xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16 
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 
30 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
31 EXPORT_SYMBOL(cpu_khz);
32 
33 unsigned int __read_mostly tsc_khz;
34 EXPORT_SYMBOL(tsc_khz);
35 
36 /*
37  * TSC can be unstable due to cpufreq or due to unsynced TSCs
38  */
39 static int __read_mostly tsc_unstable;
40 
41 /* native_sched_clock() is called before tsc_init(), so
42    we must start with the TSC soft disabled to prevent
43    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
44 static int __read_mostly tsc_disabled = -1;
45 
46 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
47 
48 int tsc_clocksource_reliable;
49 
50 static u32 art_to_tsc_numerator;
51 static u32 art_to_tsc_denominator;
52 static u64 art_to_tsc_offset;
53 struct clocksource *art_related_clocksource;
54 
55 struct cyc2ns {
56 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
57 	seqcount_t	   seq;		/* 32 + 4    = 36 */
58 
59 }; /* fits one cacheline */
60 
61 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
62 
63 void cyc2ns_read_begin(struct cyc2ns_data *data)
64 {
65 	int seq, idx;
66 
67 	preempt_disable_notrace();
68 
69 	do {
70 		seq = this_cpu_read(cyc2ns.seq.sequence);
71 		idx = seq & 1;
72 
73 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
74 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
75 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
76 
77 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
78 }
79 
80 void cyc2ns_read_end(void)
81 {
82 	preempt_enable_notrace();
83 }
84 
85 /*
86  * Accelerators for sched_clock()
87  * convert from cycles(64bits) => nanoseconds (64bits)
88  *  basic equation:
89  *              ns = cycles / (freq / ns_per_sec)
90  *              ns = cycles * (ns_per_sec / freq)
91  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
92  *              ns = cycles * (10^6 / cpu_khz)
93  *
94  *      Then we use scaling math (suggested by george@mvista.com) to get:
95  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
96  *              ns = cycles * cyc2ns_scale / SC
97  *
98  *      And since SC is a constant power of two, we can convert the div
99  *  into a shift. The larger SC is, the more accurate the conversion, but
100  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
101  *  (64-bit result) can be used.
102  *
103  *  We can use khz divisor instead of mhz to keep a better precision.
104  *  (mathieu.desnoyers@polymtl.ca)
105  *
106  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
107  */
108 
109 static void cyc2ns_data_init(struct cyc2ns_data *data)
110 {
111 	data->cyc2ns_mul = 0;
112 	data->cyc2ns_shift = 0;
113 	data->cyc2ns_offset = 0;
114 }
115 
116 static void __init cyc2ns_init(int cpu)
117 {
118 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
119 
120 	cyc2ns_data_init(&c2n->data[0]);
121 	cyc2ns_data_init(&c2n->data[1]);
122 
123 	seqcount_init(&c2n->seq);
124 }
125 
126 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
127 {
128 	struct cyc2ns_data data;
129 	unsigned long long ns;
130 
131 	cyc2ns_read_begin(&data);
132 
133 	ns = data.cyc2ns_offset;
134 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
135 
136 	cyc2ns_read_end();
137 
138 	return ns;
139 }
140 
141 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
142 {
143 	unsigned long long ns_now;
144 	struct cyc2ns_data data;
145 	struct cyc2ns *c2n;
146 	unsigned long flags;
147 
148 	local_irq_save(flags);
149 	sched_clock_idle_sleep_event();
150 
151 	if (!khz)
152 		goto done;
153 
154 	ns_now = cycles_2_ns(tsc_now);
155 
156 	/*
157 	 * Compute a new multiplier as per the above comment and ensure our
158 	 * time function is continuous; see the comment near struct
159 	 * cyc2ns_data.
160 	 */
161 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
162 			       NSEC_PER_MSEC, 0);
163 
164 	/*
165 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
166 	 * not expected to be greater than 31 due to the original published
167 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
168 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
169 	 */
170 	if (data.cyc2ns_shift == 32) {
171 		data.cyc2ns_shift = 31;
172 		data.cyc2ns_mul >>= 1;
173 	}
174 
175 	data.cyc2ns_offset = ns_now -
176 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
177 
178 	c2n = per_cpu_ptr(&cyc2ns, cpu);
179 
180 	raw_write_seqcount_latch(&c2n->seq);
181 	c2n->data[0] = data;
182 	raw_write_seqcount_latch(&c2n->seq);
183 	c2n->data[1] = data;
184 
185 done:
186 	sched_clock_idle_wakeup_event();
187 	local_irq_restore(flags);
188 }
189 
190 /*
191  * Scheduler clock - returns current time in nanosec units.
192  */
193 u64 native_sched_clock(void)
194 {
195 	if (static_branch_likely(&__use_tsc)) {
196 		u64 tsc_now = rdtsc();
197 
198 		/* return the value in ns */
199 		return cycles_2_ns(tsc_now);
200 	}
201 
202 	/*
203 	 * Fall back to jiffies if there's no TSC available:
204 	 * ( But note that we still use it if the TSC is marked
205 	 *   unstable. We do this because unlike Time Of Day,
206 	 *   the scheduler clock tolerates small errors and it's
207 	 *   very important for it to be as fast as the platform
208 	 *   can achieve it. )
209 	 */
210 
211 	/* No locking but a rare wrong value is not a big deal: */
212 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
213 }
214 
215 /*
216  * Generate a sched_clock if you already have a TSC value.
217  */
218 u64 native_sched_clock_from_tsc(u64 tsc)
219 {
220 	return cycles_2_ns(tsc);
221 }
222 
223 /* We need to define a real function for sched_clock, to override the
224    weak default version */
225 #ifdef CONFIG_PARAVIRT
226 unsigned long long sched_clock(void)
227 {
228 	return paravirt_sched_clock();
229 }
230 
231 bool using_native_sched_clock(void)
232 {
233 	return pv_time_ops.sched_clock == native_sched_clock;
234 }
235 #else
236 unsigned long long
237 sched_clock(void) __attribute__((alias("native_sched_clock")));
238 
239 bool using_native_sched_clock(void) { return true; }
240 #endif
241 
242 int check_tsc_unstable(void)
243 {
244 	return tsc_unstable;
245 }
246 EXPORT_SYMBOL_GPL(check_tsc_unstable);
247 
248 #ifdef CONFIG_X86_TSC
249 int __init notsc_setup(char *str)
250 {
251 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
252 	tsc_disabled = 1;
253 	return 1;
254 }
255 #else
256 /*
257  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
258  * in cpu/common.c
259  */
260 int __init notsc_setup(char *str)
261 {
262 	setup_clear_cpu_cap(X86_FEATURE_TSC);
263 	return 1;
264 }
265 #endif
266 
267 __setup("notsc", notsc_setup);
268 
269 static int no_sched_irq_time;
270 
271 static int __init tsc_setup(char *str)
272 {
273 	if (!strcmp(str, "reliable"))
274 		tsc_clocksource_reliable = 1;
275 	if (!strncmp(str, "noirqtime", 9))
276 		no_sched_irq_time = 1;
277 	if (!strcmp(str, "unstable"))
278 		mark_tsc_unstable("boot parameter");
279 	return 1;
280 }
281 
282 __setup("tsc=", tsc_setup);
283 
284 #define MAX_RETRIES     5
285 #define SMI_TRESHOLD    50000
286 
287 /*
288  * Read TSC and the reference counters. Take care of SMI disturbance
289  */
290 static u64 tsc_read_refs(u64 *p, int hpet)
291 {
292 	u64 t1, t2;
293 	int i;
294 
295 	for (i = 0; i < MAX_RETRIES; i++) {
296 		t1 = get_cycles();
297 		if (hpet)
298 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
299 		else
300 			*p = acpi_pm_read_early();
301 		t2 = get_cycles();
302 		if ((t2 - t1) < SMI_TRESHOLD)
303 			return t2;
304 	}
305 	return ULLONG_MAX;
306 }
307 
308 /*
309  * Calculate the TSC frequency from HPET reference
310  */
311 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
312 {
313 	u64 tmp;
314 
315 	if (hpet2 < hpet1)
316 		hpet2 += 0x100000000ULL;
317 	hpet2 -= hpet1;
318 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
319 	do_div(tmp, 1000000);
320 	deltatsc = div64_u64(deltatsc, tmp);
321 
322 	return (unsigned long) deltatsc;
323 }
324 
325 /*
326  * Calculate the TSC frequency from PMTimer reference
327  */
328 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
329 {
330 	u64 tmp;
331 
332 	if (!pm1 && !pm2)
333 		return ULONG_MAX;
334 
335 	if (pm2 < pm1)
336 		pm2 += (u64)ACPI_PM_OVRRUN;
337 	pm2 -= pm1;
338 	tmp = pm2 * 1000000000LL;
339 	do_div(tmp, PMTMR_TICKS_PER_SEC);
340 	do_div(deltatsc, tmp);
341 
342 	return (unsigned long) deltatsc;
343 }
344 
345 #define CAL_MS		10
346 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
347 #define CAL_PIT_LOOPS	1000
348 
349 #define CAL2_MS		50
350 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
351 #define CAL2_PIT_LOOPS	5000
352 
353 
354 /*
355  * Try to calibrate the TSC against the Programmable
356  * Interrupt Timer and return the frequency of the TSC
357  * in kHz.
358  *
359  * Return ULONG_MAX on failure to calibrate.
360  */
361 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
362 {
363 	u64 tsc, t1, t2, delta;
364 	unsigned long tscmin, tscmax;
365 	int pitcnt;
366 
367 	if (!has_legacy_pic()) {
368 		/*
369 		 * Relies on tsc_early_delay_calibrate() to have given us semi
370 		 * usable udelay(), wait for the same 50ms we would have with
371 		 * the PIT loop below.
372 		 */
373 		udelay(10 * USEC_PER_MSEC);
374 		udelay(10 * USEC_PER_MSEC);
375 		udelay(10 * USEC_PER_MSEC);
376 		udelay(10 * USEC_PER_MSEC);
377 		udelay(10 * USEC_PER_MSEC);
378 		return ULONG_MAX;
379 	}
380 
381 	/* Set the Gate high, disable speaker */
382 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
383 
384 	/*
385 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
386 	 * count mode), binary count. Set the latch register to 50ms
387 	 * (LSB then MSB) to begin countdown.
388 	 */
389 	outb(0xb0, 0x43);
390 	outb(latch & 0xff, 0x42);
391 	outb(latch >> 8, 0x42);
392 
393 	tsc = t1 = t2 = get_cycles();
394 
395 	pitcnt = 0;
396 	tscmax = 0;
397 	tscmin = ULONG_MAX;
398 	while ((inb(0x61) & 0x20) == 0) {
399 		t2 = get_cycles();
400 		delta = t2 - tsc;
401 		tsc = t2;
402 		if ((unsigned long) delta < tscmin)
403 			tscmin = (unsigned int) delta;
404 		if ((unsigned long) delta > tscmax)
405 			tscmax = (unsigned int) delta;
406 		pitcnt++;
407 	}
408 
409 	/*
410 	 * Sanity checks:
411 	 *
412 	 * If we were not able to read the PIT more than loopmin
413 	 * times, then we have been hit by a massive SMI
414 	 *
415 	 * If the maximum is 10 times larger than the minimum,
416 	 * then we got hit by an SMI as well.
417 	 */
418 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
419 		return ULONG_MAX;
420 
421 	/* Calculate the PIT value */
422 	delta = t2 - t1;
423 	do_div(delta, ms);
424 	return delta;
425 }
426 
427 /*
428  * This reads the current MSB of the PIT counter, and
429  * checks if we are running on sufficiently fast and
430  * non-virtualized hardware.
431  *
432  * Our expectations are:
433  *
434  *  - the PIT is running at roughly 1.19MHz
435  *
436  *  - each IO is going to take about 1us on real hardware,
437  *    but we allow it to be much faster (by a factor of 10) or
438  *    _slightly_ slower (ie we allow up to a 2us read+counter
439  *    update - anything else implies a unacceptably slow CPU
440  *    or PIT for the fast calibration to work.
441  *
442  *  - with 256 PIT ticks to read the value, we have 214us to
443  *    see the same MSB (and overhead like doing a single TSC
444  *    read per MSB value etc).
445  *
446  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
447  *    them each to take about a microsecond on real hardware.
448  *    So we expect a count value of around 100. But we'll be
449  *    generous, and accept anything over 50.
450  *
451  *  - if the PIT is stuck, and we see *many* more reads, we
452  *    return early (and the next caller of pit_expect_msb()
453  *    then consider it a failure when they don't see the
454  *    next expected value).
455  *
456  * These expectations mean that we know that we have seen the
457  * transition from one expected value to another with a fairly
458  * high accuracy, and we didn't miss any events. We can thus
459  * use the TSC value at the transitions to calculate a pretty
460  * good value for the TSC frequencty.
461  */
462 static inline int pit_verify_msb(unsigned char val)
463 {
464 	/* Ignore LSB */
465 	inb(0x42);
466 	return inb(0x42) == val;
467 }
468 
469 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
470 {
471 	int count;
472 	u64 tsc = 0, prev_tsc = 0;
473 
474 	for (count = 0; count < 50000; count++) {
475 		if (!pit_verify_msb(val))
476 			break;
477 		prev_tsc = tsc;
478 		tsc = get_cycles();
479 	}
480 	*deltap = get_cycles() - prev_tsc;
481 	*tscp = tsc;
482 
483 	/*
484 	 * We require _some_ success, but the quality control
485 	 * will be based on the error terms on the TSC values.
486 	 */
487 	return count > 5;
488 }
489 
490 /*
491  * How many MSB values do we want to see? We aim for
492  * a maximum error rate of 500ppm (in practice the
493  * real error is much smaller), but refuse to spend
494  * more than 50ms on it.
495  */
496 #define MAX_QUICK_PIT_MS 50
497 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
498 
499 static unsigned long quick_pit_calibrate(void)
500 {
501 	int i;
502 	u64 tsc, delta;
503 	unsigned long d1, d2;
504 
505 	if (!has_legacy_pic())
506 		return 0;
507 
508 	/* Set the Gate high, disable speaker */
509 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
510 
511 	/*
512 	 * Counter 2, mode 0 (one-shot), binary count
513 	 *
514 	 * NOTE! Mode 2 decrements by two (and then the
515 	 * output is flipped each time, giving the same
516 	 * final output frequency as a decrement-by-one),
517 	 * so mode 0 is much better when looking at the
518 	 * individual counts.
519 	 */
520 	outb(0xb0, 0x43);
521 
522 	/* Start at 0xffff */
523 	outb(0xff, 0x42);
524 	outb(0xff, 0x42);
525 
526 	/*
527 	 * The PIT starts counting at the next edge, so we
528 	 * need to delay for a microsecond. The easiest way
529 	 * to do that is to just read back the 16-bit counter
530 	 * once from the PIT.
531 	 */
532 	pit_verify_msb(0);
533 
534 	if (pit_expect_msb(0xff, &tsc, &d1)) {
535 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
536 			if (!pit_expect_msb(0xff-i, &delta, &d2))
537 				break;
538 
539 			delta -= tsc;
540 
541 			/*
542 			 * Extrapolate the error and fail fast if the error will
543 			 * never be below 500 ppm.
544 			 */
545 			if (i == 1 &&
546 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
547 				return 0;
548 
549 			/*
550 			 * Iterate until the error is less than 500 ppm
551 			 */
552 			if (d1+d2 >= delta >> 11)
553 				continue;
554 
555 			/*
556 			 * Check the PIT one more time to verify that
557 			 * all TSC reads were stable wrt the PIT.
558 			 *
559 			 * This also guarantees serialization of the
560 			 * last cycle read ('d2') in pit_expect_msb.
561 			 */
562 			if (!pit_verify_msb(0xfe - i))
563 				break;
564 			goto success;
565 		}
566 	}
567 	pr_info("Fast TSC calibration failed\n");
568 	return 0;
569 
570 success:
571 	/*
572 	 * Ok, if we get here, then we've seen the
573 	 * MSB of the PIT decrement 'i' times, and the
574 	 * error has shrunk to less than 500 ppm.
575 	 *
576 	 * As a result, we can depend on there not being
577 	 * any odd delays anywhere, and the TSC reads are
578 	 * reliable (within the error).
579 	 *
580 	 * kHz = ticks / time-in-seconds / 1000;
581 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
582 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
583 	 */
584 	delta *= PIT_TICK_RATE;
585 	do_div(delta, i*256*1000);
586 	pr_info("Fast TSC calibration using PIT\n");
587 	return delta;
588 }
589 
590 /**
591  * native_calibrate_tsc
592  * Determine TSC frequency via CPUID, else return 0.
593  */
594 unsigned long native_calibrate_tsc(void)
595 {
596 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
597 	unsigned int crystal_khz;
598 
599 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
600 		return 0;
601 
602 	if (boot_cpu_data.cpuid_level < 0x15)
603 		return 0;
604 
605 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
606 
607 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
608 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
609 
610 	if (ebx_numerator == 0 || eax_denominator == 0)
611 		return 0;
612 
613 	crystal_khz = ecx_hz / 1000;
614 
615 	if (crystal_khz == 0) {
616 		switch (boot_cpu_data.x86_model) {
617 		case INTEL_FAM6_SKYLAKE_MOBILE:
618 		case INTEL_FAM6_SKYLAKE_DESKTOP:
619 		case INTEL_FAM6_KABYLAKE_MOBILE:
620 		case INTEL_FAM6_KABYLAKE_DESKTOP:
621 			crystal_khz = 24000;	/* 24.0 MHz */
622 			break;
623 		case INTEL_FAM6_ATOM_DENVERTON:
624 			crystal_khz = 25000;	/* 25.0 MHz */
625 			break;
626 		case INTEL_FAM6_ATOM_GOLDMONT:
627 			crystal_khz = 19200;	/* 19.2 MHz */
628 			break;
629 		}
630 	}
631 
632 	if (crystal_khz == 0)
633 		return 0;
634 	/*
635 	 * TSC frequency determined by CPUID is a "hardware reported"
636 	 * frequency and is the most accurate one so far we have. This
637 	 * is considered a known frequency.
638 	 */
639 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
640 
641 	/*
642 	 * For Atom SoCs TSC is the only reliable clocksource.
643 	 * Mark TSC reliable so no watchdog on it.
644 	 */
645 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
646 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
647 
648 	return crystal_khz * ebx_numerator / eax_denominator;
649 }
650 
651 static unsigned long cpu_khz_from_cpuid(void)
652 {
653 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
654 
655 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
656 		return 0;
657 
658 	if (boot_cpu_data.cpuid_level < 0x16)
659 		return 0;
660 
661 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
662 
663 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
664 
665 	return eax_base_mhz * 1000;
666 }
667 
668 /**
669  * native_calibrate_cpu - calibrate the cpu on boot
670  */
671 unsigned long native_calibrate_cpu(void)
672 {
673 	u64 tsc1, tsc2, delta, ref1, ref2;
674 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
675 	unsigned long flags, latch, ms, fast_calibrate;
676 	int hpet = is_hpet_enabled(), i, loopmin;
677 
678 	fast_calibrate = cpu_khz_from_cpuid();
679 	if (fast_calibrate)
680 		return fast_calibrate;
681 
682 	fast_calibrate = cpu_khz_from_msr();
683 	if (fast_calibrate)
684 		return fast_calibrate;
685 
686 	local_irq_save(flags);
687 	fast_calibrate = quick_pit_calibrate();
688 	local_irq_restore(flags);
689 	if (fast_calibrate)
690 		return fast_calibrate;
691 
692 	/*
693 	 * Run 5 calibration loops to get the lowest frequency value
694 	 * (the best estimate). We use two different calibration modes
695 	 * here:
696 	 *
697 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
698 	 * load a timeout of 50ms. We read the time right after we
699 	 * started the timer and wait until the PIT count down reaches
700 	 * zero. In each wait loop iteration we read the TSC and check
701 	 * the delta to the previous read. We keep track of the min
702 	 * and max values of that delta. The delta is mostly defined
703 	 * by the IO time of the PIT access, so we can detect when a
704 	 * SMI/SMM disturbance happened between the two reads. If the
705 	 * maximum time is significantly larger than the minimum time,
706 	 * then we discard the result and have another try.
707 	 *
708 	 * 2) Reference counter. If available we use the HPET or the
709 	 * PMTIMER as a reference to check the sanity of that value.
710 	 * We use separate TSC readouts and check inside of the
711 	 * reference read for a SMI/SMM disturbance. We dicard
712 	 * disturbed values here as well. We do that around the PIT
713 	 * calibration delay loop as we have to wait for a certain
714 	 * amount of time anyway.
715 	 */
716 
717 	/* Preset PIT loop values */
718 	latch = CAL_LATCH;
719 	ms = CAL_MS;
720 	loopmin = CAL_PIT_LOOPS;
721 
722 	for (i = 0; i < 3; i++) {
723 		unsigned long tsc_pit_khz;
724 
725 		/*
726 		 * Read the start value and the reference count of
727 		 * hpet/pmtimer when available. Then do the PIT
728 		 * calibration, which will take at least 50ms, and
729 		 * read the end value.
730 		 */
731 		local_irq_save(flags);
732 		tsc1 = tsc_read_refs(&ref1, hpet);
733 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
734 		tsc2 = tsc_read_refs(&ref2, hpet);
735 		local_irq_restore(flags);
736 
737 		/* Pick the lowest PIT TSC calibration so far */
738 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
739 
740 		/* hpet or pmtimer available ? */
741 		if (ref1 == ref2)
742 			continue;
743 
744 		/* Check, whether the sampling was disturbed by an SMI */
745 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
746 			continue;
747 
748 		tsc2 = (tsc2 - tsc1) * 1000000LL;
749 		if (hpet)
750 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
751 		else
752 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
753 
754 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
755 
756 		/* Check the reference deviation */
757 		delta = ((u64) tsc_pit_min) * 100;
758 		do_div(delta, tsc_ref_min);
759 
760 		/*
761 		 * If both calibration results are inside a 10% window
762 		 * then we can be sure, that the calibration
763 		 * succeeded. We break out of the loop right away. We
764 		 * use the reference value, as it is more precise.
765 		 */
766 		if (delta >= 90 && delta <= 110) {
767 			pr_info("PIT calibration matches %s. %d loops\n",
768 				hpet ? "HPET" : "PMTIMER", i + 1);
769 			return tsc_ref_min;
770 		}
771 
772 		/*
773 		 * Check whether PIT failed more than once. This
774 		 * happens in virtualized environments. We need to
775 		 * give the virtual PC a slightly longer timeframe for
776 		 * the HPET/PMTIMER to make the result precise.
777 		 */
778 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
779 			latch = CAL2_LATCH;
780 			ms = CAL2_MS;
781 			loopmin = CAL2_PIT_LOOPS;
782 		}
783 	}
784 
785 	/*
786 	 * Now check the results.
787 	 */
788 	if (tsc_pit_min == ULONG_MAX) {
789 		/* PIT gave no useful value */
790 		pr_warn("Unable to calibrate against PIT\n");
791 
792 		/* We don't have an alternative source, disable TSC */
793 		if (!hpet && !ref1 && !ref2) {
794 			pr_notice("No reference (HPET/PMTIMER) available\n");
795 			return 0;
796 		}
797 
798 		/* The alternative source failed as well, disable TSC */
799 		if (tsc_ref_min == ULONG_MAX) {
800 			pr_warn("HPET/PMTIMER calibration failed\n");
801 			return 0;
802 		}
803 
804 		/* Use the alternative source */
805 		pr_info("using %s reference calibration\n",
806 			hpet ? "HPET" : "PMTIMER");
807 
808 		return tsc_ref_min;
809 	}
810 
811 	/* We don't have an alternative source, use the PIT calibration value */
812 	if (!hpet && !ref1 && !ref2) {
813 		pr_info("Using PIT calibration value\n");
814 		return tsc_pit_min;
815 	}
816 
817 	/* The alternative source failed, use the PIT calibration value */
818 	if (tsc_ref_min == ULONG_MAX) {
819 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
820 		return tsc_pit_min;
821 	}
822 
823 	/*
824 	 * The calibration values differ too much. In doubt, we use
825 	 * the PIT value as we know that there are PMTIMERs around
826 	 * running at double speed. At least we let the user know:
827 	 */
828 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
829 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
830 	pr_info("Using PIT calibration value\n");
831 	return tsc_pit_min;
832 }
833 
834 void recalibrate_cpu_khz(void)
835 {
836 #ifndef CONFIG_SMP
837 	unsigned long cpu_khz_old = cpu_khz;
838 
839 	if (!boot_cpu_has(X86_FEATURE_TSC))
840 		return;
841 
842 	cpu_khz = x86_platform.calibrate_cpu();
843 	tsc_khz = x86_platform.calibrate_tsc();
844 	if (tsc_khz == 0)
845 		tsc_khz = cpu_khz;
846 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
847 		cpu_khz = tsc_khz;
848 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
849 						    cpu_khz_old, cpu_khz);
850 #endif
851 }
852 
853 EXPORT_SYMBOL(recalibrate_cpu_khz);
854 
855 
856 static unsigned long long cyc2ns_suspend;
857 
858 void tsc_save_sched_clock_state(void)
859 {
860 	if (!sched_clock_stable())
861 		return;
862 
863 	cyc2ns_suspend = sched_clock();
864 }
865 
866 /*
867  * Even on processors with invariant TSC, TSC gets reset in some the
868  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
869  * arbitrary value (still sync'd across cpu's) during resume from such sleep
870  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
871  * that sched_clock() continues from the point where it was left off during
872  * suspend.
873  */
874 void tsc_restore_sched_clock_state(void)
875 {
876 	unsigned long long offset;
877 	unsigned long flags;
878 	int cpu;
879 
880 	if (!sched_clock_stable())
881 		return;
882 
883 	local_irq_save(flags);
884 
885 	/*
886 	 * We're coming out of suspend, there's no concurrency yet; don't
887 	 * bother being nice about the RCU stuff, just write to both
888 	 * data fields.
889 	 */
890 
891 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
892 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
893 
894 	offset = cyc2ns_suspend - sched_clock();
895 
896 	for_each_possible_cpu(cpu) {
897 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
898 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
899 	}
900 
901 	local_irq_restore(flags);
902 }
903 
904 #ifdef CONFIG_CPU_FREQ
905 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
906  * changes.
907  *
908  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
909  * not that important because current Opteron setups do not support
910  * scaling on SMP anyroads.
911  *
912  * Should fix up last_tsc too. Currently gettimeofday in the
913  * first tick after the change will be slightly wrong.
914  */
915 
916 static unsigned int  ref_freq;
917 static unsigned long loops_per_jiffy_ref;
918 static unsigned long tsc_khz_ref;
919 
920 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
921 				void *data)
922 {
923 	struct cpufreq_freqs *freq = data;
924 	unsigned long *lpj;
925 
926 	lpj = &boot_cpu_data.loops_per_jiffy;
927 #ifdef CONFIG_SMP
928 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
929 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
930 #endif
931 
932 	if (!ref_freq) {
933 		ref_freq = freq->old;
934 		loops_per_jiffy_ref = *lpj;
935 		tsc_khz_ref = tsc_khz;
936 	}
937 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
938 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
939 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
940 
941 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
942 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
943 			mark_tsc_unstable("cpufreq changes");
944 
945 		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
946 	}
947 
948 	return 0;
949 }
950 
951 static struct notifier_block time_cpufreq_notifier_block = {
952 	.notifier_call  = time_cpufreq_notifier
953 };
954 
955 static int __init cpufreq_register_tsc_scaling(void)
956 {
957 	if (!boot_cpu_has(X86_FEATURE_TSC))
958 		return 0;
959 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
960 		return 0;
961 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
962 				CPUFREQ_TRANSITION_NOTIFIER);
963 	return 0;
964 }
965 
966 core_initcall(cpufreq_register_tsc_scaling);
967 
968 #endif /* CONFIG_CPU_FREQ */
969 
970 #define ART_CPUID_LEAF (0x15)
971 #define ART_MIN_DENOMINATOR (1)
972 
973 
974 /*
975  * If ART is present detect the numerator:denominator to convert to TSC
976  */
977 static void __init detect_art(void)
978 {
979 	unsigned int unused[2];
980 
981 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
982 		return;
983 
984 	/*
985 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
986 	 * and the TSC counter resets must not occur asynchronously.
987 	 */
988 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
989 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
990 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
991 	    tsc_async_resets)
992 		return;
993 
994 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
995 	      &art_to_tsc_numerator, unused, unused+1);
996 
997 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
998 		return;
999 
1000 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1001 
1002 	/* Make this sticky over multiple CPU init calls */
1003 	setup_force_cpu_cap(X86_FEATURE_ART);
1004 }
1005 
1006 
1007 /* clocksource code */
1008 
1009 static void tsc_resume(struct clocksource *cs)
1010 {
1011 	tsc_verify_tsc_adjust(true);
1012 }
1013 
1014 /*
1015  * We used to compare the TSC to the cycle_last value in the clocksource
1016  * structure to avoid a nasty time-warp. This can be observed in a
1017  * very small window right after one CPU updated cycle_last under
1018  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1019  * is smaller than the cycle_last reference value due to a TSC which
1020  * is slighty behind. This delta is nowhere else observable, but in
1021  * that case it results in a forward time jump in the range of hours
1022  * due to the unsigned delta calculation of the time keeping core
1023  * code, which is necessary to support wrapping clocksources like pm
1024  * timer.
1025  *
1026  * This sanity check is now done in the core timekeeping code.
1027  * checking the result of read_tsc() - cycle_last for being negative.
1028  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1029  */
1030 static u64 read_tsc(struct clocksource *cs)
1031 {
1032 	return (u64)rdtsc_ordered();
1033 }
1034 
1035 static void tsc_cs_mark_unstable(struct clocksource *cs)
1036 {
1037 	if (tsc_unstable)
1038 		return;
1039 
1040 	tsc_unstable = 1;
1041 	if (using_native_sched_clock())
1042 		clear_sched_clock_stable();
1043 	disable_sched_clock_irqtime();
1044 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1045 }
1046 
1047 static void tsc_cs_tick_stable(struct clocksource *cs)
1048 {
1049 	if (tsc_unstable)
1050 		return;
1051 
1052 	if (using_native_sched_clock())
1053 		sched_clock_tick_stable();
1054 }
1055 
1056 /*
1057  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1058  */
1059 static struct clocksource clocksource_tsc_early = {
1060 	.name                   = "tsc-early",
1061 	.rating                 = 299,
1062 	.read                   = read_tsc,
1063 	.mask                   = CLOCKSOURCE_MASK(64),
1064 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1065 				  CLOCK_SOURCE_MUST_VERIFY,
1066 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1067 	.resume			= tsc_resume,
1068 	.mark_unstable		= tsc_cs_mark_unstable,
1069 	.tick_stable		= tsc_cs_tick_stable,
1070 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1071 };
1072 
1073 /*
1074  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1075  * this one will immediately take over. We will only register if TSC has
1076  * been found good.
1077  */
1078 static struct clocksource clocksource_tsc = {
1079 	.name                   = "tsc",
1080 	.rating                 = 300,
1081 	.read                   = read_tsc,
1082 	.mask                   = CLOCKSOURCE_MASK(64),
1083 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1084 				  CLOCK_SOURCE_VALID_FOR_HRES |
1085 				  CLOCK_SOURCE_MUST_VERIFY,
1086 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1087 	.resume			= tsc_resume,
1088 	.mark_unstable		= tsc_cs_mark_unstable,
1089 	.tick_stable		= tsc_cs_tick_stable,
1090 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1091 };
1092 
1093 void mark_tsc_unstable(char *reason)
1094 {
1095 	if (tsc_unstable)
1096 		return;
1097 
1098 	tsc_unstable = 1;
1099 	if (using_native_sched_clock())
1100 		clear_sched_clock_stable();
1101 	disable_sched_clock_irqtime();
1102 	pr_info("Marking TSC unstable due to %s\n", reason);
1103 
1104 	clocksource_mark_unstable(&clocksource_tsc_early);
1105 	clocksource_mark_unstable(&clocksource_tsc);
1106 }
1107 
1108 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1109 
1110 static void __init check_system_tsc_reliable(void)
1111 {
1112 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1113 	if (is_geode_lx()) {
1114 		/* RTSC counts during suspend */
1115 #define RTSC_SUSP 0x100
1116 		unsigned long res_low, res_high;
1117 
1118 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1119 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1120 		if (res_low & RTSC_SUSP)
1121 			tsc_clocksource_reliable = 1;
1122 	}
1123 #endif
1124 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1125 		tsc_clocksource_reliable = 1;
1126 }
1127 
1128 /*
1129  * Make an educated guess if the TSC is trustworthy and synchronized
1130  * over all CPUs.
1131  */
1132 int unsynchronized_tsc(void)
1133 {
1134 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1135 		return 1;
1136 
1137 #ifdef CONFIG_SMP
1138 	if (apic_is_clustered_box())
1139 		return 1;
1140 #endif
1141 
1142 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1143 		return 0;
1144 
1145 	if (tsc_clocksource_reliable)
1146 		return 0;
1147 	/*
1148 	 * Intel systems are normally all synchronized.
1149 	 * Exceptions must mark TSC as unstable:
1150 	 */
1151 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1152 		/* assume multi socket systems are not synchronized: */
1153 		if (num_possible_cpus() > 1)
1154 			return 1;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * Convert ART to TSC given numerator/denominator found in detect_art()
1162  */
1163 struct system_counterval_t convert_art_to_tsc(u64 art)
1164 {
1165 	u64 tmp, res, rem;
1166 
1167 	rem = do_div(art, art_to_tsc_denominator);
1168 
1169 	res = art * art_to_tsc_numerator;
1170 	tmp = rem * art_to_tsc_numerator;
1171 
1172 	do_div(tmp, art_to_tsc_denominator);
1173 	res += tmp + art_to_tsc_offset;
1174 
1175 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1176 			.cycles = res};
1177 }
1178 EXPORT_SYMBOL(convert_art_to_tsc);
1179 
1180 /**
1181  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1182  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1183  *
1184  * PTM requires all timestamps to be in units of nanoseconds. When user
1185  * software requests a cross-timestamp, this function converts system timestamp
1186  * to TSC.
1187  *
1188  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1189  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1190  * that this flag is set before conversion to TSC is attempted.
1191  *
1192  * Return:
1193  * struct system_counterval_t - system counter value with the pointer to the
1194  *	corresponding clocksource
1195  *	@cycles:	System counter value
1196  *	@cs:		Clocksource corresponding to system counter value. Used
1197  *			by timekeeping code to verify comparibility of two cycle
1198  *			values.
1199  */
1200 
1201 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1202 {
1203 	u64 tmp, res, rem;
1204 
1205 	rem = do_div(art_ns, USEC_PER_SEC);
1206 
1207 	res = art_ns * tsc_khz;
1208 	tmp = rem * tsc_khz;
1209 
1210 	do_div(tmp, USEC_PER_SEC);
1211 	res += tmp;
1212 
1213 	return (struct system_counterval_t) { .cs = art_related_clocksource,
1214 					      .cycles = res};
1215 }
1216 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1217 
1218 
1219 static void tsc_refine_calibration_work(struct work_struct *work);
1220 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1221 /**
1222  * tsc_refine_calibration_work - Further refine tsc freq calibration
1223  * @work - ignored.
1224  *
1225  * This functions uses delayed work over a period of a
1226  * second to further refine the TSC freq value. Since this is
1227  * timer based, instead of loop based, we don't block the boot
1228  * process while this longer calibration is done.
1229  *
1230  * If there are any calibration anomalies (too many SMIs, etc),
1231  * or the refined calibration is off by 1% of the fast early
1232  * calibration, we throw out the new calibration and use the
1233  * early calibration.
1234  */
1235 static void tsc_refine_calibration_work(struct work_struct *work)
1236 {
1237 	static u64 tsc_start = -1, ref_start;
1238 	static int hpet;
1239 	u64 tsc_stop, ref_stop, delta;
1240 	unsigned long freq;
1241 	int cpu;
1242 
1243 	/* Don't bother refining TSC on unstable systems */
1244 	if (tsc_unstable)
1245 		goto unreg;
1246 
1247 	/*
1248 	 * Since the work is started early in boot, we may be
1249 	 * delayed the first time we expire. So set the workqueue
1250 	 * again once we know timers are working.
1251 	 */
1252 	if (tsc_start == -1) {
1253 		/*
1254 		 * Only set hpet once, to avoid mixing hardware
1255 		 * if the hpet becomes enabled later.
1256 		 */
1257 		hpet = is_hpet_enabled();
1258 		schedule_delayed_work(&tsc_irqwork, HZ);
1259 		tsc_start = tsc_read_refs(&ref_start, hpet);
1260 		return;
1261 	}
1262 
1263 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1264 
1265 	/* hpet or pmtimer available ? */
1266 	if (ref_start == ref_stop)
1267 		goto out;
1268 
1269 	/* Check, whether the sampling was disturbed by an SMI */
1270 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1271 		goto out;
1272 
1273 	delta = tsc_stop - tsc_start;
1274 	delta *= 1000000LL;
1275 	if (hpet)
1276 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1277 	else
1278 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1279 
1280 	/* Make sure we're within 1% */
1281 	if (abs(tsc_khz - freq) > tsc_khz/100)
1282 		goto out;
1283 
1284 	tsc_khz = freq;
1285 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1286 		(unsigned long)tsc_khz / 1000,
1287 		(unsigned long)tsc_khz % 1000);
1288 
1289 	/* Inform the TSC deadline clockevent devices about the recalibration */
1290 	lapic_update_tsc_freq();
1291 
1292 	/* Update the sched_clock() rate to match the clocksource one */
1293 	for_each_possible_cpu(cpu)
1294 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1295 
1296 out:
1297 	if (tsc_unstable)
1298 		goto unreg;
1299 
1300 	if (boot_cpu_has(X86_FEATURE_ART))
1301 		art_related_clocksource = &clocksource_tsc;
1302 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1303 unreg:
1304 	clocksource_unregister(&clocksource_tsc_early);
1305 }
1306 
1307 
1308 static int __init init_tsc_clocksource(void)
1309 {
1310 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1311 		return 0;
1312 
1313 	if (tsc_unstable)
1314 		goto unreg;
1315 
1316 	if (tsc_clocksource_reliable)
1317 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1318 
1319 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1320 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1321 
1322 	/*
1323 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1324 	 * the refined calibration and directly register it as a clocksource.
1325 	 */
1326 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1327 		if (boot_cpu_has(X86_FEATURE_ART))
1328 			art_related_clocksource = &clocksource_tsc;
1329 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1330 unreg:
1331 		clocksource_unregister(&clocksource_tsc_early);
1332 		return 0;
1333 	}
1334 
1335 	schedule_delayed_work(&tsc_irqwork, 0);
1336 	return 0;
1337 }
1338 /*
1339  * We use device_initcall here, to ensure we run after the hpet
1340  * is fully initialized, which may occur at fs_initcall time.
1341  */
1342 device_initcall(init_tsc_clocksource);
1343 
1344 void __init tsc_early_delay_calibrate(void)
1345 {
1346 	unsigned long lpj;
1347 
1348 	if (!boot_cpu_has(X86_FEATURE_TSC))
1349 		return;
1350 
1351 	cpu_khz = x86_platform.calibrate_cpu();
1352 	tsc_khz = x86_platform.calibrate_tsc();
1353 
1354 	tsc_khz = tsc_khz ? : cpu_khz;
1355 	if (!tsc_khz)
1356 		return;
1357 
1358 	lpj = tsc_khz * 1000;
1359 	do_div(lpj, HZ);
1360 	loops_per_jiffy = lpj;
1361 }
1362 
1363 void __init tsc_init(void)
1364 {
1365 	u64 lpj, cyc;
1366 	int cpu;
1367 
1368 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1369 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1370 		return;
1371 	}
1372 
1373 	cpu_khz = x86_platform.calibrate_cpu();
1374 	tsc_khz = x86_platform.calibrate_tsc();
1375 
1376 	/*
1377 	 * Trust non-zero tsc_khz as authorative,
1378 	 * and use it to sanity check cpu_khz,
1379 	 * which will be off if system timer is off.
1380 	 */
1381 	if (tsc_khz == 0)
1382 		tsc_khz = cpu_khz;
1383 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1384 		cpu_khz = tsc_khz;
1385 
1386 	if (!tsc_khz) {
1387 		mark_tsc_unstable("could not calculate TSC khz");
1388 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1389 		return;
1390 	}
1391 
1392 	pr_info("Detected %lu.%03lu MHz processor\n",
1393 		(unsigned long)cpu_khz / 1000,
1394 		(unsigned long)cpu_khz % 1000);
1395 
1396 	if (cpu_khz != tsc_khz) {
1397 		pr_info("Detected %lu.%03lu MHz TSC",
1398 			(unsigned long)tsc_khz / 1000,
1399 			(unsigned long)tsc_khz % 1000);
1400 	}
1401 
1402 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1403 	tsc_store_and_check_tsc_adjust(true);
1404 
1405 	/*
1406 	 * Secondary CPUs do not run through tsc_init(), so set up
1407 	 * all the scale factors for all CPUs, assuming the same
1408 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1409 	 * up if their speed diverges)
1410 	 */
1411 	cyc = rdtsc();
1412 	for_each_possible_cpu(cpu) {
1413 		cyc2ns_init(cpu);
1414 		set_cyc2ns_scale(tsc_khz, cpu, cyc);
1415 	}
1416 
1417 	if (tsc_disabled > 0)
1418 		return;
1419 
1420 	/* now allow native_sched_clock() to use rdtsc */
1421 
1422 	tsc_disabled = 0;
1423 	static_branch_enable(&__use_tsc);
1424 
1425 	if (!no_sched_irq_time)
1426 		enable_sched_clock_irqtime();
1427 
1428 	lpj = ((u64)tsc_khz * 1000);
1429 	do_div(lpj, HZ);
1430 	lpj_fine = lpj;
1431 
1432 	use_tsc_delay();
1433 
1434 	check_system_tsc_reliable();
1435 
1436 	if (unsynchronized_tsc()) {
1437 		mark_tsc_unstable("TSCs unsynchronized");
1438 		return;
1439 	}
1440 
1441 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1442 	detect_art();
1443 }
1444 
1445 #ifdef CONFIG_SMP
1446 /*
1447  * If we have a constant TSC and are using the TSC for the delay loop,
1448  * we can skip clock calibration if another cpu in the same socket has already
1449  * been calibrated. This assumes that CONSTANT_TSC applies to all
1450  * cpus in the socket - this should be a safe assumption.
1451  */
1452 unsigned long calibrate_delay_is_known(void)
1453 {
1454 	int sibling, cpu = smp_processor_id();
1455 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1456 	const struct cpumask *mask = topology_core_cpumask(cpu);
1457 
1458 	if (tsc_disabled || !constant_tsc || !mask)
1459 		return 0;
1460 
1461 	sibling = cpumask_any_but(mask, cpu);
1462 	if (sibling < nr_cpu_ids)
1463 		return cpu_data(sibling).loops_per_jiffy;
1464 	return 0;
1465 }
1466 #endif
1467