1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 #include <linux/init.h> 7 #include <linux/export.h> 8 #include <linux/timer.h> 9 #include <linux/acpi_pmtmr.h> 10 #include <linux/cpufreq.h> 11 #include <linux/delay.h> 12 #include <linux/clocksource.h> 13 #include <linux/percpu.h> 14 #include <linux/timex.h> 15 #include <linux/static_key.h> 16 17 #include <asm/hpet.h> 18 #include <asm/timer.h> 19 #include <asm/vgtod.h> 20 #include <asm/time.h> 21 #include <asm/delay.h> 22 #include <asm/hypervisor.h> 23 #include <asm/nmi.h> 24 #include <asm/x86_init.h> 25 #include <asm/geode.h> 26 #include <asm/apic.h> 27 #include <asm/intel-family.h> 28 29 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 30 EXPORT_SYMBOL(cpu_khz); 31 32 unsigned int __read_mostly tsc_khz; 33 EXPORT_SYMBOL(tsc_khz); 34 35 /* 36 * TSC can be unstable due to cpufreq or due to unsynced TSCs 37 */ 38 static int __read_mostly tsc_unstable; 39 40 /* native_sched_clock() is called before tsc_init(), so 41 we must start with the TSC soft disabled to prevent 42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */ 43 static int __read_mostly tsc_disabled = -1; 44 45 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 46 47 int tsc_clocksource_reliable; 48 49 static u32 art_to_tsc_numerator; 50 static u32 art_to_tsc_denominator; 51 static u64 art_to_tsc_offset; 52 struct clocksource *art_related_clocksource; 53 54 /* 55 * Use a ring-buffer like data structure, where a writer advances the head by 56 * writing a new data entry and a reader advances the tail when it observes a 57 * new entry. 58 * 59 * Writers are made to wait on readers until there's space to write a new 60 * entry. 61 * 62 * This means that we can always use an {offset, mul} pair to compute a ns 63 * value that is 'roughly' in the right direction, even if we're writing a new 64 * {offset, mul} pair during the clock read. 65 * 66 * The down-side is that we can no longer guarantee strict monotonicity anymore 67 * (assuming the TSC was that to begin with), because while we compute the 68 * intersection point of the two clock slopes and make sure the time is 69 * continuous at the point of switching; we can no longer guarantee a reader is 70 * strictly before or after the switch point. 71 * 72 * It does mean a reader no longer needs to disable IRQs in order to avoid 73 * CPU-Freq updates messing with his times, and similarly an NMI reader will 74 * no longer run the risk of hitting half-written state. 75 */ 76 77 struct cyc2ns { 78 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 79 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 80 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 81 }; /* exactly fits one cacheline */ 82 83 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 84 85 struct cyc2ns_data *cyc2ns_read_begin(void) 86 { 87 struct cyc2ns_data *head; 88 89 preempt_disable(); 90 91 head = this_cpu_read(cyc2ns.head); 92 /* 93 * Ensure we observe the entry when we observe the pointer to it. 94 * matches the wmb from cyc2ns_write_end(). 95 */ 96 smp_read_barrier_depends(); 97 head->__count++; 98 barrier(); 99 100 return head; 101 } 102 103 void cyc2ns_read_end(struct cyc2ns_data *head) 104 { 105 barrier(); 106 /* 107 * If we're the outer most nested read; update the tail pointer 108 * when we're done. This notifies possible pending writers 109 * that we've observed the head pointer and that the other 110 * entry is now free. 111 */ 112 if (!--head->__count) { 113 /* 114 * x86-TSO does not reorder writes with older reads; 115 * therefore once this write becomes visible to another 116 * cpu, we must be finished reading the cyc2ns_data. 117 * 118 * matches with cyc2ns_write_begin(). 119 */ 120 this_cpu_write(cyc2ns.tail, head); 121 } 122 preempt_enable(); 123 } 124 125 /* 126 * Begin writing a new @data entry for @cpu. 127 * 128 * Assumes some sort of write side lock; currently 'provided' by the assumption 129 * that cpufreq will call its notifiers sequentially. 130 */ 131 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 132 { 133 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 134 struct cyc2ns_data *data = c2n->data; 135 136 if (data == c2n->head) 137 data++; 138 139 /* XXX send an IPI to @cpu in order to guarantee a read? */ 140 141 /* 142 * When we observe the tail write from cyc2ns_read_end(), 143 * the cpu must be done with that entry and its safe 144 * to start writing to it. 145 */ 146 while (c2n->tail == data) 147 cpu_relax(); 148 149 return data; 150 } 151 152 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 153 { 154 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 155 156 /* 157 * Ensure the @data writes are visible before we publish the 158 * entry. Matches the data-depencency in cyc2ns_read_begin(). 159 */ 160 smp_wmb(); 161 162 ACCESS_ONCE(c2n->head) = data; 163 } 164 165 /* 166 * Accelerators for sched_clock() 167 * convert from cycles(64bits) => nanoseconds (64bits) 168 * basic equation: 169 * ns = cycles / (freq / ns_per_sec) 170 * ns = cycles * (ns_per_sec / freq) 171 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 172 * ns = cycles * (10^6 / cpu_khz) 173 * 174 * Then we use scaling math (suggested by george@mvista.com) to get: 175 * ns = cycles * (10^6 * SC / cpu_khz) / SC 176 * ns = cycles * cyc2ns_scale / SC 177 * 178 * And since SC is a constant power of two, we can convert the div 179 * into a shift. The larger SC is, the more accurate the conversion, but 180 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 181 * (64-bit result) can be used. 182 * 183 * We can use khz divisor instead of mhz to keep a better precision. 184 * (mathieu.desnoyers@polymtl.ca) 185 * 186 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 187 */ 188 189 static void cyc2ns_data_init(struct cyc2ns_data *data) 190 { 191 data->cyc2ns_mul = 0; 192 data->cyc2ns_shift = 0; 193 data->cyc2ns_offset = 0; 194 data->__count = 0; 195 } 196 197 static void cyc2ns_init(int cpu) 198 { 199 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 200 201 cyc2ns_data_init(&c2n->data[0]); 202 cyc2ns_data_init(&c2n->data[1]); 203 204 c2n->head = c2n->data; 205 c2n->tail = c2n->data; 206 } 207 208 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 209 { 210 struct cyc2ns_data *data, *tail; 211 unsigned long long ns; 212 213 /* 214 * See cyc2ns_read_*() for details; replicated in order to avoid 215 * an extra few instructions that came with the abstraction. 216 * Notable, it allows us to only do the __count and tail update 217 * dance when its actually needed. 218 */ 219 220 preempt_disable_notrace(); 221 data = this_cpu_read(cyc2ns.head); 222 tail = this_cpu_read(cyc2ns.tail); 223 224 if (likely(data == tail)) { 225 ns = data->cyc2ns_offset; 226 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 227 } else { 228 data->__count++; 229 230 barrier(); 231 232 ns = data->cyc2ns_offset; 233 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 234 235 barrier(); 236 237 if (!--data->__count) 238 this_cpu_write(cyc2ns.tail, data); 239 } 240 preempt_enable_notrace(); 241 242 return ns; 243 } 244 245 static void set_cyc2ns_scale(unsigned long khz, int cpu) 246 { 247 unsigned long long tsc_now, ns_now; 248 struct cyc2ns_data *data; 249 unsigned long flags; 250 251 local_irq_save(flags); 252 sched_clock_idle_sleep_event(); 253 254 if (!khz) 255 goto done; 256 257 data = cyc2ns_write_begin(cpu); 258 259 tsc_now = rdtsc(); 260 ns_now = cycles_2_ns(tsc_now); 261 262 /* 263 * Compute a new multiplier as per the above comment and ensure our 264 * time function is continuous; see the comment near struct 265 * cyc2ns_data. 266 */ 267 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz, 268 NSEC_PER_MSEC, 0); 269 270 /* 271 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 272 * not expected to be greater than 31 due to the original published 273 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 274 * value) - refer perf_event_mmap_page documentation in perf_event.h. 275 */ 276 if (data->cyc2ns_shift == 32) { 277 data->cyc2ns_shift = 31; 278 data->cyc2ns_mul >>= 1; 279 } 280 281 data->cyc2ns_offset = ns_now - 282 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift); 283 284 cyc2ns_write_end(cpu, data); 285 286 done: 287 sched_clock_idle_wakeup_event(0); 288 local_irq_restore(flags); 289 } 290 /* 291 * Scheduler clock - returns current time in nanosec units. 292 */ 293 u64 native_sched_clock(void) 294 { 295 if (static_branch_likely(&__use_tsc)) { 296 u64 tsc_now = rdtsc(); 297 298 /* return the value in ns */ 299 return cycles_2_ns(tsc_now); 300 } 301 302 /* 303 * Fall back to jiffies if there's no TSC available: 304 * ( But note that we still use it if the TSC is marked 305 * unstable. We do this because unlike Time Of Day, 306 * the scheduler clock tolerates small errors and it's 307 * very important for it to be as fast as the platform 308 * can achieve it. ) 309 */ 310 311 /* No locking but a rare wrong value is not a big deal: */ 312 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 313 } 314 315 /* 316 * Generate a sched_clock if you already have a TSC value. 317 */ 318 u64 native_sched_clock_from_tsc(u64 tsc) 319 { 320 return cycles_2_ns(tsc); 321 } 322 323 /* We need to define a real function for sched_clock, to override the 324 weak default version */ 325 #ifdef CONFIG_PARAVIRT 326 unsigned long long sched_clock(void) 327 { 328 return paravirt_sched_clock(); 329 } 330 #else 331 unsigned long long 332 sched_clock(void) __attribute__((alias("native_sched_clock"))); 333 #endif 334 335 int check_tsc_unstable(void) 336 { 337 return tsc_unstable; 338 } 339 EXPORT_SYMBOL_GPL(check_tsc_unstable); 340 341 #ifdef CONFIG_X86_TSC 342 int __init notsc_setup(char *str) 343 { 344 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 345 tsc_disabled = 1; 346 return 1; 347 } 348 #else 349 /* 350 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 351 * in cpu/common.c 352 */ 353 int __init notsc_setup(char *str) 354 { 355 setup_clear_cpu_cap(X86_FEATURE_TSC); 356 return 1; 357 } 358 #endif 359 360 __setup("notsc", notsc_setup); 361 362 static int no_sched_irq_time; 363 364 static int __init tsc_setup(char *str) 365 { 366 if (!strcmp(str, "reliable")) 367 tsc_clocksource_reliable = 1; 368 if (!strncmp(str, "noirqtime", 9)) 369 no_sched_irq_time = 1; 370 return 1; 371 } 372 373 __setup("tsc=", tsc_setup); 374 375 #define MAX_RETRIES 5 376 #define SMI_TRESHOLD 50000 377 378 /* 379 * Read TSC and the reference counters. Take care of SMI disturbance 380 */ 381 static u64 tsc_read_refs(u64 *p, int hpet) 382 { 383 u64 t1, t2; 384 int i; 385 386 for (i = 0; i < MAX_RETRIES; i++) { 387 t1 = get_cycles(); 388 if (hpet) 389 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 390 else 391 *p = acpi_pm_read_early(); 392 t2 = get_cycles(); 393 if ((t2 - t1) < SMI_TRESHOLD) 394 return t2; 395 } 396 return ULLONG_MAX; 397 } 398 399 /* 400 * Calculate the TSC frequency from HPET reference 401 */ 402 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 403 { 404 u64 tmp; 405 406 if (hpet2 < hpet1) 407 hpet2 += 0x100000000ULL; 408 hpet2 -= hpet1; 409 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 410 do_div(tmp, 1000000); 411 do_div(deltatsc, tmp); 412 413 return (unsigned long) deltatsc; 414 } 415 416 /* 417 * Calculate the TSC frequency from PMTimer reference 418 */ 419 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 420 { 421 u64 tmp; 422 423 if (!pm1 && !pm2) 424 return ULONG_MAX; 425 426 if (pm2 < pm1) 427 pm2 += (u64)ACPI_PM_OVRRUN; 428 pm2 -= pm1; 429 tmp = pm2 * 1000000000LL; 430 do_div(tmp, PMTMR_TICKS_PER_SEC); 431 do_div(deltatsc, tmp); 432 433 return (unsigned long) deltatsc; 434 } 435 436 #define CAL_MS 10 437 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 438 #define CAL_PIT_LOOPS 1000 439 440 #define CAL2_MS 50 441 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 442 #define CAL2_PIT_LOOPS 5000 443 444 445 /* 446 * Try to calibrate the TSC against the Programmable 447 * Interrupt Timer and return the frequency of the TSC 448 * in kHz. 449 * 450 * Return ULONG_MAX on failure to calibrate. 451 */ 452 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 453 { 454 u64 tsc, t1, t2, delta; 455 unsigned long tscmin, tscmax; 456 int pitcnt; 457 458 /* Set the Gate high, disable speaker */ 459 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 460 461 /* 462 * Setup CTC channel 2* for mode 0, (interrupt on terminal 463 * count mode), binary count. Set the latch register to 50ms 464 * (LSB then MSB) to begin countdown. 465 */ 466 outb(0xb0, 0x43); 467 outb(latch & 0xff, 0x42); 468 outb(latch >> 8, 0x42); 469 470 tsc = t1 = t2 = get_cycles(); 471 472 pitcnt = 0; 473 tscmax = 0; 474 tscmin = ULONG_MAX; 475 while ((inb(0x61) & 0x20) == 0) { 476 t2 = get_cycles(); 477 delta = t2 - tsc; 478 tsc = t2; 479 if ((unsigned long) delta < tscmin) 480 tscmin = (unsigned int) delta; 481 if ((unsigned long) delta > tscmax) 482 tscmax = (unsigned int) delta; 483 pitcnt++; 484 } 485 486 /* 487 * Sanity checks: 488 * 489 * If we were not able to read the PIT more than loopmin 490 * times, then we have been hit by a massive SMI 491 * 492 * If the maximum is 10 times larger than the minimum, 493 * then we got hit by an SMI as well. 494 */ 495 if (pitcnt < loopmin || tscmax > 10 * tscmin) 496 return ULONG_MAX; 497 498 /* Calculate the PIT value */ 499 delta = t2 - t1; 500 do_div(delta, ms); 501 return delta; 502 } 503 504 /* 505 * This reads the current MSB of the PIT counter, and 506 * checks if we are running on sufficiently fast and 507 * non-virtualized hardware. 508 * 509 * Our expectations are: 510 * 511 * - the PIT is running at roughly 1.19MHz 512 * 513 * - each IO is going to take about 1us on real hardware, 514 * but we allow it to be much faster (by a factor of 10) or 515 * _slightly_ slower (ie we allow up to a 2us read+counter 516 * update - anything else implies a unacceptably slow CPU 517 * or PIT for the fast calibration to work. 518 * 519 * - with 256 PIT ticks to read the value, we have 214us to 520 * see the same MSB (and overhead like doing a single TSC 521 * read per MSB value etc). 522 * 523 * - We're doing 2 reads per loop (LSB, MSB), and we expect 524 * them each to take about a microsecond on real hardware. 525 * So we expect a count value of around 100. But we'll be 526 * generous, and accept anything over 50. 527 * 528 * - if the PIT is stuck, and we see *many* more reads, we 529 * return early (and the next caller of pit_expect_msb() 530 * then consider it a failure when they don't see the 531 * next expected value). 532 * 533 * These expectations mean that we know that we have seen the 534 * transition from one expected value to another with a fairly 535 * high accuracy, and we didn't miss any events. We can thus 536 * use the TSC value at the transitions to calculate a pretty 537 * good value for the TSC frequencty. 538 */ 539 static inline int pit_verify_msb(unsigned char val) 540 { 541 /* Ignore LSB */ 542 inb(0x42); 543 return inb(0x42) == val; 544 } 545 546 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 547 { 548 int count; 549 u64 tsc = 0, prev_tsc = 0; 550 551 for (count = 0; count < 50000; count++) { 552 if (!pit_verify_msb(val)) 553 break; 554 prev_tsc = tsc; 555 tsc = get_cycles(); 556 } 557 *deltap = get_cycles() - prev_tsc; 558 *tscp = tsc; 559 560 /* 561 * We require _some_ success, but the quality control 562 * will be based on the error terms on the TSC values. 563 */ 564 return count > 5; 565 } 566 567 /* 568 * How many MSB values do we want to see? We aim for 569 * a maximum error rate of 500ppm (in practice the 570 * real error is much smaller), but refuse to spend 571 * more than 50ms on it. 572 */ 573 #define MAX_QUICK_PIT_MS 50 574 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 575 576 static unsigned long quick_pit_calibrate(void) 577 { 578 int i; 579 u64 tsc, delta; 580 unsigned long d1, d2; 581 582 /* Set the Gate high, disable speaker */ 583 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 584 585 /* 586 * Counter 2, mode 0 (one-shot), binary count 587 * 588 * NOTE! Mode 2 decrements by two (and then the 589 * output is flipped each time, giving the same 590 * final output frequency as a decrement-by-one), 591 * so mode 0 is much better when looking at the 592 * individual counts. 593 */ 594 outb(0xb0, 0x43); 595 596 /* Start at 0xffff */ 597 outb(0xff, 0x42); 598 outb(0xff, 0x42); 599 600 /* 601 * The PIT starts counting at the next edge, so we 602 * need to delay for a microsecond. The easiest way 603 * to do that is to just read back the 16-bit counter 604 * once from the PIT. 605 */ 606 pit_verify_msb(0); 607 608 if (pit_expect_msb(0xff, &tsc, &d1)) { 609 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 610 if (!pit_expect_msb(0xff-i, &delta, &d2)) 611 break; 612 613 delta -= tsc; 614 615 /* 616 * Extrapolate the error and fail fast if the error will 617 * never be below 500 ppm. 618 */ 619 if (i == 1 && 620 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 621 return 0; 622 623 /* 624 * Iterate until the error is less than 500 ppm 625 */ 626 if (d1+d2 >= delta >> 11) 627 continue; 628 629 /* 630 * Check the PIT one more time to verify that 631 * all TSC reads were stable wrt the PIT. 632 * 633 * This also guarantees serialization of the 634 * last cycle read ('d2') in pit_expect_msb. 635 */ 636 if (!pit_verify_msb(0xfe - i)) 637 break; 638 goto success; 639 } 640 } 641 pr_info("Fast TSC calibration failed\n"); 642 return 0; 643 644 success: 645 /* 646 * Ok, if we get here, then we've seen the 647 * MSB of the PIT decrement 'i' times, and the 648 * error has shrunk to less than 500 ppm. 649 * 650 * As a result, we can depend on there not being 651 * any odd delays anywhere, and the TSC reads are 652 * reliable (within the error). 653 * 654 * kHz = ticks / time-in-seconds / 1000; 655 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 656 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 657 */ 658 delta *= PIT_TICK_RATE; 659 do_div(delta, i*256*1000); 660 pr_info("Fast TSC calibration using PIT\n"); 661 return delta; 662 } 663 664 /** 665 * native_calibrate_tsc 666 * Determine TSC frequency via CPUID, else return 0. 667 */ 668 unsigned long native_calibrate_tsc(void) 669 { 670 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 671 unsigned int crystal_khz; 672 673 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 674 return 0; 675 676 if (boot_cpu_data.cpuid_level < 0x15) 677 return 0; 678 679 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 680 681 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 682 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 683 684 if (ebx_numerator == 0 || eax_denominator == 0) 685 return 0; 686 687 crystal_khz = ecx_hz / 1000; 688 689 if (crystal_khz == 0) { 690 switch (boot_cpu_data.x86_model) { 691 case INTEL_FAM6_SKYLAKE_MOBILE: 692 case INTEL_FAM6_SKYLAKE_DESKTOP: 693 case INTEL_FAM6_KABYLAKE_MOBILE: 694 case INTEL_FAM6_KABYLAKE_DESKTOP: 695 crystal_khz = 24000; /* 24.0 MHz */ 696 break; 697 case INTEL_FAM6_SKYLAKE_X: 698 case INTEL_FAM6_ATOM_DENVERTON: 699 crystal_khz = 25000; /* 25.0 MHz */ 700 break; 701 case INTEL_FAM6_ATOM_GOLDMONT: 702 crystal_khz = 19200; /* 19.2 MHz */ 703 break; 704 } 705 } 706 707 /* 708 * TSC frequency determined by CPUID is a "hardware reported" 709 * frequency and is the most accurate one so far we have. This 710 * is considered a known frequency. 711 */ 712 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 713 714 /* 715 * For Atom SoCs TSC is the only reliable clocksource. 716 * Mark TSC reliable so no watchdog on it. 717 */ 718 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) 719 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 720 721 return crystal_khz * ebx_numerator / eax_denominator; 722 } 723 724 static unsigned long cpu_khz_from_cpuid(void) 725 { 726 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 727 728 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 729 return 0; 730 731 if (boot_cpu_data.cpuid_level < 0x16) 732 return 0; 733 734 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 735 736 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 737 738 return eax_base_mhz * 1000; 739 } 740 741 /** 742 * native_calibrate_cpu - calibrate the cpu on boot 743 */ 744 unsigned long native_calibrate_cpu(void) 745 { 746 u64 tsc1, tsc2, delta, ref1, ref2; 747 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 748 unsigned long flags, latch, ms, fast_calibrate; 749 int hpet = is_hpet_enabled(), i, loopmin; 750 751 fast_calibrate = cpu_khz_from_cpuid(); 752 if (fast_calibrate) 753 return fast_calibrate; 754 755 fast_calibrate = cpu_khz_from_msr(); 756 if (fast_calibrate) 757 return fast_calibrate; 758 759 local_irq_save(flags); 760 fast_calibrate = quick_pit_calibrate(); 761 local_irq_restore(flags); 762 if (fast_calibrate) 763 return fast_calibrate; 764 765 /* 766 * Run 5 calibration loops to get the lowest frequency value 767 * (the best estimate). We use two different calibration modes 768 * here: 769 * 770 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 771 * load a timeout of 50ms. We read the time right after we 772 * started the timer and wait until the PIT count down reaches 773 * zero. In each wait loop iteration we read the TSC and check 774 * the delta to the previous read. We keep track of the min 775 * and max values of that delta. The delta is mostly defined 776 * by the IO time of the PIT access, so we can detect when a 777 * SMI/SMM disturbance happened between the two reads. If the 778 * maximum time is significantly larger than the minimum time, 779 * then we discard the result and have another try. 780 * 781 * 2) Reference counter. If available we use the HPET or the 782 * PMTIMER as a reference to check the sanity of that value. 783 * We use separate TSC readouts and check inside of the 784 * reference read for a SMI/SMM disturbance. We dicard 785 * disturbed values here as well. We do that around the PIT 786 * calibration delay loop as we have to wait for a certain 787 * amount of time anyway. 788 */ 789 790 /* Preset PIT loop values */ 791 latch = CAL_LATCH; 792 ms = CAL_MS; 793 loopmin = CAL_PIT_LOOPS; 794 795 for (i = 0; i < 3; i++) { 796 unsigned long tsc_pit_khz; 797 798 /* 799 * Read the start value and the reference count of 800 * hpet/pmtimer when available. Then do the PIT 801 * calibration, which will take at least 50ms, and 802 * read the end value. 803 */ 804 local_irq_save(flags); 805 tsc1 = tsc_read_refs(&ref1, hpet); 806 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 807 tsc2 = tsc_read_refs(&ref2, hpet); 808 local_irq_restore(flags); 809 810 /* Pick the lowest PIT TSC calibration so far */ 811 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 812 813 /* hpet or pmtimer available ? */ 814 if (ref1 == ref2) 815 continue; 816 817 /* Check, whether the sampling was disturbed by an SMI */ 818 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 819 continue; 820 821 tsc2 = (tsc2 - tsc1) * 1000000LL; 822 if (hpet) 823 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 824 else 825 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 826 827 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 828 829 /* Check the reference deviation */ 830 delta = ((u64) tsc_pit_min) * 100; 831 do_div(delta, tsc_ref_min); 832 833 /* 834 * If both calibration results are inside a 10% window 835 * then we can be sure, that the calibration 836 * succeeded. We break out of the loop right away. We 837 * use the reference value, as it is more precise. 838 */ 839 if (delta >= 90 && delta <= 110) { 840 pr_info("PIT calibration matches %s. %d loops\n", 841 hpet ? "HPET" : "PMTIMER", i + 1); 842 return tsc_ref_min; 843 } 844 845 /* 846 * Check whether PIT failed more than once. This 847 * happens in virtualized environments. We need to 848 * give the virtual PC a slightly longer timeframe for 849 * the HPET/PMTIMER to make the result precise. 850 */ 851 if (i == 1 && tsc_pit_min == ULONG_MAX) { 852 latch = CAL2_LATCH; 853 ms = CAL2_MS; 854 loopmin = CAL2_PIT_LOOPS; 855 } 856 } 857 858 /* 859 * Now check the results. 860 */ 861 if (tsc_pit_min == ULONG_MAX) { 862 /* PIT gave no useful value */ 863 pr_warn("Unable to calibrate against PIT\n"); 864 865 /* We don't have an alternative source, disable TSC */ 866 if (!hpet && !ref1 && !ref2) { 867 pr_notice("No reference (HPET/PMTIMER) available\n"); 868 return 0; 869 } 870 871 /* The alternative source failed as well, disable TSC */ 872 if (tsc_ref_min == ULONG_MAX) { 873 pr_warn("HPET/PMTIMER calibration failed\n"); 874 return 0; 875 } 876 877 /* Use the alternative source */ 878 pr_info("using %s reference calibration\n", 879 hpet ? "HPET" : "PMTIMER"); 880 881 return tsc_ref_min; 882 } 883 884 /* We don't have an alternative source, use the PIT calibration value */ 885 if (!hpet && !ref1 && !ref2) { 886 pr_info("Using PIT calibration value\n"); 887 return tsc_pit_min; 888 } 889 890 /* The alternative source failed, use the PIT calibration value */ 891 if (tsc_ref_min == ULONG_MAX) { 892 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 893 return tsc_pit_min; 894 } 895 896 /* 897 * The calibration values differ too much. In doubt, we use 898 * the PIT value as we know that there are PMTIMERs around 899 * running at double speed. At least we let the user know: 900 */ 901 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 902 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 903 pr_info("Using PIT calibration value\n"); 904 return tsc_pit_min; 905 } 906 907 int recalibrate_cpu_khz(void) 908 { 909 #ifndef CONFIG_SMP 910 unsigned long cpu_khz_old = cpu_khz; 911 912 if (!boot_cpu_has(X86_FEATURE_TSC)) 913 return -ENODEV; 914 915 cpu_khz = x86_platform.calibrate_cpu(); 916 tsc_khz = x86_platform.calibrate_tsc(); 917 if (tsc_khz == 0) 918 tsc_khz = cpu_khz; 919 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 920 cpu_khz = tsc_khz; 921 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 922 cpu_khz_old, cpu_khz); 923 924 return 0; 925 #else 926 return -ENODEV; 927 #endif 928 } 929 930 EXPORT_SYMBOL(recalibrate_cpu_khz); 931 932 933 static unsigned long long cyc2ns_suspend; 934 935 void tsc_save_sched_clock_state(void) 936 { 937 if (!sched_clock_stable()) 938 return; 939 940 cyc2ns_suspend = sched_clock(); 941 } 942 943 /* 944 * Even on processors with invariant TSC, TSC gets reset in some the 945 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 946 * arbitrary value (still sync'd across cpu's) during resume from such sleep 947 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 948 * that sched_clock() continues from the point where it was left off during 949 * suspend. 950 */ 951 void tsc_restore_sched_clock_state(void) 952 { 953 unsigned long long offset; 954 unsigned long flags; 955 int cpu; 956 957 if (!sched_clock_stable()) 958 return; 959 960 local_irq_save(flags); 961 962 /* 963 * We're coming out of suspend, there's no concurrency yet; don't 964 * bother being nice about the RCU stuff, just write to both 965 * data fields. 966 */ 967 968 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 969 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 970 971 offset = cyc2ns_suspend - sched_clock(); 972 973 for_each_possible_cpu(cpu) { 974 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 975 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 976 } 977 978 local_irq_restore(flags); 979 } 980 981 #ifdef CONFIG_CPU_FREQ 982 983 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 984 * changes. 985 * 986 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 987 * not that important because current Opteron setups do not support 988 * scaling on SMP anyroads. 989 * 990 * Should fix up last_tsc too. Currently gettimeofday in the 991 * first tick after the change will be slightly wrong. 992 */ 993 994 static unsigned int ref_freq; 995 static unsigned long loops_per_jiffy_ref; 996 static unsigned long tsc_khz_ref; 997 998 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 999 void *data) 1000 { 1001 struct cpufreq_freqs *freq = data; 1002 unsigned long *lpj; 1003 1004 lpj = &boot_cpu_data.loops_per_jiffy; 1005 #ifdef CONFIG_SMP 1006 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 1007 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 1008 #endif 1009 1010 if (!ref_freq) { 1011 ref_freq = freq->old; 1012 loops_per_jiffy_ref = *lpj; 1013 tsc_khz_ref = tsc_khz; 1014 } 1015 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 1016 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 1017 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 1018 1019 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 1020 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 1021 mark_tsc_unstable("cpufreq changes"); 1022 1023 set_cyc2ns_scale(tsc_khz, freq->cpu); 1024 } 1025 1026 return 0; 1027 } 1028 1029 static struct notifier_block time_cpufreq_notifier_block = { 1030 .notifier_call = time_cpufreq_notifier 1031 }; 1032 1033 static int __init cpufreq_register_tsc_scaling(void) 1034 { 1035 if (!boot_cpu_has(X86_FEATURE_TSC)) 1036 return 0; 1037 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1038 return 0; 1039 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1040 CPUFREQ_TRANSITION_NOTIFIER); 1041 return 0; 1042 } 1043 1044 core_initcall(cpufreq_register_tsc_scaling); 1045 1046 #endif /* CONFIG_CPU_FREQ */ 1047 1048 #define ART_CPUID_LEAF (0x15) 1049 #define ART_MIN_DENOMINATOR (1) 1050 1051 1052 /* 1053 * If ART is present detect the numerator:denominator to convert to TSC 1054 */ 1055 static void detect_art(void) 1056 { 1057 unsigned int unused[2]; 1058 1059 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1060 return; 1061 1062 /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */ 1063 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1064 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1065 !boot_cpu_has(X86_FEATURE_TSC_ADJUST)) 1066 return; 1067 1068 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1069 &art_to_tsc_numerator, unused, unused+1); 1070 1071 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1072 return; 1073 1074 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); 1075 1076 /* Make this sticky over multiple CPU init calls */ 1077 setup_force_cpu_cap(X86_FEATURE_ART); 1078 } 1079 1080 1081 /* clocksource code */ 1082 1083 static struct clocksource clocksource_tsc; 1084 1085 static void tsc_resume(struct clocksource *cs) 1086 { 1087 tsc_verify_tsc_adjust(true); 1088 } 1089 1090 /* 1091 * We used to compare the TSC to the cycle_last value in the clocksource 1092 * structure to avoid a nasty time-warp. This can be observed in a 1093 * very small window right after one CPU updated cycle_last under 1094 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1095 * is smaller than the cycle_last reference value due to a TSC which 1096 * is slighty behind. This delta is nowhere else observable, but in 1097 * that case it results in a forward time jump in the range of hours 1098 * due to the unsigned delta calculation of the time keeping core 1099 * code, which is necessary to support wrapping clocksources like pm 1100 * timer. 1101 * 1102 * This sanity check is now done in the core timekeeping code. 1103 * checking the result of read_tsc() - cycle_last for being negative. 1104 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1105 */ 1106 static u64 read_tsc(struct clocksource *cs) 1107 { 1108 return (u64)rdtsc_ordered(); 1109 } 1110 1111 static void tsc_cs_mark_unstable(struct clocksource *cs) 1112 { 1113 if (tsc_unstable) 1114 return; 1115 tsc_unstable = 1; 1116 clear_sched_clock_stable(); 1117 disable_sched_clock_irqtime(); 1118 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1119 } 1120 1121 /* 1122 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1123 */ 1124 static struct clocksource clocksource_tsc = { 1125 .name = "tsc", 1126 .rating = 300, 1127 .read = read_tsc, 1128 .mask = CLOCKSOURCE_MASK(64), 1129 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1130 CLOCK_SOURCE_MUST_VERIFY, 1131 .archdata = { .vclock_mode = VCLOCK_TSC }, 1132 .resume = tsc_resume, 1133 .mark_unstable = tsc_cs_mark_unstable, 1134 }; 1135 1136 void mark_tsc_unstable(char *reason) 1137 { 1138 if (!tsc_unstable) { 1139 tsc_unstable = 1; 1140 clear_sched_clock_stable(); 1141 disable_sched_clock_irqtime(); 1142 pr_info("Marking TSC unstable due to %s\n", reason); 1143 /* Change only the rating, when not registered */ 1144 if (clocksource_tsc.mult) 1145 clocksource_mark_unstable(&clocksource_tsc); 1146 else { 1147 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1148 clocksource_tsc.rating = 0; 1149 } 1150 } 1151 } 1152 1153 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1154 1155 static void __init check_system_tsc_reliable(void) 1156 { 1157 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1158 if (is_geode_lx()) { 1159 /* RTSC counts during suspend */ 1160 #define RTSC_SUSP 0x100 1161 unsigned long res_low, res_high; 1162 1163 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1164 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1165 if (res_low & RTSC_SUSP) 1166 tsc_clocksource_reliable = 1; 1167 } 1168 #endif 1169 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1170 tsc_clocksource_reliable = 1; 1171 } 1172 1173 /* 1174 * Make an educated guess if the TSC is trustworthy and synchronized 1175 * over all CPUs. 1176 */ 1177 int unsynchronized_tsc(void) 1178 { 1179 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1180 return 1; 1181 1182 #ifdef CONFIG_SMP 1183 if (apic_is_clustered_box()) 1184 return 1; 1185 #endif 1186 1187 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1188 return 0; 1189 1190 if (tsc_clocksource_reliable) 1191 return 0; 1192 /* 1193 * Intel systems are normally all synchronized. 1194 * Exceptions must mark TSC as unstable: 1195 */ 1196 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1197 /* assume multi socket systems are not synchronized: */ 1198 if (num_possible_cpus() > 1) 1199 return 1; 1200 } 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * Convert ART to TSC given numerator/denominator found in detect_art() 1207 */ 1208 struct system_counterval_t convert_art_to_tsc(u64 art) 1209 { 1210 u64 tmp, res, rem; 1211 1212 rem = do_div(art, art_to_tsc_denominator); 1213 1214 res = art * art_to_tsc_numerator; 1215 tmp = rem * art_to_tsc_numerator; 1216 1217 do_div(tmp, art_to_tsc_denominator); 1218 res += tmp + art_to_tsc_offset; 1219 1220 return (struct system_counterval_t) {.cs = art_related_clocksource, 1221 .cycles = res}; 1222 } 1223 EXPORT_SYMBOL(convert_art_to_tsc); 1224 1225 static void tsc_refine_calibration_work(struct work_struct *work); 1226 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1227 /** 1228 * tsc_refine_calibration_work - Further refine tsc freq calibration 1229 * @work - ignored. 1230 * 1231 * This functions uses delayed work over a period of a 1232 * second to further refine the TSC freq value. Since this is 1233 * timer based, instead of loop based, we don't block the boot 1234 * process while this longer calibration is done. 1235 * 1236 * If there are any calibration anomalies (too many SMIs, etc), 1237 * or the refined calibration is off by 1% of the fast early 1238 * calibration, we throw out the new calibration and use the 1239 * early calibration. 1240 */ 1241 static void tsc_refine_calibration_work(struct work_struct *work) 1242 { 1243 static u64 tsc_start = -1, ref_start; 1244 static int hpet; 1245 u64 tsc_stop, ref_stop, delta; 1246 unsigned long freq; 1247 1248 /* Don't bother refining TSC on unstable systems */ 1249 if (check_tsc_unstable()) 1250 goto out; 1251 1252 /* 1253 * Since the work is started early in boot, we may be 1254 * delayed the first time we expire. So set the workqueue 1255 * again once we know timers are working. 1256 */ 1257 if (tsc_start == -1) { 1258 /* 1259 * Only set hpet once, to avoid mixing hardware 1260 * if the hpet becomes enabled later. 1261 */ 1262 hpet = is_hpet_enabled(); 1263 schedule_delayed_work(&tsc_irqwork, HZ); 1264 tsc_start = tsc_read_refs(&ref_start, hpet); 1265 return; 1266 } 1267 1268 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1269 1270 /* hpet or pmtimer available ? */ 1271 if (ref_start == ref_stop) 1272 goto out; 1273 1274 /* Check, whether the sampling was disturbed by an SMI */ 1275 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1276 goto out; 1277 1278 delta = tsc_stop - tsc_start; 1279 delta *= 1000000LL; 1280 if (hpet) 1281 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1282 else 1283 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1284 1285 /* Make sure we're within 1% */ 1286 if (abs(tsc_khz - freq) > tsc_khz/100) 1287 goto out; 1288 1289 tsc_khz = freq; 1290 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1291 (unsigned long)tsc_khz / 1000, 1292 (unsigned long)tsc_khz % 1000); 1293 1294 /* Inform the TSC deadline clockevent devices about the recalibration */ 1295 lapic_update_tsc_freq(); 1296 1297 out: 1298 if (boot_cpu_has(X86_FEATURE_ART)) 1299 art_related_clocksource = &clocksource_tsc; 1300 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1301 } 1302 1303 1304 static int __init init_tsc_clocksource(void) 1305 { 1306 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz) 1307 return 0; 1308 1309 if (tsc_clocksource_reliable) 1310 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1311 /* lower the rating if we already know its unstable: */ 1312 if (check_tsc_unstable()) { 1313 clocksource_tsc.rating = 0; 1314 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1315 } 1316 1317 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1318 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1319 1320 /* 1321 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1322 * the refined calibration and directly register it as a clocksource. 1323 */ 1324 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1325 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1326 return 0; 1327 } 1328 1329 schedule_delayed_work(&tsc_irqwork, 0); 1330 return 0; 1331 } 1332 /* 1333 * We use device_initcall here, to ensure we run after the hpet 1334 * is fully initialized, which may occur at fs_initcall time. 1335 */ 1336 device_initcall(init_tsc_clocksource); 1337 1338 void __init tsc_init(void) 1339 { 1340 u64 lpj; 1341 int cpu; 1342 1343 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1344 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1345 return; 1346 } 1347 1348 cpu_khz = x86_platform.calibrate_cpu(); 1349 tsc_khz = x86_platform.calibrate_tsc(); 1350 1351 /* 1352 * Trust non-zero tsc_khz as authorative, 1353 * and use it to sanity check cpu_khz, 1354 * which will be off if system timer is off. 1355 */ 1356 if (tsc_khz == 0) 1357 tsc_khz = cpu_khz; 1358 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1359 cpu_khz = tsc_khz; 1360 1361 if (!tsc_khz) { 1362 mark_tsc_unstable("could not calculate TSC khz"); 1363 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1364 return; 1365 } 1366 1367 pr_info("Detected %lu.%03lu MHz processor\n", 1368 (unsigned long)cpu_khz / 1000, 1369 (unsigned long)cpu_khz % 1000); 1370 1371 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1372 tsc_store_and_check_tsc_adjust(true); 1373 1374 /* 1375 * Secondary CPUs do not run through tsc_init(), so set up 1376 * all the scale factors for all CPUs, assuming the same 1377 * speed as the bootup CPU. (cpufreq notifiers will fix this 1378 * up if their speed diverges) 1379 */ 1380 for_each_possible_cpu(cpu) { 1381 cyc2ns_init(cpu); 1382 set_cyc2ns_scale(tsc_khz, cpu); 1383 } 1384 1385 if (tsc_disabled > 0) 1386 return; 1387 1388 /* now allow native_sched_clock() to use rdtsc */ 1389 1390 tsc_disabled = 0; 1391 static_branch_enable(&__use_tsc); 1392 1393 if (!no_sched_irq_time) 1394 enable_sched_clock_irqtime(); 1395 1396 lpj = ((u64)tsc_khz * 1000); 1397 do_div(lpj, HZ); 1398 lpj_fine = lpj; 1399 1400 use_tsc_delay(); 1401 1402 if (unsynchronized_tsc()) 1403 mark_tsc_unstable("TSCs unsynchronized"); 1404 1405 check_system_tsc_reliable(); 1406 1407 detect_art(); 1408 } 1409 1410 #ifdef CONFIG_SMP 1411 /* 1412 * If we have a constant TSC and are using the TSC for the delay loop, 1413 * we can skip clock calibration if another cpu in the same socket has already 1414 * been calibrated. This assumes that CONSTANT_TSC applies to all 1415 * cpus in the socket - this should be a safe assumption. 1416 */ 1417 unsigned long calibrate_delay_is_known(void) 1418 { 1419 int sibling, cpu = smp_processor_id(); 1420 struct cpumask *mask = topology_core_cpumask(cpu); 1421 1422 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1423 return 0; 1424 1425 if (!mask) 1426 return 0; 1427 1428 sibling = cpumask_any_but(mask, cpu); 1429 if (sibling < nr_cpu_ids) 1430 return cpu_data(sibling).loops_per_jiffy; 1431 return 0; 1432 } 1433 #endif 1434