin || tscmax > 10 * tscmin) 494 return ULONG_MAX; 495 496 /* Calculate the PIT value */ 497 delta = t2 - t1; 498 do_div(delta, ms); 499 return delta; 500 } 501 502 /* 503 * This reads the current MSB of the PIT counter, and 504 * checks if we are running on sufficiently fast and 505 * non-virtualized hardware. 506 * 507 * Our expectations are: 508 * 509 * - the PIT is running at roughly 1.19MHz 510 * 511 * - each IO is going to take about 1us on real hardware, 512 * but we allow it to be much faster (by a factor of 10) or 513 * _slightly_ slower (ie we allow up to a 2us read+counter 514 * update - anything else implies a unacceptably slow CPU 515 * or PIT for the fast calibration to work. 516 * 517 * - with 256 PIT ticks to read the value, we have 214us to 518 * see the same MSB (and overhead like doing a single TSC 519 * read per MSB value etc). 520 * 521 * - We're doing 2 reads per loop (LSB, MSB), and we expect 522 * them each to take about a microsecond on real hardware. 523 * So we expect a count value of around 100. But we'll be 524 * generous, and accept anything over 50. 525 * 526 * - if the PIT is stuck, and we see *many* more reads, we 527 * return early (and the next caller of pit_expect_msb() 528 * then consider it a failure when they don't see the 529 * next expected value). 530 * 531 * These expectations mean that we know that we have seen the 532 * transition from one expected value to another with a fairly 533 * high accuracy, and we didn't miss any events. We can thus 534 * use the TSC value at the transitions to calculate a pretty 535 * good value for the TSC frequencty. 536 */ 537 static inline int pit_verify_msb(unsigned char val) 538 { 539 /* Ignore LSB */ 540 inb(0x42); 541 return inb(0x42) == val; 542 } 543 544 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 545 { 546 int count; 547 u64 tsc = 0, prev_tsc = 0; 548 549 for (count = 0; count < 50000; count++) { 550 if (!pit_verify_msb(val)) 551 break; 552 prev_tsc = tsc; 553 tsc = get_cycles(); 554 } 555 *deltap = get_cycles() - prev_tsc; 556 *tscp = tsc; 557 558 /* 559 * We require _some_ success, but the quality control 560 * will be based on the error terms on the TSC values. 561 */ 562 return count > 5; 563 } 564 565 /* 566 * How many MSB values do we want to see? We aim for 567 * a maximum error rate of 500ppm (in practice the 568 * real error is much smaller), but refuse to spend 569 * more than 50ms on it. 570 */ 571 #define MAX_QUICK_PIT_MS 50 572 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 573 574 static unsigned long quick_pit_calibrate(void) 575 { 576 int i; 577 u64 tsc, delta; 578 unsigned long d1, d2; 579 580 /* Set the Gate high, disable speaker */ 581 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 582 583 /* 584 * Counter 2, mode 0 (one-shot), binary count 585 * 586 * NOTE! Mode 2 decrements by two (and then the 587 * output is flipped each time, giving the same 588 * final output frequency as a decrement-by-one), 589 * so mode 0 is much better when looking at the 590 * individual counts. 591 */ 592 outb(0xb0, 0x43); 593 594 /* Start at 0xffff */ 595 outb(0xff, 0x42); 596 outb(0xff, 0x42); 597 598 /* 599 * The PIT starts counting at the next edge, so we 600 * need to delay for a microsecond. The easiest way 601 * to do that is to just read back the 16-bit counter 602 * once from the PIT. 603 */ 604 pit_verify_msb(0); 605 606 if (pit_expect_msb(0xff, &tsc, &d1)) { 607 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 608 if (!pit_expect_msb(0xff-i, &delta, &d2)) 609 break; 610 611 delta -= tsc; 612 613 /* 614 * Extrapolate the error and fail fast if the error will 615 * never be below 500 ppm. 616 */ 617 if (i == 1 && 618 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 619 return 0; 620 621 /* 622 * Iterate until the error is less than 500 ppm 623 */ 624 if (d1+d2 >= delta >> 11) 625 continue; 626 627 /* 628 * Check the PIT one more time to verify that 629 * all TSC reads were stable wrt the PIT. 630 * 631 * This also guarantees serialization of the 632 * last cycle read ('d2') in pit_expect_msb. 633 */ 634 if (!pit_verify_msb(0xfe - i)) 635 break; 636 goto success; 637 } 638 } 639 pr_info("Fast TSC calibration failed\n"); 640 return 0; 641 642 success: 643 /* 644 * Ok, if we get here, then we've seen the 645 * MSB of the PIT decrement 'i' times, and the 646 * error has shrunk to less than 500 ppm. 647 * 648 * As a result, we can depend on there not being 649 * any odd delays anywhere, and the TSC reads are 650 * reliable (within the error). 651 * 652 * kHz = ticks / time-in-seconds / 1000; 653 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 654 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 655 */ 656 delta *= PIT_TICK_RATE; 657 do_div(delta, i*256*1000); 658 pr_info("Fast TSC calibration using PIT\n"); 659 return delta; 660 } 661 662 /** 663 * native_calibrate_tsc 664 * Determine TSC frequency via CPUID, else return 0. 665 */ 666 unsigned long native_calibrate_tsc(void) 667 { 668 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 669 unsigned int crystal_khz; 670 671 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 672 return 0; 673 674 if (boot_cpu_data.cpuid_level < 0x15) 675 return 0; 676 677 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 678 679 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 680 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 681 682 if (ebx_numerator == 0 || eax_denominator == 0) 683 return 0; 684 685 crystal_khz = ecx_hz / 1000; 686 687 if (crystal_khz == 0) { 688 switch (boot_cpu_data.x86_model) { 689 case 0x4E: /* SKL */ 690 case 0x5E: /* SKL */ 691 crystal_khz = 24000; /* 24.0 MHz */ 692 break; 693 case 0x5C: /* BXT */ 694 crystal_khz = 19200; /* 19.2 MHz */ 695 break; 696 } 697 } 698 699 return crystal_khz * ebx_numerator / eax_denominator; 700 } 701 702 static unsigned long cpu_khz_from_cpuid(void) 703 { 704 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 705 706 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 707 return 0; 708 709 if (boot_cpu_data.cpuid_level < 0x16) 710 return 0; 711 712 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 713 714 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 715 716 return eax_base_mhz * 1000; 717 } 718 719 /** 720 * native_calibrate_cpu - calibrate the cpu on boot 721 */ 722 unsigned long native_calibrate_cpu(void) 723 { 724 u64 tsc1, tsc2, delta, ref1, ref2; 725 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 726 unsigned long flags, latch, ms, fast_calibrate; 727 int hpet = is_hpet_enabled(), i, loopmin; 728 729 fast_calibrate = cpu_khz_from_cpuid(); 730 if (fast_calibrate) 731 return fast_calibrate; 732 733 fast_calibrate = cpu_khz_from_msr(); 734 if (fast_calibrate) 735 return fast_calibrate; 736 737 local_irq_save(flags); 738 fast_calibrate = quick_pit_calibrate(); 739 local_irq_restore(flags); 740 if (fast_calibrate) 741 return fast_calibrate; 742 743 /* 744 * Run 5 calibration loops to get the lowest frequency value 745 * (the best estimate). We use two different calibration modes 746 * here: 747 * 748 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 749 * load a timeout of 50ms. We read the time right after we 750 * started the timer and wait until the PIT count down reaches 751 * zero. In each wait loop iteration we read the TSC and check 752 * the delta to the previous read. We keep track of the min 753 * and max values of that delta. The delta is mostly defined 754 * by the IO time of the PIT access, so we can detect when a 755 * SMI/SMM disturbance happened between the two reads. If the 756 * maximum time is significantly larger than the minimum time, 757 * then we discard the result and have another try. 758 * 759 * 2) Reference counter. If available we use the HPET or the 760 * PMTIMER as a reference to check the sanity of that value. 761 * We use separate TSC readouts and check inside of the 762 * reference read for a SMI/SMM disturbance. We dicard 763 * disturbed values here as well. We do that around the PIT 764 * calibration delay loop as we have to wait for a certain 765 * amount of time anyway. 766 */ 767 768 /* Preset PIT loop values */ 769 latch = CAL_LATCH; 770 ms = CAL_MS; 771 loopmin = CAL_PIT_LOOPS; 772 773 for (i = 0; i < 3; i++) { 774 unsigned long tsc_pit_khz; 775 776 /* 777 * Read the start value and the reference count of 778 * hpet/pmtimer when available. Then do the PIT 779 * calibration, which will take at least 50ms, and 780 * read the end value. 781 */ 782 local_irq_save(flags); 783 tsc1 = tsc_read_refs(&ref1, hpet); 784 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 785 tsc2 = tsc_read_refs(&ref2, hpet); 786 local_irq_restore(flags); 787 788 /* Pick the lowest PIT TSC calibration so far */ 789 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 790 791 /* hpet or pmtimer available ? */ 792 if (ref1 == ref2) 793 continue; 794 795 /* Check, whether the sampling was disturbed by an SMI */ 796 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 797 continue; 798 799 tsc2 = (tsc2 - tsc1) * 1000000LL; 800 if (hpet) 801 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 802 else 803 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 804 805 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 806 807 /* Check the reference deviation */ 808 delta = ((u64) tsc_pit_min) * 100; 809 do_div(delta, tsc_ref_min); 810 811 /* 812 * If both calibration results are inside a 10% window 813 * then we can be sure, that the calibration 814 * succeeded. We break out of the loop right away. We 815 * use the reference value, as it is more precise. 816 */ 817 if (delta >= 90 && delta <= 110) { 818 pr_info("PIT calibration matches %s. %d loops\n", 819 hpet ? "HPET" : "PMTIMER", i + 1); 820 return tsc_ref_min; 821 } 822 823 /* 824 * Check whether PIT failed more than once. This 825 * happens in virtualized environments. We need to 826 * give the virtual PC a slightly longer timeframe for 827 * the HPET/PMTIMER to make the result precise. 828 */ 829 if (i == 1 && tsc_pit_min == ULONG_MAX) { 830 latch = CAL2_LATCH; 831 ms = CAL2_MS; 832 loopmin = CAL2_PIT_LOOPS; 833 } 834 } 835 836 /* 837 * Now check the results. 838 */ 839 if (tsc_pit_min == ULONG_MAX) { 840 /* PIT gave no useful value */ 841 pr_warn("Unable to calibrate against PIT\n"); 842 843 /* We don't have an alternative source, disable TSC */ 844 if (!hpet && !ref1 && !ref2) { 845 pr_notice("No reference (HPET/PMTIMER) available\n"); 846 return 0; 847 } 848 849 /* The alternative source failed as well, disable TSC */ 850 if (tsc_ref_min == ULONG_MAX) { 851 pr_warn("HPET/PMTIMER calibration failed\n"); 852 return 0; 853 } 854 855 /* Use the alternative source */ 856 pr_info("using %s reference calibration\n", 857 hpet ? "HPET" : "PMTIMER"); 858 859 return tsc_ref_min; 860 } 861 862 /* We don't have an alternative source, use the PIT calibration value */ 863 if (!hpet && !ref1 && !ref2) { 864 pr_info("Using PIT calibration value\n"); 865 return tsc_pit_min; 866 } 867 868 /* The alternative source failed, use the PIT calibration value */ 869 if (tsc_ref_min == ULONG_MAX) { 870 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 871 return tsc_pit_min; 872 } 873 874 /* 875 * The calibration values differ too much. In doubt, we use 876 * the PIT value as we know that there are PMTIMERs around 877 * running at double speed. At least we let the user know: 878 */ 879 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 880 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 881 pr_info("Using PIT calibration value\n"); 882 return tsc_pit_min; 883 } 884 885 int recalibrate_cpu_khz(void) 886 { 887 #ifndef CONFIG_SMP 888 unsigned long cpu_khz_old = cpu_khz; 889 890 if (!boot_cpu_has(X86_FEATURE_TSC)) 891 return -ENODEV; 892 893 cpu_khz = x86_platform.calibrate_cpu(); 894 tsc_khz = x86_platform.calibrate_tsc(); 895 if (tsc_khz == 0) 896 tsc_khz = cpu_khz; 897 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 898 cpu_khz = tsc_khz; 899 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 900 cpu_khz_old, cpu_khz); 901 902 return 0; 903 #else 904 return -ENODEV; 905 #endif 906 } 907 908 EXPORT_SYMBOL(recalibrate_cpu_khz); 909 910 911 static unsigned long long cyc2ns_suspend; 912 913 void tsc_save_sched_clock_state(void) 914 { 915 if (!sched_clock_stable()) 916 return; 917 918 cyc2ns_suspend = sched_clock(); 919 } 920 921 /* 922 * Even on processors with invariant TSC, TSC gets reset in some the 923 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 924 * arbitrary value (still sync'd across cpu's) during resume from such sleep 925 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 926 * that sched_clock() continues from the point where it was left off during 927 * suspend. 928 */ 929 void tsc_restore_sched_clock_state(void) 930 { 931 unsigned long long offset; 932 unsigned long flags; 933 int cpu; 934 935 if (!sched_clock_stable()) 936 return; 937 938 local_irq_save(flags); 939 940 /* 941 * We're coming out of suspend, there's no concurrency yet; don't 942 * bother being nice about the RCU stuff, just write to both 943 * data fields. 944 */ 945 946 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 947 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 948 949 offset = cyc2ns_suspend - sched_clock(); 950 951 for_each_possible_cpu(cpu) { 952 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 953 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 954 } 955 956 local_irq_restore(flags); 957 } 958 959 #ifdef CONFIG_CPU_FREQ 960 961 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 962 * changes. 963 * 964 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 965 * not that important because current Opteron setups do not support 966 * scaling on SMP anyroads. 967 * 968 * Should fix up last_tsc too. Currently gettimeofday in the 969 * first tick after the change will be slightly wrong. 970 */ 971 972 static unsigned int ref_freq; 973 static unsigned long loops_per_jiffy_ref; 974 static unsigned long tsc_khz_ref; 975 976 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 977 void *data) 978 { 979 struct cpufreq_freqs *freq = data; 980 unsigned long *lpj; 981 982 lpj = &boot_cpu_data.loops_per_jiffy; 983 #ifdef CONFIG_SMP 984 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 985 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 986 #endif 987 988 if (!ref_freq) { 989 ref_freq = freq->old; 990 loops_per_jiffy_ref = *lpj; 991 tsc_khz_ref = tsc_khz; 992 } 993 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 994 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 995 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 996 997 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 998 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 999 mark_tsc_unstable("cpufreq changes"); 1000 1001 set_cyc2ns_scale(tsc_khz, freq->cpu); 1002 } 1003 1004 return 0; 1005 } 1006 1007 static struct notifier_block time_cpufreq_notifier_block = { 1008 .notifier_call = time_cpufreq_notifier 1009 }; 1010 1011 static int __init cpufreq_register_tsc_scaling(void) 1012 { 1013 if (!boot_cpu_has(X86_FEATURE_TSC)) 1014 return 0; 1015 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1016 return 0; 1017 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1018 CPUFREQ_TRANSITION_NOTIFIER); 1019 return 0; 1020 } 1021 1022 core_initcall(cpufreq_register_tsc_scaling); 1023 1024 #endif /* CONFIG_CPU_FREQ */ 1025 1026 #define ART_CPUID_LEAF (0x15) 1027 #define ART_MIN_DENOMINATOR (1) 1028 1029 1030 /* 1031 * If ART is present detect the numerator:denominator to convert to TSC 1032 */ 1033 static void detect_art(void) 1034 { 1035 unsigned int unused[2]; 1036 1037 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1038 return; 1039 1040 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1041 &art_to_tsc_numerator, unused, unused+1); 1042 1043 /* Don't enable ART in a VM, non-stop TSC required */ 1044 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1045 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1046 art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1047 return; 1048 1049 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset)) 1050 return; 1051 1052 /* Make this sticky over multiple CPU init calls */ 1053 setup_force_cpu_cap(X86_FEATURE_ART); 1054 } 1055 1056 1057 /* clocksource code */ 1058 1059 static struct clocksource clocksource_tsc; 1060 1061 /* 1062 * We used to compare the TSC to the cycle_last value in the clocksource 1063 * structure to avoid a nasty time-warp. This can be observed in a 1064 * very small window right after one CPU updated cycle_last under 1065 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1066 * is smaller than the cycle_last reference value due to a TSC which 1067 * is slighty behind. This delta is nowhere else observable, but in 1068 * that case it results in a forward time jump in the range of hours 1069 * due to the unsigned delta calculation of the time keeping core 1070 * code, which is necessary to support wrapping clocksources like pm 1071 * timer. 1072 * 1073 * This sanity check is now done in the core timekeeping code. 1074 * checking the result of read_tsc() - cycle_last for being negative. 1075 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1076 */ 1077 static cycle_t read_tsc(struct clocksource *cs) 1078 { 1079 return (cycle_t)rdtsc_ordered(); 1080 } 1081 1082 /* 1083 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1084 */ 1085 static struct clocksource clocksource_tsc = { 1086 .name = "tsc", 1087 .rating = 300, 1088 .read = read_tsc, 1089 .mask = CLOCKSOURCE_MASK(64), 1090 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1091 CLOCK_SOURCE_MUST_VERIFY, 1092 .archdata = { .vclock_mode = VCLOCK_TSC }, 1093 }; 1094 1095 void mark_tsc_unstable(char *reason) 1096 { 1097 if (!tsc_unstable) { 1098 tsc_unstable = 1; 1099 clear_sched_clock_stable(); 1100 disable_sched_clock_irqtime(); 1101 pr_info("Marking TSC unstable due to %s\n", reason); 1102 /* Change only the rating, when not registered */ 1103 if (clocksource_tsc.mult) 1104 clocksource_mark_unstable(&clocksource_tsc); 1105 else { 1106 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1107 clocksource_tsc.rating = 0; 1108 } 1109 } 1110 } 1111 1112 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1113 1114 static void __init check_system_tsc_reliable(void) 1115 { 1116 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1117 if (is_geode_lx()) { 1118 /* RTSC counts during suspend */ 1119 #define RTSC_SUSP 0x100 1120 unsigned long res_low, res_high; 1121 1122 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1123 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1124 if (res_low & RTSC_SUSP) 1125 tsc_clocksource_reliable = 1; 1126 } 1127 #endif 1128 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1129 tsc_clocksource_reliable = 1; 1130 } 1131 1132 /* 1133 * Make an educated guess if the TSC is trustworthy and synchronized 1134 * over all CPUs. 1135 */ 1136 int unsynchronized_tsc(void) 1137 { 1138 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1139 return 1; 1140 1141 #ifdef CONFIG_SMP 1142 if (apic_is_clustered_box()) 1143 return 1; 1144 #endif 1145 1146 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1147 return 0; 1148 1149 if (tsc_clocksource_reliable) 1150 return 0; 1151 /* 1152 * Intel systems are normally all synchronized. 1153 * Exceptions must mark TSC as unstable: 1154 */ 1155 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1156 /* assume multi socket systems are not synchronized: */ 1157 if (num_possible_cpus() > 1) 1158 return 1; 1159 } 1160 1161 return 0; 1162 } 1163 1164 /* 1165 * Convert ART to TSC given numerator/denominator found in detect_art() 1166 */ 1167 struct system_counterval_t convert_art_to_tsc(cycle_t art) 1168 { 1169 u64 tmp, res, rem; 1170 1171 rem = do_div(art, art_to_tsc_denominator); 1172 1173 res = art * art_to_tsc_numerator; 1174 tmp = rem * art_to_tsc_numerator; 1175 1176 do_div(tmp, art_to_tsc_denominator); 1177 res += tmp + art_to_tsc_offset; 1178 1179 return (struct system_counterval_t) {.cs = art_related_clocksource, 1180 .cycles = res}; 1181 } 1182 EXPORT_SYMBOL(convert_art_to_tsc); 1183 1184 static void tsc_refine_calibration_work(struct work_struct *work); 1185 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1186 /** 1187 * tsc_refine_calibration_work - Further refine tsc freq calibration 1188 * @work - ignored. 1189 * 1190 * This functions uses delayed work over a period of a 1191 * second to further refine the TSC freq value. Since this is 1192 * timer based, instead of loop based, we don't block the boot 1193 * process while this longer calibration is done. 1194 * 1195 * If there are any calibration anomalies (too many SMIs, etc), 1196 * or the refined calibration is off by 1% of the fast early 1197 * calibration, we throw out the new calibration and use the 1198 * early calibration. 1199 */ 1200 static void tsc_refine_calibration_work(struct work_struct *work) 1201 { 1202 static u64 tsc_start = -1, ref_start; 1203 static int hpet; 1204 u64 tsc_stop, ref_stop, delta; 1205 unsigned long freq; 1206 1207 /* Don't bother refining TSC on unstable systems */ 1208 if (check_tsc_unstable()) 1209 goto out; 1210 1211 /* 1212 * Since the work is started early in boot, we may be 1213 * delayed the first time we expire. So set the workqueue 1214 * again once we know timers are working. 1215 */ 1216 if (tsc_start == -1) { 1217 /* 1218 * Only set hpet once, to avoid mixing hardware 1219 * if the hpet becomes enabled later. 1220 */ 1221 hpet = is_hpet_enabled(); 1222 schedule_delayed_work(&tsc_irqwork, HZ); 1223 tsc_start = tsc_read_refs(&ref_start, hpet); 1224 return; 1225 } 1226 1227 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1228 1229 /* hpet or pmtimer available ? */ 1230 if (ref_start == ref_stop) 1231 goto out; 1232 1233 /* Check, whether the sampling was disturbed by an SMI */ 1234 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1235 goto out; 1236 1237 delta = tsc_stop - tsc_start; 1238 delta *= 1000000LL; 1239 if (hpet) 1240 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1241 else 1242 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1243 1244 /* Make sure we're within 1% */ 1245 if (abs(tsc_khz - freq) > tsc_khz/100) 1246 goto out; 1247 1248 tsc_khz = freq; 1249 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1250 (unsigned long)tsc_khz / 1000, 1251 (unsigned long)tsc_khz % 1000); 1252 1253 /* Inform the TSC deadline clockevent devices about the recalibration */ 1254 lapic_update_tsc_freq(); 1255 1256 out: 1257 if (boot_cpu_has(X86_FEATURE_ART)) 1258 art_related_clocksource = &clocksource_tsc; 1259 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1260 } 1261 1262 1263 static int __init init_tsc_clocksource(void) 1264 { 1265 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz) 1266 return 0; 1267 1268 if (tsc_clocksource_reliable) 1269 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1270 /* lower the rating if we already know its unstable: */ 1271 if (check_tsc_unstable()) { 1272 clocksource_tsc.rating = 0; 1273 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1274 } 1275 1276 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1277 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1278 1279 /* 1280 * Trust the results of the earlier calibration on systems 1281 * exporting a reliable TSC. 1282 */ 1283 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1284 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1285 return 0; 1286 } 1287 1288 schedule_delayed_work(&tsc_irqwork, 0); 1289 return 0; 1290 } 1291 /* 1292 * We use device_initcall here, to ensure we run after the hpet 1293 * is fully initialized, which may occur at fs_initcall time. 1294 */ 1295 device_initcall(init_tsc_clocksource); 1296 1297 void __init tsc_init(void) 1298 { 1299 u64 lpj; 1300 int cpu; 1301 1302 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1303 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1304 return; 1305 } 1306 1307 cpu_khz = x86_platform.calibrate_cpu(); 1308 tsc_khz = x86_platform.calibrate_tsc(); 1309 1310 /* 1311 * Trust non-zero tsc_khz as authorative, 1312 * and use it to sanity check cpu_khz, 1313 * which will be off if system timer is off. 1314 */ 1315 if (tsc_khz == 0) 1316 tsc_khz = cpu_khz; 1317 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1318 cpu_khz = tsc_khz; 1319 1320 if (!tsc_khz) { 1321 mark_tsc_unstable("could not calculate TSC khz"); 1322 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1323 return; 1324 } 1325 1326 pr_info("Detected %lu.%03lu MHz processor\n", 1327 (unsigned long)cpu_khz / 1000, 1328 (unsigned long)cpu_khz % 1000); 1329 1330 /* 1331 * Secondary CPUs do not run through tsc_init(), so set up 1332 * all the scale factors for all CPUs, assuming the same 1333 * speed as the bootup CPU. (cpufreq notifiers will fix this 1334 * up if their speed diverges) 1335 */ 1336 for_each_possible_cpu(cpu) { 1337 cyc2ns_init(cpu); 1338 set_cyc2ns_scale(tsc_khz, cpu); 1339 } 1340 1341 if (tsc_disabled > 0) 1342 return; 1343 1344 /* now allow native_sched_clock() to use rdtsc */ 1345 1346 tsc_disabled = 0; 1347 static_branch_enable(&__use_tsc); 1348 1349 if (!no_sched_irq_time) 1350 enable_sched_clock_irqtime(); 1351 1352 lpj = ((u64)tsc_khz * 1000); 1353 do_div(lpj, HZ); 1354 lpj_fine = lpj; 1355 1356 use_tsc_delay(); 1357 1358 if (unsynchronized_tsc()) 1359 mark_tsc_unstable("TSCs unsynchronized"); 1360 1361 check_system_tsc_reliable(); 1362 1363 detect_art(); 1364 } 1365 1366 #ifdef CONFIG_SMP 1367 /* 1368 * If we have a constant TSC and are using the TSC for the delay loop, 1369 * we can skip clock calibration if another cpu in the same socket has already 1370 * been calibrated. This assumes that CONSTANT_TSC applies to all 1371 * cpus in the socket - this should be a safe assumption. 1372 */ 1373 unsigned long calibrate_delay_is_known(void) 1374 { 1375 int sibling, cpu = smp_processor_id(); 1376 struct cpumask *mask = topology_core_cpumask(cpu); 1377 1378 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1379 return 0; 1380 1381 if (!mask) 1382 return 0; 1383 1384 sibling = cpumask_any_but(mask, cpu); 1385 if (sibling < nr_cpu_ids) 1386 return cpu_data(sibling).loops_per_jiffy; 1387 return 0; 1388 } 1389 #endif 1390