1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 25 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 26 EXPORT_SYMBOL(cpu_khz); 27 28 unsigned int __read_mostly tsc_khz; 29 EXPORT_SYMBOL(tsc_khz); 30 31 /* 32 * TSC can be unstable due to cpufreq or due to unsynced TSCs 33 */ 34 static int __read_mostly tsc_unstable; 35 36 /* native_sched_clock() is called before tsc_init(), so 37 we must start with the TSC soft disabled to prevent 38 erroneous rdtsc usage on !cpu_has_tsc processors */ 39 static int __read_mostly tsc_disabled = -1; 40 41 static struct static_key __use_tsc = STATIC_KEY_INIT; 42 43 int tsc_clocksource_reliable; 44 45 /* 46 * Use a ring-buffer like data structure, where a writer advances the head by 47 * writing a new data entry and a reader advances the tail when it observes a 48 * new entry. 49 * 50 * Writers are made to wait on readers until there's space to write a new 51 * entry. 52 * 53 * This means that we can always use an {offset, mul} pair to compute a ns 54 * value that is 'roughly' in the right direction, even if we're writing a new 55 * {offset, mul} pair during the clock read. 56 * 57 * The down-side is that we can no longer guarantee strict monotonicity anymore 58 * (assuming the TSC was that to begin with), because while we compute the 59 * intersection point of the two clock slopes and make sure the time is 60 * continuous at the point of switching; we can no longer guarantee a reader is 61 * strictly before or after the switch point. 62 * 63 * It does mean a reader no longer needs to disable IRQs in order to avoid 64 * CPU-Freq updates messing with his times, and similarly an NMI reader will 65 * no longer run the risk of hitting half-written state. 66 */ 67 68 struct cyc2ns { 69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 70 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 72 }; /* exactly fits one cacheline */ 73 74 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 75 76 struct cyc2ns_data *cyc2ns_read_begin(void) 77 { 78 struct cyc2ns_data *head; 79 80 preempt_disable(); 81 82 head = this_cpu_read(cyc2ns.head); 83 /* 84 * Ensure we observe the entry when we observe the pointer to it. 85 * matches the wmb from cyc2ns_write_end(). 86 */ 87 smp_read_barrier_depends(); 88 head->__count++; 89 barrier(); 90 91 return head; 92 } 93 94 void cyc2ns_read_end(struct cyc2ns_data *head) 95 { 96 barrier(); 97 /* 98 * If we're the outer most nested read; update the tail pointer 99 * when we're done. This notifies possible pending writers 100 * that we've observed the head pointer and that the other 101 * entry is now free. 102 */ 103 if (!--head->__count) { 104 /* 105 * x86-TSO does not reorder writes with older reads; 106 * therefore once this write becomes visible to another 107 * cpu, we must be finished reading the cyc2ns_data. 108 * 109 * matches with cyc2ns_write_begin(). 110 */ 111 this_cpu_write(cyc2ns.tail, head); 112 } 113 preempt_enable(); 114 } 115 116 /* 117 * Begin writing a new @data entry for @cpu. 118 * 119 * Assumes some sort of write side lock; currently 'provided' by the assumption 120 * that cpufreq will call its notifiers sequentially. 121 */ 122 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 123 { 124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 125 struct cyc2ns_data *data = c2n->data; 126 127 if (data == c2n->head) 128 data++; 129 130 /* XXX send an IPI to @cpu in order to guarantee a read? */ 131 132 /* 133 * When we observe the tail write from cyc2ns_read_end(), 134 * the cpu must be done with that entry and its safe 135 * to start writing to it. 136 */ 137 while (c2n->tail == data) 138 cpu_relax(); 139 140 return data; 141 } 142 143 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 144 { 145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 146 147 /* 148 * Ensure the @data writes are visible before we publish the 149 * entry. Matches the data-depencency in cyc2ns_read_begin(). 150 */ 151 smp_wmb(); 152 153 ACCESS_ONCE(c2n->head) = data; 154 } 155 156 /* 157 * Accelerators for sched_clock() 158 * convert from cycles(64bits) => nanoseconds (64bits) 159 * basic equation: 160 * ns = cycles / (freq / ns_per_sec) 161 * ns = cycles * (ns_per_sec / freq) 162 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 163 * ns = cycles * (10^6 / cpu_khz) 164 * 165 * Then we use scaling math (suggested by george@mvista.com) to get: 166 * ns = cycles * (10^6 * SC / cpu_khz) / SC 167 * ns = cycles * cyc2ns_scale / SC 168 * 169 * And since SC is a constant power of two, we can convert the div 170 * into a shift. 171 * 172 * We can use khz divisor instead of mhz to keep a better precision, since 173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 174 * (mathieu.desnoyers@polymtl.ca) 175 * 176 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 177 */ 178 179 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ 180 181 static void cyc2ns_data_init(struct cyc2ns_data *data) 182 { 183 data->cyc2ns_mul = 0; 184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 185 data->cyc2ns_offset = 0; 186 data->__count = 0; 187 } 188 189 static void cyc2ns_init(int cpu) 190 { 191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 192 193 cyc2ns_data_init(&c2n->data[0]); 194 cyc2ns_data_init(&c2n->data[1]); 195 196 c2n->head = c2n->data; 197 c2n->tail = c2n->data; 198 } 199 200 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 201 { 202 struct cyc2ns_data *data, *tail; 203 unsigned long long ns; 204 205 /* 206 * See cyc2ns_read_*() for details; replicated in order to avoid 207 * an extra few instructions that came with the abstraction. 208 * Notable, it allows us to only do the __count and tail update 209 * dance when its actually needed. 210 */ 211 212 preempt_disable_notrace(); 213 data = this_cpu_read(cyc2ns.head); 214 tail = this_cpu_read(cyc2ns.tail); 215 216 if (likely(data == tail)) { 217 ns = data->cyc2ns_offset; 218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 219 } else { 220 data->__count++; 221 222 barrier(); 223 224 ns = data->cyc2ns_offset; 225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 226 227 barrier(); 228 229 if (!--data->__count) 230 this_cpu_write(cyc2ns.tail, data); 231 } 232 preempt_enable_notrace(); 233 234 return ns; 235 } 236 237 /* XXX surely we already have this someplace in the kernel?! */ 238 #define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d)) 239 240 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 241 { 242 unsigned long long tsc_now, ns_now; 243 struct cyc2ns_data *data; 244 unsigned long flags; 245 246 local_irq_save(flags); 247 sched_clock_idle_sleep_event(); 248 249 if (!cpu_khz) 250 goto done; 251 252 data = cyc2ns_write_begin(cpu); 253 254 rdtscll(tsc_now); 255 ns_now = cycles_2_ns(tsc_now); 256 257 /* 258 * Compute a new multiplier as per the above comment and ensure our 259 * time function is continuous; see the comment near struct 260 * cyc2ns_data. 261 */ 262 data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz); 263 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 264 data->cyc2ns_offset = ns_now - 265 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 266 267 cyc2ns_write_end(cpu, data); 268 269 done: 270 sched_clock_idle_wakeup_event(0); 271 local_irq_restore(flags); 272 } 273 /* 274 * Scheduler clock - returns current time in nanosec units. 275 */ 276 u64 native_sched_clock(void) 277 { 278 u64 tsc_now; 279 280 /* 281 * Fall back to jiffies if there's no TSC available: 282 * ( But note that we still use it if the TSC is marked 283 * unstable. We do this because unlike Time Of Day, 284 * the scheduler clock tolerates small errors and it's 285 * very important for it to be as fast as the platform 286 * can achieve it. ) 287 */ 288 if (!static_key_false(&__use_tsc)) { 289 /* No locking but a rare wrong value is not a big deal: */ 290 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 291 } 292 293 /* read the Time Stamp Counter: */ 294 rdtscll(tsc_now); 295 296 /* return the value in ns */ 297 return cycles_2_ns(tsc_now); 298 } 299 300 /* We need to define a real function for sched_clock, to override the 301 weak default version */ 302 #ifdef CONFIG_PARAVIRT 303 unsigned long long sched_clock(void) 304 { 305 return paravirt_sched_clock(); 306 } 307 #else 308 unsigned long long 309 sched_clock(void) __attribute__((alias("native_sched_clock"))); 310 #endif 311 312 unsigned long long native_read_tsc(void) 313 { 314 return __native_read_tsc(); 315 } 316 EXPORT_SYMBOL(native_read_tsc); 317 318 int check_tsc_unstable(void) 319 { 320 return tsc_unstable; 321 } 322 EXPORT_SYMBOL_GPL(check_tsc_unstable); 323 324 int check_tsc_disabled(void) 325 { 326 return tsc_disabled; 327 } 328 EXPORT_SYMBOL_GPL(check_tsc_disabled); 329 330 #ifdef CONFIG_X86_TSC 331 int __init notsc_setup(char *str) 332 { 333 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 334 tsc_disabled = 1; 335 return 1; 336 } 337 #else 338 /* 339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 340 * in cpu/common.c 341 */ 342 int __init notsc_setup(char *str) 343 { 344 setup_clear_cpu_cap(X86_FEATURE_TSC); 345 return 1; 346 } 347 #endif 348 349 __setup("notsc", notsc_setup); 350 351 static int no_sched_irq_time; 352 353 static int __init tsc_setup(char *str) 354 { 355 if (!strcmp(str, "reliable")) 356 tsc_clocksource_reliable = 1; 357 if (!strncmp(str, "noirqtime", 9)) 358 no_sched_irq_time = 1; 359 return 1; 360 } 361 362 __setup("tsc=", tsc_setup); 363 364 #define MAX_RETRIES 5 365 #define SMI_TRESHOLD 50000 366 367 /* 368 * Read TSC and the reference counters. Take care of SMI disturbance 369 */ 370 static u64 tsc_read_refs(u64 *p, int hpet) 371 { 372 u64 t1, t2; 373 int i; 374 375 for (i = 0; i < MAX_RETRIES; i++) { 376 t1 = get_cycles(); 377 if (hpet) 378 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 379 else 380 *p = acpi_pm_read_early(); 381 t2 = get_cycles(); 382 if ((t2 - t1) < SMI_TRESHOLD) 383 return t2; 384 } 385 return ULLONG_MAX; 386 } 387 388 /* 389 * Calculate the TSC frequency from HPET reference 390 */ 391 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 392 { 393 u64 tmp; 394 395 if (hpet2 < hpet1) 396 hpet2 += 0x100000000ULL; 397 hpet2 -= hpet1; 398 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 399 do_div(tmp, 1000000); 400 do_div(deltatsc, tmp); 401 402 return (unsigned long) deltatsc; 403 } 404 405 /* 406 * Calculate the TSC frequency from PMTimer reference 407 */ 408 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 409 { 410 u64 tmp; 411 412 if (!pm1 && !pm2) 413 return ULONG_MAX; 414 415 if (pm2 < pm1) 416 pm2 += (u64)ACPI_PM_OVRRUN; 417 pm2 -= pm1; 418 tmp = pm2 * 1000000000LL; 419 do_div(tmp, PMTMR_TICKS_PER_SEC); 420 do_div(deltatsc, tmp); 421 422 return (unsigned long) deltatsc; 423 } 424 425 #define CAL_MS 10 426 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 427 #define CAL_PIT_LOOPS 1000 428 429 #define CAL2_MS 50 430 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 431 #define CAL2_PIT_LOOPS 5000 432 433 434 /* 435 * Try to calibrate the TSC against the Programmable 436 * Interrupt Timer and return the frequency of the TSC 437 * in kHz. 438 * 439 * Return ULONG_MAX on failure to calibrate. 440 */ 441 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 442 { 443 u64 tsc, t1, t2, delta; 444 unsigned long tscmin, tscmax; 445 int pitcnt; 446 447 /* Set the Gate high, disable speaker */ 448 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 449 450 /* 451 * Setup CTC channel 2* for mode 0, (interrupt on terminal 452 * count mode), binary count. Set the latch register to 50ms 453 * (LSB then MSB) to begin countdown. 454 */ 455 outb(0xb0, 0x43); 456 outb(latch & 0xff, 0x42); 457 outb(latch >> 8, 0x42); 458 459 tsc = t1 = t2 = get_cycles(); 460 461 pitcnt = 0; 462 tscmax = 0; 463 tscmin = ULONG_MAX; 464 while ((inb(0x61) & 0x20) == 0) { 465 t2 = get_cycles(); 466 delta = t2 - tsc; 467 tsc = t2; 468 if ((unsigned long) delta < tscmin) 469 tscmin = (unsigned int) delta; 470 if ((unsigned long) delta > tscmax) 471 tscmax = (unsigned int) delta; 472 pitcnt++; 473 } 474 475 /* 476 * Sanity checks: 477 * 478 * If we were not able to read the PIT more than loopmin 479 * times, then we have been hit by a massive SMI 480 * 481 * If the maximum is 10 times larger than the minimum, 482 * then we got hit by an SMI as well. 483 */ 484 if (pitcnt < loopmin || tscmax > 10 * tscmin) 485 return ULONG_MAX; 486 487 /* Calculate the PIT value */ 488 delta = t2 - t1; 489 do_div(delta, ms); 490 return delta; 491 } 492 493 /* 494 * This reads the current MSB of the PIT counter, and 495 * checks if we are running on sufficiently fast and 496 * non-virtualized hardware. 497 * 498 * Our expectations are: 499 * 500 * - the PIT is running at roughly 1.19MHz 501 * 502 * - each IO is going to take about 1us on real hardware, 503 * but we allow it to be much faster (by a factor of 10) or 504 * _slightly_ slower (ie we allow up to a 2us read+counter 505 * update - anything else implies a unacceptably slow CPU 506 * or PIT for the fast calibration to work. 507 * 508 * - with 256 PIT ticks to read the value, we have 214us to 509 * see the same MSB (and overhead like doing a single TSC 510 * read per MSB value etc). 511 * 512 * - We're doing 2 reads per loop (LSB, MSB), and we expect 513 * them each to take about a microsecond on real hardware. 514 * So we expect a count value of around 100. But we'll be 515 * generous, and accept anything over 50. 516 * 517 * - if the PIT is stuck, and we see *many* more reads, we 518 * return early (and the next caller of pit_expect_msb() 519 * then consider it a failure when they don't see the 520 * next expected value). 521 * 522 * These expectations mean that we know that we have seen the 523 * transition from one expected value to another with a fairly 524 * high accuracy, and we didn't miss any events. We can thus 525 * use the TSC value at the transitions to calculate a pretty 526 * good value for the TSC frequencty. 527 */ 528 static inline int pit_verify_msb(unsigned char val) 529 { 530 /* Ignore LSB */ 531 inb(0x42); 532 return inb(0x42) == val; 533 } 534 535 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 536 { 537 int count; 538 u64 tsc = 0, prev_tsc = 0; 539 540 for (count = 0; count < 50000; count++) { 541 if (!pit_verify_msb(val)) 542 break; 543 prev_tsc = tsc; 544 tsc = get_cycles(); 545 } 546 *deltap = get_cycles() - prev_tsc; 547 *tscp = tsc; 548 549 /* 550 * We require _some_ success, but the quality control 551 * will be based on the error terms on the TSC values. 552 */ 553 return count > 5; 554 } 555 556 /* 557 * How many MSB values do we want to see? We aim for 558 * a maximum error rate of 500ppm (in practice the 559 * real error is much smaller), but refuse to spend 560 * more than 50ms on it. 561 */ 562 #define MAX_QUICK_PIT_MS 50 563 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 564 565 static unsigned long quick_pit_calibrate(void) 566 { 567 int i; 568 u64 tsc, delta; 569 unsigned long d1, d2; 570 571 /* Set the Gate high, disable speaker */ 572 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 573 574 /* 575 * Counter 2, mode 0 (one-shot), binary count 576 * 577 * NOTE! Mode 2 decrements by two (and then the 578 * output is flipped each time, giving the same 579 * final output frequency as a decrement-by-one), 580 * so mode 0 is much better when looking at the 581 * individual counts. 582 */ 583 outb(0xb0, 0x43); 584 585 /* Start at 0xffff */ 586 outb(0xff, 0x42); 587 outb(0xff, 0x42); 588 589 /* 590 * The PIT starts counting at the next edge, so we 591 * need to delay for a microsecond. The easiest way 592 * to do that is to just read back the 16-bit counter 593 * once from the PIT. 594 */ 595 pit_verify_msb(0); 596 597 if (pit_expect_msb(0xff, &tsc, &d1)) { 598 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 599 if (!pit_expect_msb(0xff-i, &delta, &d2)) 600 break; 601 602 /* 603 * Iterate until the error is less than 500 ppm 604 */ 605 delta -= tsc; 606 if (d1+d2 >= delta >> 11) 607 continue; 608 609 /* 610 * Check the PIT one more time to verify that 611 * all TSC reads were stable wrt the PIT. 612 * 613 * This also guarantees serialization of the 614 * last cycle read ('d2') in pit_expect_msb. 615 */ 616 if (!pit_verify_msb(0xfe - i)) 617 break; 618 goto success; 619 } 620 } 621 pr_err("Fast TSC calibration failed\n"); 622 return 0; 623 624 success: 625 /* 626 * Ok, if we get here, then we've seen the 627 * MSB of the PIT decrement 'i' times, and the 628 * error has shrunk to less than 500 ppm. 629 * 630 * As a result, we can depend on there not being 631 * any odd delays anywhere, and the TSC reads are 632 * reliable (within the error). 633 * 634 * kHz = ticks / time-in-seconds / 1000; 635 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 636 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 637 */ 638 delta *= PIT_TICK_RATE; 639 do_div(delta, i*256*1000); 640 pr_info("Fast TSC calibration using PIT\n"); 641 return delta; 642 } 643 644 /** 645 * native_calibrate_tsc - calibrate the tsc on boot 646 */ 647 unsigned long native_calibrate_tsc(void) 648 { 649 u64 tsc1, tsc2, delta, ref1, ref2; 650 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 651 unsigned long flags, latch, ms, fast_calibrate; 652 int hpet = is_hpet_enabled(), i, loopmin; 653 654 /* Calibrate TSC using MSR for Intel Atom SoCs */ 655 local_irq_save(flags); 656 fast_calibrate = try_msr_calibrate_tsc(); 657 local_irq_restore(flags); 658 if (fast_calibrate) 659 return fast_calibrate; 660 661 local_irq_save(flags); 662 fast_calibrate = quick_pit_calibrate(); 663 local_irq_restore(flags); 664 if (fast_calibrate) 665 return fast_calibrate; 666 667 /* 668 * Run 5 calibration loops to get the lowest frequency value 669 * (the best estimate). We use two different calibration modes 670 * here: 671 * 672 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 673 * load a timeout of 50ms. We read the time right after we 674 * started the timer and wait until the PIT count down reaches 675 * zero. In each wait loop iteration we read the TSC and check 676 * the delta to the previous read. We keep track of the min 677 * and max values of that delta. The delta is mostly defined 678 * by the IO time of the PIT access, so we can detect when a 679 * SMI/SMM disturbance happened between the two reads. If the 680 * maximum time is significantly larger than the minimum time, 681 * then we discard the result and have another try. 682 * 683 * 2) Reference counter. If available we use the HPET or the 684 * PMTIMER as a reference to check the sanity of that value. 685 * We use separate TSC readouts and check inside of the 686 * reference read for a SMI/SMM disturbance. We dicard 687 * disturbed values here as well. We do that around the PIT 688 * calibration delay loop as we have to wait for a certain 689 * amount of time anyway. 690 */ 691 692 /* Preset PIT loop values */ 693 latch = CAL_LATCH; 694 ms = CAL_MS; 695 loopmin = CAL_PIT_LOOPS; 696 697 for (i = 0; i < 3; i++) { 698 unsigned long tsc_pit_khz; 699 700 /* 701 * Read the start value and the reference count of 702 * hpet/pmtimer when available. Then do the PIT 703 * calibration, which will take at least 50ms, and 704 * read the end value. 705 */ 706 local_irq_save(flags); 707 tsc1 = tsc_read_refs(&ref1, hpet); 708 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 709 tsc2 = tsc_read_refs(&ref2, hpet); 710 local_irq_restore(flags); 711 712 /* Pick the lowest PIT TSC calibration so far */ 713 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 714 715 /* hpet or pmtimer available ? */ 716 if (ref1 == ref2) 717 continue; 718 719 /* Check, whether the sampling was disturbed by an SMI */ 720 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 721 continue; 722 723 tsc2 = (tsc2 - tsc1) * 1000000LL; 724 if (hpet) 725 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 726 else 727 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 728 729 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 730 731 /* Check the reference deviation */ 732 delta = ((u64) tsc_pit_min) * 100; 733 do_div(delta, tsc_ref_min); 734 735 /* 736 * If both calibration results are inside a 10% window 737 * then we can be sure, that the calibration 738 * succeeded. We break out of the loop right away. We 739 * use the reference value, as it is more precise. 740 */ 741 if (delta >= 90 && delta <= 110) { 742 pr_info("PIT calibration matches %s. %d loops\n", 743 hpet ? "HPET" : "PMTIMER", i + 1); 744 return tsc_ref_min; 745 } 746 747 /* 748 * Check whether PIT failed more than once. This 749 * happens in virtualized environments. We need to 750 * give the virtual PC a slightly longer timeframe for 751 * the HPET/PMTIMER to make the result precise. 752 */ 753 if (i == 1 && tsc_pit_min == ULONG_MAX) { 754 latch = CAL2_LATCH; 755 ms = CAL2_MS; 756 loopmin = CAL2_PIT_LOOPS; 757 } 758 } 759 760 /* 761 * Now check the results. 762 */ 763 if (tsc_pit_min == ULONG_MAX) { 764 /* PIT gave no useful value */ 765 pr_warn("Unable to calibrate against PIT\n"); 766 767 /* We don't have an alternative source, disable TSC */ 768 if (!hpet && !ref1 && !ref2) { 769 pr_notice("No reference (HPET/PMTIMER) available\n"); 770 return 0; 771 } 772 773 /* The alternative source failed as well, disable TSC */ 774 if (tsc_ref_min == ULONG_MAX) { 775 pr_warn("HPET/PMTIMER calibration failed\n"); 776 return 0; 777 } 778 779 /* Use the alternative source */ 780 pr_info("using %s reference calibration\n", 781 hpet ? "HPET" : "PMTIMER"); 782 783 return tsc_ref_min; 784 } 785 786 /* We don't have an alternative source, use the PIT calibration value */ 787 if (!hpet && !ref1 && !ref2) { 788 pr_info("Using PIT calibration value\n"); 789 return tsc_pit_min; 790 } 791 792 /* The alternative source failed, use the PIT calibration value */ 793 if (tsc_ref_min == ULONG_MAX) { 794 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 795 return tsc_pit_min; 796 } 797 798 /* 799 * The calibration values differ too much. In doubt, we use 800 * the PIT value as we know that there are PMTIMERs around 801 * running at double speed. At least we let the user know: 802 */ 803 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 804 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 805 pr_info("Using PIT calibration value\n"); 806 return tsc_pit_min; 807 } 808 809 int recalibrate_cpu_khz(void) 810 { 811 #ifndef CONFIG_SMP 812 unsigned long cpu_khz_old = cpu_khz; 813 814 if (cpu_has_tsc) { 815 tsc_khz = x86_platform.calibrate_tsc(); 816 cpu_khz = tsc_khz; 817 cpu_data(0).loops_per_jiffy = 818 cpufreq_scale(cpu_data(0).loops_per_jiffy, 819 cpu_khz_old, cpu_khz); 820 return 0; 821 } else 822 return -ENODEV; 823 #else 824 return -ENODEV; 825 #endif 826 } 827 828 EXPORT_SYMBOL(recalibrate_cpu_khz); 829 830 831 static unsigned long long cyc2ns_suspend; 832 833 void tsc_save_sched_clock_state(void) 834 { 835 if (!sched_clock_stable()) 836 return; 837 838 cyc2ns_suspend = sched_clock(); 839 } 840 841 /* 842 * Even on processors with invariant TSC, TSC gets reset in some the 843 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 844 * arbitrary value (still sync'd across cpu's) during resume from such sleep 845 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 846 * that sched_clock() continues from the point where it was left off during 847 * suspend. 848 */ 849 void tsc_restore_sched_clock_state(void) 850 { 851 unsigned long long offset; 852 unsigned long flags; 853 int cpu; 854 855 if (!sched_clock_stable()) 856 return; 857 858 local_irq_save(flags); 859 860 /* 861 * We're comming out of suspend, there's no concurrency yet; don't 862 * bother being nice about the RCU stuff, just write to both 863 * data fields. 864 */ 865 866 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 867 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 868 869 offset = cyc2ns_suspend - sched_clock(); 870 871 for_each_possible_cpu(cpu) { 872 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 873 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 874 } 875 876 local_irq_restore(flags); 877 } 878 879 #ifdef CONFIG_CPU_FREQ 880 881 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 882 * changes. 883 * 884 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 885 * not that important because current Opteron setups do not support 886 * scaling on SMP anyroads. 887 * 888 * Should fix up last_tsc too. Currently gettimeofday in the 889 * first tick after the change will be slightly wrong. 890 */ 891 892 static unsigned int ref_freq; 893 static unsigned long loops_per_jiffy_ref; 894 static unsigned long tsc_khz_ref; 895 896 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 897 void *data) 898 { 899 struct cpufreq_freqs *freq = data; 900 unsigned long *lpj; 901 902 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 903 return 0; 904 905 lpj = &boot_cpu_data.loops_per_jiffy; 906 #ifdef CONFIG_SMP 907 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 908 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 909 #endif 910 911 if (!ref_freq) { 912 ref_freq = freq->old; 913 loops_per_jiffy_ref = *lpj; 914 tsc_khz_ref = tsc_khz; 915 } 916 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 917 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 918 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 919 920 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 921 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 922 mark_tsc_unstable("cpufreq changes"); 923 } 924 925 set_cyc2ns_scale(tsc_khz, freq->cpu); 926 927 return 0; 928 } 929 930 static struct notifier_block time_cpufreq_notifier_block = { 931 .notifier_call = time_cpufreq_notifier 932 }; 933 934 static int __init cpufreq_tsc(void) 935 { 936 if (!cpu_has_tsc) 937 return 0; 938 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 939 return 0; 940 cpufreq_register_notifier(&time_cpufreq_notifier_block, 941 CPUFREQ_TRANSITION_NOTIFIER); 942 return 0; 943 } 944 945 core_initcall(cpufreq_tsc); 946 947 #endif /* CONFIG_CPU_FREQ */ 948 949 /* clocksource code */ 950 951 static struct clocksource clocksource_tsc; 952 953 /* 954 * We compare the TSC to the cycle_last value in the clocksource 955 * structure to avoid a nasty time-warp. This can be observed in a 956 * very small window right after one CPU updated cycle_last under 957 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 958 * is smaller than the cycle_last reference value due to a TSC which 959 * is slighty behind. This delta is nowhere else observable, but in 960 * that case it results in a forward time jump in the range of hours 961 * due to the unsigned delta calculation of the time keeping core 962 * code, which is necessary to support wrapping clocksources like pm 963 * timer. 964 */ 965 static cycle_t read_tsc(struct clocksource *cs) 966 { 967 cycle_t ret = (cycle_t)get_cycles(); 968 969 return ret >= clocksource_tsc.cycle_last ? 970 ret : clocksource_tsc.cycle_last; 971 } 972 973 static void resume_tsc(struct clocksource *cs) 974 { 975 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 976 clocksource_tsc.cycle_last = 0; 977 } 978 979 static struct clocksource clocksource_tsc = { 980 .name = "tsc", 981 .rating = 300, 982 .read = read_tsc, 983 .resume = resume_tsc, 984 .mask = CLOCKSOURCE_MASK(64), 985 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 986 CLOCK_SOURCE_MUST_VERIFY, 987 .archdata = { .vclock_mode = VCLOCK_TSC }, 988 }; 989 990 void mark_tsc_unstable(char *reason) 991 { 992 if (!tsc_unstable) { 993 tsc_unstable = 1; 994 clear_sched_clock_stable(); 995 disable_sched_clock_irqtime(); 996 pr_info("Marking TSC unstable due to %s\n", reason); 997 /* Change only the rating, when not registered */ 998 if (clocksource_tsc.mult) 999 clocksource_mark_unstable(&clocksource_tsc); 1000 else { 1001 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1002 clocksource_tsc.rating = 0; 1003 } 1004 } 1005 } 1006 1007 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1008 1009 static void __init check_system_tsc_reliable(void) 1010 { 1011 #ifdef CONFIG_MGEODE_LX 1012 /* RTSC counts during suspend */ 1013 #define RTSC_SUSP 0x100 1014 unsigned long res_low, res_high; 1015 1016 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1017 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1018 if (res_low & RTSC_SUSP) 1019 tsc_clocksource_reliable = 1; 1020 #endif 1021 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1022 tsc_clocksource_reliable = 1; 1023 } 1024 1025 /* 1026 * Make an educated guess if the TSC is trustworthy and synchronized 1027 * over all CPUs. 1028 */ 1029 int unsynchronized_tsc(void) 1030 { 1031 if (!cpu_has_tsc || tsc_unstable) 1032 return 1; 1033 1034 #ifdef CONFIG_SMP 1035 if (apic_is_clustered_box()) 1036 return 1; 1037 #endif 1038 1039 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1040 return 0; 1041 1042 if (tsc_clocksource_reliable) 1043 return 0; 1044 /* 1045 * Intel systems are normally all synchronized. 1046 * Exceptions must mark TSC as unstable: 1047 */ 1048 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1049 /* assume multi socket systems are not synchronized: */ 1050 if (num_possible_cpus() > 1) 1051 return 1; 1052 } 1053 1054 return 0; 1055 } 1056 1057 1058 static void tsc_refine_calibration_work(struct work_struct *work); 1059 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1060 /** 1061 * tsc_refine_calibration_work - Further refine tsc freq calibration 1062 * @work - ignored. 1063 * 1064 * This functions uses delayed work over a period of a 1065 * second to further refine the TSC freq value. Since this is 1066 * timer based, instead of loop based, we don't block the boot 1067 * process while this longer calibration is done. 1068 * 1069 * If there are any calibration anomalies (too many SMIs, etc), 1070 * or the refined calibration is off by 1% of the fast early 1071 * calibration, we throw out the new calibration and use the 1072 * early calibration. 1073 */ 1074 static void tsc_refine_calibration_work(struct work_struct *work) 1075 { 1076 static u64 tsc_start = -1, ref_start; 1077 static int hpet; 1078 u64 tsc_stop, ref_stop, delta; 1079 unsigned long freq; 1080 1081 /* Don't bother refining TSC on unstable systems */ 1082 if (check_tsc_unstable()) 1083 goto out; 1084 1085 /* 1086 * Since the work is started early in boot, we may be 1087 * delayed the first time we expire. So set the workqueue 1088 * again once we know timers are working. 1089 */ 1090 if (tsc_start == -1) { 1091 /* 1092 * Only set hpet once, to avoid mixing hardware 1093 * if the hpet becomes enabled later. 1094 */ 1095 hpet = is_hpet_enabled(); 1096 schedule_delayed_work(&tsc_irqwork, HZ); 1097 tsc_start = tsc_read_refs(&ref_start, hpet); 1098 return; 1099 } 1100 1101 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1102 1103 /* hpet or pmtimer available ? */ 1104 if (ref_start == ref_stop) 1105 goto out; 1106 1107 /* Check, whether the sampling was disturbed by an SMI */ 1108 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1109 goto out; 1110 1111 delta = tsc_stop - tsc_start; 1112 delta *= 1000000LL; 1113 if (hpet) 1114 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1115 else 1116 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1117 1118 /* Make sure we're within 1% */ 1119 if (abs(tsc_khz - freq) > tsc_khz/100) 1120 goto out; 1121 1122 tsc_khz = freq; 1123 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1124 (unsigned long)tsc_khz / 1000, 1125 (unsigned long)tsc_khz % 1000); 1126 1127 out: 1128 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1129 } 1130 1131 1132 static int __init init_tsc_clocksource(void) 1133 { 1134 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 1135 return 0; 1136 1137 if (tsc_clocksource_reliable) 1138 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1139 /* lower the rating if we already know its unstable: */ 1140 if (check_tsc_unstable()) { 1141 clocksource_tsc.rating = 0; 1142 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1143 } 1144 1145 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1146 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1147 1148 /* 1149 * Trust the results of the earlier calibration on systems 1150 * exporting a reliable TSC. 1151 */ 1152 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1153 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1154 return 0; 1155 } 1156 1157 schedule_delayed_work(&tsc_irqwork, 0); 1158 return 0; 1159 } 1160 /* 1161 * We use device_initcall here, to ensure we run after the hpet 1162 * is fully initialized, which may occur at fs_initcall time. 1163 */ 1164 device_initcall(init_tsc_clocksource); 1165 1166 void __init tsc_init(void) 1167 { 1168 u64 lpj; 1169 int cpu; 1170 1171 x86_init.timers.tsc_pre_init(); 1172 1173 if (!cpu_has_tsc) 1174 return; 1175 1176 tsc_khz = x86_platform.calibrate_tsc(); 1177 cpu_khz = tsc_khz; 1178 1179 if (!tsc_khz) { 1180 mark_tsc_unstable("could not calculate TSC khz"); 1181 return; 1182 } 1183 1184 pr_info("Detected %lu.%03lu MHz processor\n", 1185 (unsigned long)cpu_khz / 1000, 1186 (unsigned long)cpu_khz % 1000); 1187 1188 /* 1189 * Secondary CPUs do not run through tsc_init(), so set up 1190 * all the scale factors for all CPUs, assuming the same 1191 * speed as the bootup CPU. (cpufreq notifiers will fix this 1192 * up if their speed diverges) 1193 */ 1194 for_each_possible_cpu(cpu) { 1195 cyc2ns_init(cpu); 1196 set_cyc2ns_scale(cpu_khz, cpu); 1197 } 1198 1199 if (tsc_disabled > 0) 1200 return; 1201 1202 /* now allow native_sched_clock() to use rdtsc */ 1203 1204 tsc_disabled = 0; 1205 static_key_slow_inc(&__use_tsc); 1206 1207 if (!no_sched_irq_time) 1208 enable_sched_clock_irqtime(); 1209 1210 lpj = ((u64)tsc_khz * 1000); 1211 do_div(lpj, HZ); 1212 lpj_fine = lpj; 1213 1214 use_tsc_delay(); 1215 1216 if (unsynchronized_tsc()) 1217 mark_tsc_unstable("TSCs unsynchronized"); 1218 1219 check_system_tsc_reliable(); 1220 } 1221 1222 #ifdef CONFIG_SMP 1223 /* 1224 * If we have a constant TSC and are using the TSC for the delay loop, 1225 * we can skip clock calibration if another cpu in the same socket has already 1226 * been calibrated. This assumes that CONSTANT_TSC applies to all 1227 * cpus in the socket - this should be a safe assumption. 1228 */ 1229 unsigned long calibrate_delay_is_known(void) 1230 { 1231 int i, cpu = smp_processor_id(); 1232 1233 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1234 return 0; 1235 1236 for_each_online_cpu(i) 1237 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) 1238 return cpu_data(i).loops_per_jiffy; 1239 return 0; 1240 } 1241 #endif 1242