xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision bc5aa3a0)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/export.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 #include <asm/apic.h>
26 
27 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
28 EXPORT_SYMBOL(cpu_khz);
29 
30 unsigned int __read_mostly tsc_khz;
31 EXPORT_SYMBOL(tsc_khz);
32 
33 /*
34  * TSC can be unstable due to cpufreq or due to unsynced TSCs
35  */
36 static int __read_mostly tsc_unstable;
37 
38 /* native_sched_clock() is called before tsc_init(), so
39    we must start with the TSC soft disabled to prevent
40    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
41 static int __read_mostly tsc_disabled = -1;
42 
43 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
44 
45 int tsc_clocksource_reliable;
46 
47 static u32 art_to_tsc_numerator;
48 static u32 art_to_tsc_denominator;
49 static u64 art_to_tsc_offset;
50 struct clocksource *art_related_clocksource;
51 
52 /*
53  * Use a ring-buffer like data structure, where a writer advances the head by
54  * writing a new data entry and a reader advances the tail when it observes a
55  * new entry.
56  *
57  * Writers are made to wait on readers until there's space to write a new
58  * entry.
59  *
60  * This means that we can always use an {offset, mul} pair to compute a ns
61  * value that is 'roughly' in the right direction, even if we're writing a new
62  * {offset, mul} pair during the clock read.
63  *
64  * The down-side is that we can no longer guarantee strict monotonicity anymore
65  * (assuming the TSC was that to begin with), because while we compute the
66  * intersection point of the two clock slopes and make sure the time is
67  * continuous at the point of switching; we can no longer guarantee a reader is
68  * strictly before or after the switch point.
69  *
70  * It does mean a reader no longer needs to disable IRQs in order to avoid
71  * CPU-Freq updates messing with his times, and similarly an NMI reader will
72  * no longer run the risk of hitting half-written state.
73  */
74 
75 struct cyc2ns {
76 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
77 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
78 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
79 }; /* exactly fits one cacheline */
80 
81 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
82 
83 struct cyc2ns_data *cyc2ns_read_begin(void)
84 {
85 	struct cyc2ns_data *head;
86 
87 	preempt_disable();
88 
89 	head = this_cpu_read(cyc2ns.head);
90 	/*
91 	 * Ensure we observe the entry when we observe the pointer to it.
92 	 * matches the wmb from cyc2ns_write_end().
93 	 */
94 	smp_read_barrier_depends();
95 	head->__count++;
96 	barrier();
97 
98 	return head;
99 }
100 
101 void cyc2ns_read_end(struct cyc2ns_data *head)
102 {
103 	barrier();
104 	/*
105 	 * If we're the outer most nested read; update the tail pointer
106 	 * when we're done. This notifies possible pending writers
107 	 * that we've observed the head pointer and that the other
108 	 * entry is now free.
109 	 */
110 	if (!--head->__count) {
111 		/*
112 		 * x86-TSO does not reorder writes with older reads;
113 		 * therefore once this write becomes visible to another
114 		 * cpu, we must be finished reading the cyc2ns_data.
115 		 *
116 		 * matches with cyc2ns_write_begin().
117 		 */
118 		this_cpu_write(cyc2ns.tail, head);
119 	}
120 	preempt_enable();
121 }
122 
123 /*
124  * Begin writing a new @data entry for @cpu.
125  *
126  * Assumes some sort of write side lock; currently 'provided' by the assumption
127  * that cpufreq will call its notifiers sequentially.
128  */
129 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
130 {
131 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
132 	struct cyc2ns_data *data = c2n->data;
133 
134 	if (data == c2n->head)
135 		data++;
136 
137 	/* XXX send an IPI to @cpu in order to guarantee a read? */
138 
139 	/*
140 	 * When we observe the tail write from cyc2ns_read_end(),
141 	 * the cpu must be done with that entry and its safe
142 	 * to start writing to it.
143 	 */
144 	while (c2n->tail == data)
145 		cpu_relax();
146 
147 	return data;
148 }
149 
150 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
151 {
152 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
153 
154 	/*
155 	 * Ensure the @data writes are visible before we publish the
156 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
157 	 */
158 	smp_wmb();
159 
160 	ACCESS_ONCE(c2n->head) = data;
161 }
162 
163 /*
164  * Accelerators for sched_clock()
165  * convert from cycles(64bits) => nanoseconds (64bits)
166  *  basic equation:
167  *              ns = cycles / (freq / ns_per_sec)
168  *              ns = cycles * (ns_per_sec / freq)
169  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
170  *              ns = cycles * (10^6 / cpu_khz)
171  *
172  *      Then we use scaling math (suggested by george@mvista.com) to get:
173  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
174  *              ns = cycles * cyc2ns_scale / SC
175  *
176  *      And since SC is a constant power of two, we can convert the div
177  *  into a shift. The larger SC is, the more accurate the conversion, but
178  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
179  *  (64-bit result) can be used.
180  *
181  *  We can use khz divisor instead of mhz to keep a better precision.
182  *  (mathieu.desnoyers@polymtl.ca)
183  *
184  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
185  */
186 
187 static void cyc2ns_data_init(struct cyc2ns_data *data)
188 {
189 	data->cyc2ns_mul = 0;
190 	data->cyc2ns_shift = 0;
191 	data->cyc2ns_offset = 0;
192 	data->__count = 0;
193 }
194 
195 static void cyc2ns_init(int cpu)
196 {
197 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
198 
199 	cyc2ns_data_init(&c2n->data[0]);
200 	cyc2ns_data_init(&c2n->data[1]);
201 
202 	c2n->head = c2n->data;
203 	c2n->tail = c2n->data;
204 }
205 
206 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
207 {
208 	struct cyc2ns_data *data, *tail;
209 	unsigned long long ns;
210 
211 	/*
212 	 * See cyc2ns_read_*() for details; replicated in order to avoid
213 	 * an extra few instructions that came with the abstraction.
214 	 * Notable, it allows us to only do the __count and tail update
215 	 * dance when its actually needed.
216 	 */
217 
218 	preempt_disable_notrace();
219 	data = this_cpu_read(cyc2ns.head);
220 	tail = this_cpu_read(cyc2ns.tail);
221 
222 	if (likely(data == tail)) {
223 		ns = data->cyc2ns_offset;
224 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
225 	} else {
226 		data->__count++;
227 
228 		barrier();
229 
230 		ns = data->cyc2ns_offset;
231 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
232 
233 		barrier();
234 
235 		if (!--data->__count)
236 			this_cpu_write(cyc2ns.tail, data);
237 	}
238 	preempt_enable_notrace();
239 
240 	return ns;
241 }
242 
243 static void set_cyc2ns_scale(unsigned long khz, int cpu)
244 {
245 	unsigned long long tsc_now, ns_now;
246 	struct cyc2ns_data *data;
247 	unsigned long flags;
248 
249 	local_irq_save(flags);
250 	sched_clock_idle_sleep_event();
251 
252 	if (!khz)
253 		goto done;
254 
255 	data = cyc2ns_write_begin(cpu);
256 
257 	tsc_now = rdtsc();
258 	ns_now = cycles_2_ns(tsc_now);
259 
260 	/*
261 	 * Compute a new multiplier as per the above comment and ensure our
262 	 * time function is continuous; see the comment near struct
263 	 * cyc2ns_data.
264 	 */
265 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
266 			       NSEC_PER_MSEC, 0);
267 
268 	/*
269 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
270 	 * not expected to be greater than 31 due to the original published
271 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
272 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
273 	 */
274 	if (data->cyc2ns_shift == 32) {
275 		data->cyc2ns_shift = 31;
276 		data->cyc2ns_mul >>= 1;
277 	}
278 
279 	data->cyc2ns_offset = ns_now -
280 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
281 
282 	cyc2ns_write_end(cpu, data);
283 
284 done:
285 	sched_clock_idle_wakeup_event(0);
286 	local_irq_restore(flags);
287 }
288 /*
289  * Scheduler clock - returns current time in nanosec units.
290  */
291 u64 native_sched_clock(void)
292 {
293 	if (static_branch_likely(&__use_tsc)) {
294 		u64 tsc_now = rdtsc();
295 
296 		/* return the value in ns */
297 		return cycles_2_ns(tsc_now);
298 	}
299 
300 	/*
301 	 * Fall back to jiffies if there's no TSC available:
302 	 * ( But note that we still use it if the TSC is marked
303 	 *   unstable. We do this because unlike Time Of Day,
304 	 *   the scheduler clock tolerates small errors and it's
305 	 *   very important for it to be as fast as the platform
306 	 *   can achieve it. )
307 	 */
308 
309 	/* No locking but a rare wrong value is not a big deal: */
310 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
311 }
312 
313 /*
314  * Generate a sched_clock if you already have a TSC value.
315  */
316 u64 native_sched_clock_from_tsc(u64 tsc)
317 {
318 	return cycles_2_ns(tsc);
319 }
320 
321 /* We need to define a real function for sched_clock, to override the
322    weak default version */
323 #ifdef CONFIG_PARAVIRT
324 unsigned long long sched_clock(void)
325 {
326 	return paravirt_sched_clock();
327 }
328 #else
329 unsigned long long
330 sched_clock(void) __attribute__((alias("native_sched_clock")));
331 #endif
332 
333 int check_tsc_unstable(void)
334 {
335 	return tsc_unstable;
336 }
337 EXPORT_SYMBOL_GPL(check_tsc_unstable);
338 
339 #ifdef CONFIG_X86_TSC
340 int __init notsc_setup(char *str)
341 {
342 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
343 	tsc_disabled = 1;
344 	return 1;
345 }
346 #else
347 /*
348  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
349  * in cpu/common.c
350  */
351 int __init notsc_setup(char *str)
352 {
353 	setup_clear_cpu_cap(X86_FEATURE_TSC);
354 	return 1;
355 }
356 #endif
357 
358 __setup("notsc", notsc_setup);
359 
360 static int no_sched_irq_time;
361 
362 static int __init tsc_setup(char *str)
363 {
364 	if (!strcmp(str, "reliable"))
365 		tsc_clocksource_reliable = 1;
366 	if (!strncmp(str, "noirqtime", 9))
367 		no_sched_irq_time = 1;
368 	return 1;
369 }
370 
371 __setup("tsc=", tsc_setup);
372 
373 #define MAX_RETRIES     5
374 #define SMI_TRESHOLD    50000
375 
376 /*
377  * Read TSC and the reference counters. Take care of SMI disturbance
378  */
379 static u64 tsc_read_refs(u64 *p, int hpet)
380 {
381 	u64 t1, t2;
382 	int i;
383 
384 	for (i = 0; i < MAX_RETRIES; i++) {
385 		t1 = get_cycles();
386 		if (hpet)
387 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
388 		else
389 			*p = acpi_pm_read_early();
390 		t2 = get_cycles();
391 		if ((t2 - t1) < SMI_TRESHOLD)
392 			return t2;
393 	}
394 	return ULLONG_MAX;
395 }
396 
397 /*
398  * Calculate the TSC frequency from HPET reference
399  */
400 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
401 {
402 	u64 tmp;
403 
404 	if (hpet2 < hpet1)
405 		hpet2 += 0x100000000ULL;
406 	hpet2 -= hpet1;
407 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
408 	do_div(tmp, 1000000);
409 	do_div(deltatsc, tmp);
410 
411 	return (unsigned long) deltatsc;
412 }
413 
414 /*
415  * Calculate the TSC frequency from PMTimer reference
416  */
417 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
418 {
419 	u64 tmp;
420 
421 	if (!pm1 && !pm2)
422 		return ULONG_MAX;
423 
424 	if (pm2 < pm1)
425 		pm2 += (u64)ACPI_PM_OVRRUN;
426 	pm2 -= pm1;
427 	tmp = pm2 * 1000000000LL;
428 	do_div(tmp, PMTMR_TICKS_PER_SEC);
429 	do_div(deltatsc, tmp);
430 
431 	return (unsigned long) deltatsc;
432 }
433 
434 #define CAL_MS		10
435 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
436 #define CAL_PIT_LOOPS	1000
437 
438 #define CAL2_MS		50
439 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
440 #define CAL2_PIT_LOOPS	5000
441 
442 
443 /*
444  * Try to calibrate the TSC against the Programmable
445  * Interrupt Timer and return the frequency of the TSC
446  * in kHz.
447  *
448  * Return ULONG_MAX on failure to calibrate.
449  */
450 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
451 {
452 	u64 tsc, t1, t2, delta;
453 	unsigned long tscmin, tscmax;
454 	int pitcnt;
455 
456 	/* Set the Gate high, disable speaker */
457 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
458 
459 	/*
460 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
461 	 * count mode), binary count. Set the latch register to 50ms
462 	 * (LSB then MSB) to begin countdown.
463 	 */
464 	outb(0xb0, 0x43);
465 	outb(latch & 0xff, 0x42);
466 	outb(latch >> 8, 0x42);
467 
468 	tsc = t1 = t2 = get_cycles();
469 
470 	pitcnt = 0;
471 	tscmax = 0;
472 	tscmin = ULONG_MAX;
473 	while ((inb(0x61) & 0x20) == 0) {
474 		t2 = get_cycles();
475 		delta = t2 - tsc;
476 		tsc = t2;
477 		if ((unsigned long) delta < tscmin)
478 			tscmin = (unsigned int) delta;
479 		if ((unsigned long) delta > tscmax)
480 			tscmax = (unsigned int) delta;
481 		pitcnt++;
482 	}
483 
484 	/*
485 	 * Sanity checks:
486 	 *
487 	 * If we were not able to read the PIT more than loopmin
488 	 * times, then we have been hit by a massive SMI
489 	 *
490 	 * If the maximum is 10 times larger than the minimum,
491 	 * then we got hit by an SMI as well.
492 	 */
493 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
494 		return ULONG_MAX;
495 
496 	/* Calculate the PIT value */
497 	delta = t2 - t1;
498 	do_div(delta, ms);
499 	return delta;
500 }
501 
502 /*
503  * This reads the current MSB of the PIT counter, and
504  * checks if we are running on sufficiently fast and
505  * non-virtualized hardware.
506  *
507  * Our expectations are:
508  *
509  *  - the PIT is running at roughly 1.19MHz
510  *
511  *  - each IO is going to take about 1us on real hardware,
512  *    but we allow it to be much faster (by a factor of 10) or
513  *    _slightly_ slower (ie we allow up to a 2us read+counter
514  *    update - anything else implies a unacceptably slow CPU
515  *    or PIT for the fast calibration to work.
516  *
517  *  - with 256 PIT ticks to read the value, we have 214us to
518  *    see the same MSB (and overhead like doing a single TSC
519  *    read per MSB value etc).
520  *
521  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
522  *    them each to take about a microsecond on real hardware.
523  *    So we expect a count value of around 100. But we'll be
524  *    generous, and accept anything over 50.
525  *
526  *  - if the PIT is stuck, and we see *many* more reads, we
527  *    return early (and the next caller of pit_expect_msb()
528  *    then consider it a failure when they don't see the
529  *    next expected value).
530  *
531  * These expectations mean that we know that we have seen the
532  * transition from one expected value to another with a fairly
533  * high accuracy, and we didn't miss any events. We can thus
534  * use the TSC value at the transitions to calculate a pretty
535  * good value for the TSC frequencty.
536  */
537 static inline int pit_verify_msb(unsigned char val)
538 {
539 	/* Ignore LSB */
540 	inb(0x42);
541 	return inb(0x42) == val;
542 }
543 
544 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
545 {
546 	int count;
547 	u64 tsc = 0, prev_tsc = 0;
548 
549 	for (count = 0; count < 50000; count++) {
550 		if (!pit_verify_msb(val))
551 			break;
552 		prev_tsc = tsc;
553 		tsc = get_cycles();
554 	}
555 	*deltap = get_cycles() - prev_tsc;
556 	*tscp = tsc;
557 
558 	/*
559 	 * We require _some_ success, but the quality control
560 	 * will be based on the error terms on the TSC values.
561 	 */
562 	return count > 5;
563 }
564 
565 /*
566  * How many MSB values do we want to see? We aim for
567  * a maximum error rate of 500ppm (in practice the
568  * real error is much smaller), but refuse to spend
569  * more than 50ms on it.
570  */
571 #define MAX_QUICK_PIT_MS 50
572 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
573 
574 static unsigned long quick_pit_calibrate(void)
575 {
576 	int i;
577 	u64 tsc, delta;
578 	unsigned long d1, d2;
579 
580 	/* Set the Gate high, disable speaker */
581 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
582 
583 	/*
584 	 * Counter 2, mode 0 (one-shot), binary count
585 	 *
586 	 * NOTE! Mode 2 decrements by two (and then the
587 	 * output is flipped each time, giving the same
588 	 * final output frequency as a decrement-by-one),
589 	 * so mode 0 is much better when looking at the
590 	 * individual counts.
591 	 */
592 	outb(0xb0, 0x43);
593 
594 	/* Start at 0xffff */
595 	outb(0xff, 0x42);
596 	outb(0xff, 0x42);
597 
598 	/*
599 	 * The PIT starts counting at the next edge, so we
600 	 * need to delay for a microsecond. The easiest way
601 	 * to do that is to just read back the 16-bit counter
602 	 * once from the PIT.
603 	 */
604 	pit_verify_msb(0);
605 
606 	if (pit_expect_msb(0xff, &tsc, &d1)) {
607 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
608 			if (!pit_expect_msb(0xff-i, &delta, &d2))
609 				break;
610 
611 			delta -= tsc;
612 
613 			/*
614 			 * Extrapolate the error and fail fast if the error will
615 			 * never be below 500 ppm.
616 			 */
617 			if (i == 1 &&
618 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
619 				return 0;
620 
621 			/*
622 			 * Iterate until the error is less than 500 ppm
623 			 */
624 			if (d1+d2 >= delta >> 11)
625 				continue;
626 
627 			/*
628 			 * Check the PIT one more time to verify that
629 			 * all TSC reads were stable wrt the PIT.
630 			 *
631 			 * This also guarantees serialization of the
632 			 * last cycle read ('d2') in pit_expect_msb.
633 			 */
634 			if (!pit_verify_msb(0xfe - i))
635 				break;
636 			goto success;
637 		}
638 	}
639 	pr_info("Fast TSC calibration failed\n");
640 	return 0;
641 
642 success:
643 	/*
644 	 * Ok, if we get here, then we've seen the
645 	 * MSB of the PIT decrement 'i' times, and the
646 	 * error has shrunk to less than 500 ppm.
647 	 *
648 	 * As a result, we can depend on there not being
649 	 * any odd delays anywhere, and the TSC reads are
650 	 * reliable (within the error).
651 	 *
652 	 * kHz = ticks / time-in-seconds / 1000;
653 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
654 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
655 	 */
656 	delta *= PIT_TICK_RATE;
657 	do_div(delta, i*256*1000);
658 	pr_info("Fast TSC calibration using PIT\n");
659 	return delta;
660 }
661 
662 /**
663  * native_calibrate_tsc
664  * Determine TSC frequency via CPUID, else return 0.
665  */
666 unsigned long native_calibrate_tsc(void)
667 {
668 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
669 	unsigned int crystal_khz;
670 
671 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
672 		return 0;
673 
674 	if (boot_cpu_data.cpuid_level < 0x15)
675 		return 0;
676 
677 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
678 
679 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
680 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
681 
682 	if (ebx_numerator == 0 || eax_denominator == 0)
683 		return 0;
684 
685 	crystal_khz = ecx_hz / 1000;
686 
687 	if (crystal_khz == 0) {
688 		switch (boot_cpu_data.x86_model) {
689 		case 0x4E:	/* SKL */
690 		case 0x5E:	/* SKL */
691 			crystal_khz = 24000;	/* 24.0 MHz */
692 			break;
693 		case 0x5C:	/* BXT */
694 			crystal_khz = 19200;	/* 19.2 MHz */
695 			break;
696 		}
697 	}
698 
699 	return crystal_khz * ebx_numerator / eax_denominator;
700 }
701 
702 static unsigned long cpu_khz_from_cpuid(void)
703 {
704 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
705 
706 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
707 		return 0;
708 
709 	if (boot_cpu_data.cpuid_level < 0x16)
710 		return 0;
711 
712 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
713 
714 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
715 
716 	return eax_base_mhz * 1000;
717 }
718 
719 /**
720  * native_calibrate_cpu - calibrate the cpu on boot
721  */
722 unsigned long native_calibrate_cpu(void)
723 {
724 	u64 tsc1, tsc2, delta, ref1, ref2;
725 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
726 	unsigned long flags, latch, ms, fast_calibrate;
727 	int hpet = is_hpet_enabled(), i, loopmin;
728 
729 	fast_calibrate = cpu_khz_from_cpuid();
730 	if (fast_calibrate)
731 		return fast_calibrate;
732 
733 	fast_calibrate = cpu_khz_from_msr();
734 	if (fast_calibrate)
735 		return fast_calibrate;
736 
737 	local_irq_save(flags);
738 	fast_calibrate = quick_pit_calibrate();
739 	local_irq_restore(flags);
740 	if (fast_calibrate)
741 		return fast_calibrate;
742 
743 	/*
744 	 * Run 5 calibration loops to get the lowest frequency value
745 	 * (the best estimate). We use two different calibration modes
746 	 * here:
747 	 *
748 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
749 	 * load a timeout of 50ms. We read the time right after we
750 	 * started the timer and wait until the PIT count down reaches
751 	 * zero. In each wait loop iteration we read the TSC and check
752 	 * the delta to the previous read. We keep track of the min
753 	 * and max values of that delta. The delta is mostly defined
754 	 * by the IO time of the PIT access, so we can detect when a
755 	 * SMI/SMM disturbance happened between the two reads. If the
756 	 * maximum time is significantly larger than the minimum time,
757 	 * then we discard the result and have another try.
758 	 *
759 	 * 2) Reference counter. If available we use the HPET or the
760 	 * PMTIMER as a reference to check the sanity of that value.
761 	 * We use separate TSC readouts and check inside of the
762 	 * reference read for a SMI/SMM disturbance. We dicard
763 	 * disturbed values here as well. We do that around the PIT
764 	 * calibration delay loop as we have to wait for a certain
765 	 * amount of time anyway.
766 	 */
767 
768 	/* Preset PIT loop values */
769 	latch = CAL_LATCH;
770 	ms = CAL_MS;
771 	loopmin = CAL_PIT_LOOPS;
772 
773 	for (i = 0; i < 3; i++) {
774 		unsigned long tsc_pit_khz;
775 
776 		/*
777 		 * Read the start value and the reference count of
778 		 * hpet/pmtimer when available. Then do the PIT
779 		 * calibration, which will take at least 50ms, and
780 		 * read the end value.
781 		 */
782 		local_irq_save(flags);
783 		tsc1 = tsc_read_refs(&ref1, hpet);
784 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
785 		tsc2 = tsc_read_refs(&ref2, hpet);
786 		local_irq_restore(flags);
787 
788 		/* Pick the lowest PIT TSC calibration so far */
789 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
790 
791 		/* hpet or pmtimer available ? */
792 		if (ref1 == ref2)
793 			continue;
794 
795 		/* Check, whether the sampling was disturbed by an SMI */
796 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
797 			continue;
798 
799 		tsc2 = (tsc2 - tsc1) * 1000000LL;
800 		if (hpet)
801 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
802 		else
803 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
804 
805 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
806 
807 		/* Check the reference deviation */
808 		delta = ((u64) tsc_pit_min) * 100;
809 		do_div(delta, tsc_ref_min);
810 
811 		/*
812 		 * If both calibration results are inside a 10% window
813 		 * then we can be sure, that the calibration
814 		 * succeeded. We break out of the loop right away. We
815 		 * use the reference value, as it is more precise.
816 		 */
817 		if (delta >= 90 && delta <= 110) {
818 			pr_info("PIT calibration matches %s. %d loops\n",
819 				hpet ? "HPET" : "PMTIMER", i + 1);
820 			return tsc_ref_min;
821 		}
822 
823 		/*
824 		 * Check whether PIT failed more than once. This
825 		 * happens in virtualized environments. We need to
826 		 * give the virtual PC a slightly longer timeframe for
827 		 * the HPET/PMTIMER to make the result precise.
828 		 */
829 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
830 			latch = CAL2_LATCH;
831 			ms = CAL2_MS;
832 			loopmin = CAL2_PIT_LOOPS;
833 		}
834 	}
835 
836 	/*
837 	 * Now check the results.
838 	 */
839 	if (tsc_pit_min == ULONG_MAX) {
840 		/* PIT gave no useful value */
841 		pr_warn("Unable to calibrate against PIT\n");
842 
843 		/* We don't have an alternative source, disable TSC */
844 		if (!hpet && !ref1 && !ref2) {
845 			pr_notice("No reference (HPET/PMTIMER) available\n");
846 			return 0;
847 		}
848 
849 		/* The alternative source failed as well, disable TSC */
850 		if (tsc_ref_min == ULONG_MAX) {
851 			pr_warn("HPET/PMTIMER calibration failed\n");
852 			return 0;
853 		}
854 
855 		/* Use the alternative source */
856 		pr_info("using %s reference calibration\n",
857 			hpet ? "HPET" : "PMTIMER");
858 
859 		return tsc_ref_min;
860 	}
861 
862 	/* We don't have an alternative source, use the PIT calibration value */
863 	if (!hpet && !ref1 && !ref2) {
864 		pr_info("Using PIT calibration value\n");
865 		return tsc_pit_min;
866 	}
867 
868 	/* The alternative source failed, use the PIT calibration value */
869 	if (tsc_ref_min == ULONG_MAX) {
870 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
871 		return tsc_pit_min;
872 	}
873 
874 	/*
875 	 * The calibration values differ too much. In doubt, we use
876 	 * the PIT value as we know that there are PMTIMERs around
877 	 * running at double speed. At least we let the user know:
878 	 */
879 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
880 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
881 	pr_info("Using PIT calibration value\n");
882 	return tsc_pit_min;
883 }
884 
885 int recalibrate_cpu_khz(void)
886 {
887 #ifndef CONFIG_SMP
888 	unsigned long cpu_khz_old = cpu_khz;
889 
890 	if (!boot_cpu_has(X86_FEATURE_TSC))
891 		return -ENODEV;
892 
893 	cpu_khz = x86_platform.calibrate_cpu();
894 	tsc_khz = x86_platform.calibrate_tsc();
895 	if (tsc_khz == 0)
896 		tsc_khz = cpu_khz;
897 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
898 		cpu_khz = tsc_khz;
899 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
900 						    cpu_khz_old, cpu_khz);
901 
902 	return 0;
903 #else
904 	return -ENODEV;
905 #endif
906 }
907 
908 EXPORT_SYMBOL(recalibrate_cpu_khz);
909 
910 
911 static unsigned long long cyc2ns_suspend;
912 
913 void tsc_save_sched_clock_state(void)
914 {
915 	if (!sched_clock_stable())
916 		return;
917 
918 	cyc2ns_suspend = sched_clock();
919 }
920 
921 /*
922  * Even on processors with invariant TSC, TSC gets reset in some the
923  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
924  * arbitrary value (still sync'd across cpu's) during resume from such sleep
925  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
926  * that sched_clock() continues from the point where it was left off during
927  * suspend.
928  */
929 void tsc_restore_sched_clock_state(void)
930 {
931 	unsigned long long offset;
932 	unsigned long flags;
933 	int cpu;
934 
935 	if (!sched_clock_stable())
936 		return;
937 
938 	local_irq_save(flags);
939 
940 	/*
941 	 * We're coming out of suspend, there's no concurrency yet; don't
942 	 * bother being nice about the RCU stuff, just write to both
943 	 * data fields.
944 	 */
945 
946 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
947 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
948 
949 	offset = cyc2ns_suspend - sched_clock();
950 
951 	for_each_possible_cpu(cpu) {
952 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
953 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
954 	}
955 
956 	local_irq_restore(flags);
957 }
958 
959 #ifdef CONFIG_CPU_FREQ
960 
961 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
962  * changes.
963  *
964  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
965  * not that important because current Opteron setups do not support
966  * scaling on SMP anyroads.
967  *
968  * Should fix up last_tsc too. Currently gettimeofday in the
969  * first tick after the change will be slightly wrong.
970  */
971 
972 static unsigned int  ref_freq;
973 static unsigned long loops_per_jiffy_ref;
974 static unsigned long tsc_khz_ref;
975 
976 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
977 				void *data)
978 {
979 	struct cpufreq_freqs *freq = data;
980 	unsigned long *lpj;
981 
982 	lpj = &boot_cpu_data.loops_per_jiffy;
983 #ifdef CONFIG_SMP
984 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
985 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
986 #endif
987 
988 	if (!ref_freq) {
989 		ref_freq = freq->old;
990 		loops_per_jiffy_ref = *lpj;
991 		tsc_khz_ref = tsc_khz;
992 	}
993 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
994 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
995 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
996 
997 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
998 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
999 			mark_tsc_unstable("cpufreq changes");
1000 
1001 		set_cyc2ns_scale(tsc_khz, freq->cpu);
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static struct notifier_block time_cpufreq_notifier_block = {
1008 	.notifier_call  = time_cpufreq_notifier
1009 };
1010 
1011 static int __init cpufreq_register_tsc_scaling(void)
1012 {
1013 	if (!boot_cpu_has(X86_FEATURE_TSC))
1014 		return 0;
1015 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1016 		return 0;
1017 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1018 				CPUFREQ_TRANSITION_NOTIFIER);
1019 	return 0;
1020 }
1021 
1022 core_initcall(cpufreq_register_tsc_scaling);
1023 
1024 #endif /* CONFIG_CPU_FREQ */
1025 
1026 #define ART_CPUID_LEAF (0x15)
1027 #define ART_MIN_DENOMINATOR (1)
1028 
1029 
1030 /*
1031  * If ART is present detect the numerator:denominator to convert to TSC
1032  */
1033 static void detect_art(void)
1034 {
1035 	unsigned int unused[2];
1036 
1037 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1038 		return;
1039 
1040 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1041 	      &art_to_tsc_numerator, unused, unused+1);
1042 
1043 	/* Don't enable ART in a VM, non-stop TSC required */
1044 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1045 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1046 	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1047 		return;
1048 
1049 	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1050 		return;
1051 
1052 	/* Make this sticky over multiple CPU init calls */
1053 	setup_force_cpu_cap(X86_FEATURE_ART);
1054 }
1055 
1056 
1057 /* clocksource code */
1058 
1059 static struct clocksource clocksource_tsc;
1060 
1061 /*
1062  * We used to compare the TSC to the cycle_last value in the clocksource
1063  * structure to avoid a nasty time-warp. This can be observed in a
1064  * very small window right after one CPU updated cycle_last under
1065  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1066  * is smaller than the cycle_last reference value due to a TSC which
1067  * is slighty behind. This delta is nowhere else observable, but in
1068  * that case it results in a forward time jump in the range of hours
1069  * due to the unsigned delta calculation of the time keeping core
1070  * code, which is necessary to support wrapping clocksources like pm
1071  * timer.
1072  *
1073  * This sanity check is now done in the core timekeeping code.
1074  * checking the result of read_tsc() - cycle_last for being negative.
1075  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1076  */
1077 static cycle_t read_tsc(struct clocksource *cs)
1078 {
1079 	return (cycle_t)rdtsc_ordered();
1080 }
1081 
1082 /*
1083  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1084  */
1085 static struct clocksource clocksource_tsc = {
1086 	.name                   = "tsc",
1087 	.rating                 = 300,
1088 	.read                   = read_tsc,
1089 	.mask                   = CLOCKSOURCE_MASK(64),
1090 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1091 				  CLOCK_SOURCE_MUST_VERIFY,
1092 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1093 };
1094 
1095 void mark_tsc_unstable(char *reason)
1096 {
1097 	if (!tsc_unstable) {
1098 		tsc_unstable = 1;
1099 		clear_sched_clock_stable();
1100 		disable_sched_clock_irqtime();
1101 		pr_info("Marking TSC unstable due to %s\n", reason);
1102 		/* Change only the rating, when not registered */
1103 		if (clocksource_tsc.mult)
1104 			clocksource_mark_unstable(&clocksource_tsc);
1105 		else {
1106 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1107 			clocksource_tsc.rating = 0;
1108 		}
1109 	}
1110 }
1111 
1112 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1113 
1114 static void __init check_system_tsc_reliable(void)
1115 {
1116 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1117 	if (is_geode_lx()) {
1118 		/* RTSC counts during suspend */
1119 #define RTSC_SUSP 0x100
1120 		unsigned long res_low, res_high;
1121 
1122 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1123 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1124 		if (res_low & RTSC_SUSP)
1125 			tsc_clocksource_reliable = 1;
1126 	}
1127 #endif
1128 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1129 		tsc_clocksource_reliable = 1;
1130 }
1131 
1132 /*
1133  * Make an educated guess if the TSC is trustworthy and synchronized
1134  * over all CPUs.
1135  */
1136 int unsynchronized_tsc(void)
1137 {
1138 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1139 		return 1;
1140 
1141 #ifdef CONFIG_SMP
1142 	if (apic_is_clustered_box())
1143 		return 1;
1144 #endif
1145 
1146 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1147 		return 0;
1148 
1149 	if (tsc_clocksource_reliable)
1150 		return 0;
1151 	/*
1152 	 * Intel systems are normally all synchronized.
1153 	 * Exceptions must mark TSC as unstable:
1154 	 */
1155 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1156 		/* assume multi socket systems are not synchronized: */
1157 		if (num_possible_cpus() > 1)
1158 			return 1;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 /*
1165  * Convert ART to TSC given numerator/denominator found in detect_art()
1166  */
1167 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1168 {
1169 	u64 tmp, res, rem;
1170 
1171 	rem = do_div(art, art_to_tsc_denominator);
1172 
1173 	res = art * art_to_tsc_numerator;
1174 	tmp = rem * art_to_tsc_numerator;
1175 
1176 	do_div(tmp, art_to_tsc_denominator);
1177 	res += tmp + art_to_tsc_offset;
1178 
1179 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1180 			.cycles = res};
1181 }
1182 EXPORT_SYMBOL(convert_art_to_tsc);
1183 
1184 static void tsc_refine_calibration_work(struct work_struct *work);
1185 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1186 /**
1187  * tsc_refine_calibration_work - Further refine tsc freq calibration
1188  * @work - ignored.
1189  *
1190  * This functions uses delayed work over a period of a
1191  * second to further refine the TSC freq value. Since this is
1192  * timer based, instead of loop based, we don't block the boot
1193  * process while this longer calibration is done.
1194  *
1195  * If there are any calibration anomalies (too many SMIs, etc),
1196  * or the refined calibration is off by 1% of the fast early
1197  * calibration, we throw out the new calibration and use the
1198  * early calibration.
1199  */
1200 static void tsc_refine_calibration_work(struct work_struct *work)
1201 {
1202 	static u64 tsc_start = -1, ref_start;
1203 	static int hpet;
1204 	u64 tsc_stop, ref_stop, delta;
1205 	unsigned long freq;
1206 
1207 	/* Don't bother refining TSC on unstable systems */
1208 	if (check_tsc_unstable())
1209 		goto out;
1210 
1211 	/*
1212 	 * Since the work is started early in boot, we may be
1213 	 * delayed the first time we expire. So set the workqueue
1214 	 * again once we know timers are working.
1215 	 */
1216 	if (tsc_start == -1) {
1217 		/*
1218 		 * Only set hpet once, to avoid mixing hardware
1219 		 * if the hpet becomes enabled later.
1220 		 */
1221 		hpet = is_hpet_enabled();
1222 		schedule_delayed_work(&tsc_irqwork, HZ);
1223 		tsc_start = tsc_read_refs(&ref_start, hpet);
1224 		return;
1225 	}
1226 
1227 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1228 
1229 	/* hpet or pmtimer available ? */
1230 	if (ref_start == ref_stop)
1231 		goto out;
1232 
1233 	/* Check, whether the sampling was disturbed by an SMI */
1234 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1235 		goto out;
1236 
1237 	delta = tsc_stop - tsc_start;
1238 	delta *= 1000000LL;
1239 	if (hpet)
1240 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1241 	else
1242 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1243 
1244 	/* Make sure we're within 1% */
1245 	if (abs(tsc_khz - freq) > tsc_khz/100)
1246 		goto out;
1247 
1248 	tsc_khz = freq;
1249 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1250 		(unsigned long)tsc_khz / 1000,
1251 		(unsigned long)tsc_khz % 1000);
1252 
1253 	/* Inform the TSC deadline clockevent devices about the recalibration */
1254 	lapic_update_tsc_freq();
1255 
1256 out:
1257 	if (boot_cpu_has(X86_FEATURE_ART))
1258 		art_related_clocksource = &clocksource_tsc;
1259 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1260 }
1261 
1262 
1263 static int __init init_tsc_clocksource(void)
1264 {
1265 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1266 		return 0;
1267 
1268 	if (tsc_clocksource_reliable)
1269 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1270 	/* lower the rating if we already know its unstable: */
1271 	if (check_tsc_unstable()) {
1272 		clocksource_tsc.rating = 0;
1273 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1274 	}
1275 
1276 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1277 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1278 
1279 	/*
1280 	 * Trust the results of the earlier calibration on systems
1281 	 * exporting a reliable TSC.
1282 	 */
1283 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1284 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1285 		return 0;
1286 	}
1287 
1288 	schedule_delayed_work(&tsc_irqwork, 0);
1289 	return 0;
1290 }
1291 /*
1292  * We use device_initcall here, to ensure we run after the hpet
1293  * is fully initialized, which may occur at fs_initcall time.
1294  */
1295 device_initcall(init_tsc_clocksource);
1296 
1297 void __init tsc_init(void)
1298 {
1299 	u64 lpj;
1300 	int cpu;
1301 
1302 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1303 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1304 		return;
1305 	}
1306 
1307 	cpu_khz = x86_platform.calibrate_cpu();
1308 	tsc_khz = x86_platform.calibrate_tsc();
1309 
1310 	/*
1311 	 * Trust non-zero tsc_khz as authorative,
1312 	 * and use it to sanity check cpu_khz,
1313 	 * which will be off if system timer is off.
1314 	 */
1315 	if (tsc_khz == 0)
1316 		tsc_khz = cpu_khz;
1317 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1318 		cpu_khz = tsc_khz;
1319 
1320 	if (!tsc_khz) {
1321 		mark_tsc_unstable("could not calculate TSC khz");
1322 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1323 		return;
1324 	}
1325 
1326 	pr_info("Detected %lu.%03lu MHz processor\n",
1327 		(unsigned long)cpu_khz / 1000,
1328 		(unsigned long)cpu_khz % 1000);
1329 
1330 	/*
1331 	 * Secondary CPUs do not run through tsc_init(), so set up
1332 	 * all the scale factors for all CPUs, assuming the same
1333 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1334 	 * up if their speed diverges)
1335 	 */
1336 	for_each_possible_cpu(cpu) {
1337 		cyc2ns_init(cpu);
1338 		set_cyc2ns_scale(tsc_khz, cpu);
1339 	}
1340 
1341 	if (tsc_disabled > 0)
1342 		return;
1343 
1344 	/* now allow native_sched_clock() to use rdtsc */
1345 
1346 	tsc_disabled = 0;
1347 	static_branch_enable(&__use_tsc);
1348 
1349 	if (!no_sched_irq_time)
1350 		enable_sched_clock_irqtime();
1351 
1352 	lpj = ((u64)tsc_khz * 1000);
1353 	do_div(lpj, HZ);
1354 	lpj_fine = lpj;
1355 
1356 	use_tsc_delay();
1357 
1358 	if (unsynchronized_tsc())
1359 		mark_tsc_unstable("TSCs unsynchronized");
1360 
1361 	check_system_tsc_reliable();
1362 
1363 	detect_art();
1364 }
1365 
1366 #ifdef CONFIG_SMP
1367 /*
1368  * If we have a constant TSC and are using the TSC for the delay loop,
1369  * we can skip clock calibration if another cpu in the same socket has already
1370  * been calibrated. This assumes that CONSTANT_TSC applies to all
1371  * cpus in the socket - this should be a safe assumption.
1372  */
1373 unsigned long calibrate_delay_is_known(void)
1374 {
1375 	int sibling, cpu = smp_processor_id();
1376 	struct cpumask *mask = topology_core_cpumask(cpu);
1377 
1378 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1379 		return 0;
1380 
1381 	if (!mask)
1382 		return 0;
1383 
1384 	sibling = cpumask_any_but(mask, cpu);
1385 	if (sibling < nr_cpu_ids)
1386 		return cpu_data(sibling).loops_per_jiffy;
1387 	return 0;
1388 }
1389 #endif
1390