xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision aac5987a)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16 
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 
29 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
31 
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
34 
35 /*
36  * TSC can be unstable due to cpufreq or due to unsynced TSCs
37  */
38 static int __read_mostly tsc_unstable;
39 
40 /* native_sched_clock() is called before tsc_init(), so
41    we must start with the TSC soft disabled to prevent
42    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
44 
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46 
47 int tsc_clocksource_reliable;
48 
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53 
54 /*
55  * Use a ring-buffer like data structure, where a writer advances the head by
56  * writing a new data entry and a reader advances the tail when it observes a
57  * new entry.
58  *
59  * Writers are made to wait on readers until there's space to write a new
60  * entry.
61  *
62  * This means that we can always use an {offset, mul} pair to compute a ns
63  * value that is 'roughly' in the right direction, even if we're writing a new
64  * {offset, mul} pair during the clock read.
65  *
66  * The down-side is that we can no longer guarantee strict monotonicity anymore
67  * (assuming the TSC was that to begin with), because while we compute the
68  * intersection point of the two clock slopes and make sure the time is
69  * continuous at the point of switching; we can no longer guarantee a reader is
70  * strictly before or after the switch point.
71  *
72  * It does mean a reader no longer needs to disable IRQs in order to avoid
73  * CPU-Freq updates messing with his times, and similarly an NMI reader will
74  * no longer run the risk of hitting half-written state.
75  */
76 
77 struct cyc2ns {
78 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
79 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
80 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
81 }; /* exactly fits one cacheline */
82 
83 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
84 
85 struct cyc2ns_data *cyc2ns_read_begin(void)
86 {
87 	struct cyc2ns_data *head;
88 
89 	preempt_disable();
90 
91 	head = this_cpu_read(cyc2ns.head);
92 	/*
93 	 * Ensure we observe the entry when we observe the pointer to it.
94 	 * matches the wmb from cyc2ns_write_end().
95 	 */
96 	smp_read_barrier_depends();
97 	head->__count++;
98 	barrier();
99 
100 	return head;
101 }
102 
103 void cyc2ns_read_end(struct cyc2ns_data *head)
104 {
105 	barrier();
106 	/*
107 	 * If we're the outer most nested read; update the tail pointer
108 	 * when we're done. This notifies possible pending writers
109 	 * that we've observed the head pointer and that the other
110 	 * entry is now free.
111 	 */
112 	if (!--head->__count) {
113 		/*
114 		 * x86-TSO does not reorder writes with older reads;
115 		 * therefore once this write becomes visible to another
116 		 * cpu, we must be finished reading the cyc2ns_data.
117 		 *
118 		 * matches with cyc2ns_write_begin().
119 		 */
120 		this_cpu_write(cyc2ns.tail, head);
121 	}
122 	preempt_enable();
123 }
124 
125 /*
126  * Begin writing a new @data entry for @cpu.
127  *
128  * Assumes some sort of write side lock; currently 'provided' by the assumption
129  * that cpufreq will call its notifiers sequentially.
130  */
131 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
132 {
133 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
134 	struct cyc2ns_data *data = c2n->data;
135 
136 	if (data == c2n->head)
137 		data++;
138 
139 	/* XXX send an IPI to @cpu in order to guarantee a read? */
140 
141 	/*
142 	 * When we observe the tail write from cyc2ns_read_end(),
143 	 * the cpu must be done with that entry and its safe
144 	 * to start writing to it.
145 	 */
146 	while (c2n->tail == data)
147 		cpu_relax();
148 
149 	return data;
150 }
151 
152 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
153 {
154 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
155 
156 	/*
157 	 * Ensure the @data writes are visible before we publish the
158 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
159 	 */
160 	smp_wmb();
161 
162 	ACCESS_ONCE(c2n->head) = data;
163 }
164 
165 /*
166  * Accelerators for sched_clock()
167  * convert from cycles(64bits) => nanoseconds (64bits)
168  *  basic equation:
169  *              ns = cycles / (freq / ns_per_sec)
170  *              ns = cycles * (ns_per_sec / freq)
171  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
172  *              ns = cycles * (10^6 / cpu_khz)
173  *
174  *      Then we use scaling math (suggested by george@mvista.com) to get:
175  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
176  *              ns = cycles * cyc2ns_scale / SC
177  *
178  *      And since SC is a constant power of two, we can convert the div
179  *  into a shift. The larger SC is, the more accurate the conversion, but
180  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
181  *  (64-bit result) can be used.
182  *
183  *  We can use khz divisor instead of mhz to keep a better precision.
184  *  (mathieu.desnoyers@polymtl.ca)
185  *
186  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
187  */
188 
189 static void cyc2ns_data_init(struct cyc2ns_data *data)
190 {
191 	data->cyc2ns_mul = 0;
192 	data->cyc2ns_shift = 0;
193 	data->cyc2ns_offset = 0;
194 	data->__count = 0;
195 }
196 
197 static void cyc2ns_init(int cpu)
198 {
199 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
200 
201 	cyc2ns_data_init(&c2n->data[0]);
202 	cyc2ns_data_init(&c2n->data[1]);
203 
204 	c2n->head = c2n->data;
205 	c2n->tail = c2n->data;
206 }
207 
208 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
209 {
210 	struct cyc2ns_data *data, *tail;
211 	unsigned long long ns;
212 
213 	/*
214 	 * See cyc2ns_read_*() for details; replicated in order to avoid
215 	 * an extra few instructions that came with the abstraction.
216 	 * Notable, it allows us to only do the __count and tail update
217 	 * dance when its actually needed.
218 	 */
219 
220 	preempt_disable_notrace();
221 	data = this_cpu_read(cyc2ns.head);
222 	tail = this_cpu_read(cyc2ns.tail);
223 
224 	if (likely(data == tail)) {
225 		ns = data->cyc2ns_offset;
226 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
227 	} else {
228 		data->__count++;
229 
230 		barrier();
231 
232 		ns = data->cyc2ns_offset;
233 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
234 
235 		barrier();
236 
237 		if (!--data->__count)
238 			this_cpu_write(cyc2ns.tail, data);
239 	}
240 	preempt_enable_notrace();
241 
242 	return ns;
243 }
244 
245 static void set_cyc2ns_scale(unsigned long khz, int cpu)
246 {
247 	unsigned long long tsc_now, ns_now;
248 	struct cyc2ns_data *data;
249 	unsigned long flags;
250 
251 	local_irq_save(flags);
252 	sched_clock_idle_sleep_event();
253 
254 	if (!khz)
255 		goto done;
256 
257 	data = cyc2ns_write_begin(cpu);
258 
259 	tsc_now = rdtsc();
260 	ns_now = cycles_2_ns(tsc_now);
261 
262 	/*
263 	 * Compute a new multiplier as per the above comment and ensure our
264 	 * time function is continuous; see the comment near struct
265 	 * cyc2ns_data.
266 	 */
267 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
268 			       NSEC_PER_MSEC, 0);
269 
270 	/*
271 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
272 	 * not expected to be greater than 31 due to the original published
273 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
274 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
275 	 */
276 	if (data->cyc2ns_shift == 32) {
277 		data->cyc2ns_shift = 31;
278 		data->cyc2ns_mul >>= 1;
279 	}
280 
281 	data->cyc2ns_offset = ns_now -
282 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
283 
284 	cyc2ns_write_end(cpu, data);
285 
286 done:
287 	sched_clock_idle_wakeup_event(0);
288 	local_irq_restore(flags);
289 }
290 /*
291  * Scheduler clock - returns current time in nanosec units.
292  */
293 u64 native_sched_clock(void)
294 {
295 	if (static_branch_likely(&__use_tsc)) {
296 		u64 tsc_now = rdtsc();
297 
298 		/* return the value in ns */
299 		return cycles_2_ns(tsc_now);
300 	}
301 
302 	/*
303 	 * Fall back to jiffies if there's no TSC available:
304 	 * ( But note that we still use it if the TSC is marked
305 	 *   unstable. We do this because unlike Time Of Day,
306 	 *   the scheduler clock tolerates small errors and it's
307 	 *   very important for it to be as fast as the platform
308 	 *   can achieve it. )
309 	 */
310 
311 	/* No locking but a rare wrong value is not a big deal: */
312 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
313 }
314 
315 /*
316  * Generate a sched_clock if you already have a TSC value.
317  */
318 u64 native_sched_clock_from_tsc(u64 tsc)
319 {
320 	return cycles_2_ns(tsc);
321 }
322 
323 /* We need to define a real function for sched_clock, to override the
324    weak default version */
325 #ifdef CONFIG_PARAVIRT
326 unsigned long long sched_clock(void)
327 {
328 	return paravirt_sched_clock();
329 }
330 #else
331 unsigned long long
332 sched_clock(void) __attribute__((alias("native_sched_clock")));
333 #endif
334 
335 int check_tsc_unstable(void)
336 {
337 	return tsc_unstable;
338 }
339 EXPORT_SYMBOL_GPL(check_tsc_unstable);
340 
341 #ifdef CONFIG_X86_TSC
342 int __init notsc_setup(char *str)
343 {
344 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
345 	tsc_disabled = 1;
346 	return 1;
347 }
348 #else
349 /*
350  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
351  * in cpu/common.c
352  */
353 int __init notsc_setup(char *str)
354 {
355 	setup_clear_cpu_cap(X86_FEATURE_TSC);
356 	return 1;
357 }
358 #endif
359 
360 __setup("notsc", notsc_setup);
361 
362 static int no_sched_irq_time;
363 
364 static int __init tsc_setup(char *str)
365 {
366 	if (!strcmp(str, "reliable"))
367 		tsc_clocksource_reliable = 1;
368 	if (!strncmp(str, "noirqtime", 9))
369 		no_sched_irq_time = 1;
370 	return 1;
371 }
372 
373 __setup("tsc=", tsc_setup);
374 
375 #define MAX_RETRIES     5
376 #define SMI_TRESHOLD    50000
377 
378 /*
379  * Read TSC and the reference counters. Take care of SMI disturbance
380  */
381 static u64 tsc_read_refs(u64 *p, int hpet)
382 {
383 	u64 t1, t2;
384 	int i;
385 
386 	for (i = 0; i < MAX_RETRIES; i++) {
387 		t1 = get_cycles();
388 		if (hpet)
389 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
390 		else
391 			*p = acpi_pm_read_early();
392 		t2 = get_cycles();
393 		if ((t2 - t1) < SMI_TRESHOLD)
394 			return t2;
395 	}
396 	return ULLONG_MAX;
397 }
398 
399 /*
400  * Calculate the TSC frequency from HPET reference
401  */
402 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
403 {
404 	u64 tmp;
405 
406 	if (hpet2 < hpet1)
407 		hpet2 += 0x100000000ULL;
408 	hpet2 -= hpet1;
409 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
410 	do_div(tmp, 1000000);
411 	do_div(deltatsc, tmp);
412 
413 	return (unsigned long) deltatsc;
414 }
415 
416 /*
417  * Calculate the TSC frequency from PMTimer reference
418  */
419 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
420 {
421 	u64 tmp;
422 
423 	if (!pm1 && !pm2)
424 		return ULONG_MAX;
425 
426 	if (pm2 < pm1)
427 		pm2 += (u64)ACPI_PM_OVRRUN;
428 	pm2 -= pm1;
429 	tmp = pm2 * 1000000000LL;
430 	do_div(tmp, PMTMR_TICKS_PER_SEC);
431 	do_div(deltatsc, tmp);
432 
433 	return (unsigned long) deltatsc;
434 }
435 
436 #define CAL_MS		10
437 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
438 #define CAL_PIT_LOOPS	1000
439 
440 #define CAL2_MS		50
441 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
442 #define CAL2_PIT_LOOPS	5000
443 
444 
445 /*
446  * Try to calibrate the TSC against the Programmable
447  * Interrupt Timer and return the frequency of the TSC
448  * in kHz.
449  *
450  * Return ULONG_MAX on failure to calibrate.
451  */
452 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
453 {
454 	u64 tsc, t1, t2, delta;
455 	unsigned long tscmin, tscmax;
456 	int pitcnt;
457 
458 	/* Set the Gate high, disable speaker */
459 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
460 
461 	/*
462 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
463 	 * count mode), binary count. Set the latch register to 50ms
464 	 * (LSB then MSB) to begin countdown.
465 	 */
466 	outb(0xb0, 0x43);
467 	outb(latch & 0xff, 0x42);
468 	outb(latch >> 8, 0x42);
469 
470 	tsc = t1 = t2 = get_cycles();
471 
472 	pitcnt = 0;
473 	tscmax = 0;
474 	tscmin = ULONG_MAX;
475 	while ((inb(0x61) & 0x20) == 0) {
476 		t2 = get_cycles();
477 		delta = t2 - tsc;
478 		tsc = t2;
479 		if ((unsigned long) delta < tscmin)
480 			tscmin = (unsigned int) delta;
481 		if ((unsigned long) delta > tscmax)
482 			tscmax = (unsigned int) delta;
483 		pitcnt++;
484 	}
485 
486 	/*
487 	 * Sanity checks:
488 	 *
489 	 * If we were not able to read the PIT more than loopmin
490 	 * times, then we have been hit by a massive SMI
491 	 *
492 	 * If the maximum is 10 times larger than the minimum,
493 	 * then we got hit by an SMI as well.
494 	 */
495 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
496 		return ULONG_MAX;
497 
498 	/* Calculate the PIT value */
499 	delta = t2 - t1;
500 	do_div(delta, ms);
501 	return delta;
502 }
503 
504 /*
505  * This reads the current MSB of the PIT counter, and
506  * checks if we are running on sufficiently fast and
507  * non-virtualized hardware.
508  *
509  * Our expectations are:
510  *
511  *  - the PIT is running at roughly 1.19MHz
512  *
513  *  - each IO is going to take about 1us on real hardware,
514  *    but we allow it to be much faster (by a factor of 10) or
515  *    _slightly_ slower (ie we allow up to a 2us read+counter
516  *    update - anything else implies a unacceptably slow CPU
517  *    or PIT for the fast calibration to work.
518  *
519  *  - with 256 PIT ticks to read the value, we have 214us to
520  *    see the same MSB (and overhead like doing a single TSC
521  *    read per MSB value etc).
522  *
523  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
524  *    them each to take about a microsecond on real hardware.
525  *    So we expect a count value of around 100. But we'll be
526  *    generous, and accept anything over 50.
527  *
528  *  - if the PIT is stuck, and we see *many* more reads, we
529  *    return early (and the next caller of pit_expect_msb()
530  *    then consider it a failure when they don't see the
531  *    next expected value).
532  *
533  * These expectations mean that we know that we have seen the
534  * transition from one expected value to another with a fairly
535  * high accuracy, and we didn't miss any events. We can thus
536  * use the TSC value at the transitions to calculate a pretty
537  * good value for the TSC frequencty.
538  */
539 static inline int pit_verify_msb(unsigned char val)
540 {
541 	/* Ignore LSB */
542 	inb(0x42);
543 	return inb(0x42) == val;
544 }
545 
546 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
547 {
548 	int count;
549 	u64 tsc = 0, prev_tsc = 0;
550 
551 	for (count = 0; count < 50000; count++) {
552 		if (!pit_verify_msb(val))
553 			break;
554 		prev_tsc = tsc;
555 		tsc = get_cycles();
556 	}
557 	*deltap = get_cycles() - prev_tsc;
558 	*tscp = tsc;
559 
560 	/*
561 	 * We require _some_ success, but the quality control
562 	 * will be based on the error terms on the TSC values.
563 	 */
564 	return count > 5;
565 }
566 
567 /*
568  * How many MSB values do we want to see? We aim for
569  * a maximum error rate of 500ppm (in practice the
570  * real error is much smaller), but refuse to spend
571  * more than 50ms on it.
572  */
573 #define MAX_QUICK_PIT_MS 50
574 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
575 
576 static unsigned long quick_pit_calibrate(void)
577 {
578 	int i;
579 	u64 tsc, delta;
580 	unsigned long d1, d2;
581 
582 	/* Set the Gate high, disable speaker */
583 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
584 
585 	/*
586 	 * Counter 2, mode 0 (one-shot), binary count
587 	 *
588 	 * NOTE! Mode 2 decrements by two (and then the
589 	 * output is flipped each time, giving the same
590 	 * final output frequency as a decrement-by-one),
591 	 * so mode 0 is much better when looking at the
592 	 * individual counts.
593 	 */
594 	outb(0xb0, 0x43);
595 
596 	/* Start at 0xffff */
597 	outb(0xff, 0x42);
598 	outb(0xff, 0x42);
599 
600 	/*
601 	 * The PIT starts counting at the next edge, so we
602 	 * need to delay for a microsecond. The easiest way
603 	 * to do that is to just read back the 16-bit counter
604 	 * once from the PIT.
605 	 */
606 	pit_verify_msb(0);
607 
608 	if (pit_expect_msb(0xff, &tsc, &d1)) {
609 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
610 			if (!pit_expect_msb(0xff-i, &delta, &d2))
611 				break;
612 
613 			delta -= tsc;
614 
615 			/*
616 			 * Extrapolate the error and fail fast if the error will
617 			 * never be below 500 ppm.
618 			 */
619 			if (i == 1 &&
620 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
621 				return 0;
622 
623 			/*
624 			 * Iterate until the error is less than 500 ppm
625 			 */
626 			if (d1+d2 >= delta >> 11)
627 				continue;
628 
629 			/*
630 			 * Check the PIT one more time to verify that
631 			 * all TSC reads were stable wrt the PIT.
632 			 *
633 			 * This also guarantees serialization of the
634 			 * last cycle read ('d2') in pit_expect_msb.
635 			 */
636 			if (!pit_verify_msb(0xfe - i))
637 				break;
638 			goto success;
639 		}
640 	}
641 	pr_info("Fast TSC calibration failed\n");
642 	return 0;
643 
644 success:
645 	/*
646 	 * Ok, if we get here, then we've seen the
647 	 * MSB of the PIT decrement 'i' times, and the
648 	 * error has shrunk to less than 500 ppm.
649 	 *
650 	 * As a result, we can depend on there not being
651 	 * any odd delays anywhere, and the TSC reads are
652 	 * reliable (within the error).
653 	 *
654 	 * kHz = ticks / time-in-seconds / 1000;
655 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
656 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
657 	 */
658 	delta *= PIT_TICK_RATE;
659 	do_div(delta, i*256*1000);
660 	pr_info("Fast TSC calibration using PIT\n");
661 	return delta;
662 }
663 
664 /**
665  * native_calibrate_tsc
666  * Determine TSC frequency via CPUID, else return 0.
667  */
668 unsigned long native_calibrate_tsc(void)
669 {
670 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
671 	unsigned int crystal_khz;
672 
673 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
674 		return 0;
675 
676 	if (boot_cpu_data.cpuid_level < 0x15)
677 		return 0;
678 
679 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
680 
681 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
682 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
683 
684 	if (ebx_numerator == 0 || eax_denominator == 0)
685 		return 0;
686 
687 	crystal_khz = ecx_hz / 1000;
688 
689 	if (crystal_khz == 0) {
690 		switch (boot_cpu_data.x86_model) {
691 		case INTEL_FAM6_SKYLAKE_MOBILE:
692 		case INTEL_FAM6_SKYLAKE_DESKTOP:
693 		case INTEL_FAM6_KABYLAKE_MOBILE:
694 		case INTEL_FAM6_KABYLAKE_DESKTOP:
695 			crystal_khz = 24000;	/* 24.0 MHz */
696 			break;
697 		case INTEL_FAM6_SKYLAKE_X:
698 		case INTEL_FAM6_ATOM_DENVERTON:
699 			crystal_khz = 25000;	/* 25.0 MHz */
700 			break;
701 		case INTEL_FAM6_ATOM_GOLDMONT:
702 			crystal_khz = 19200;	/* 19.2 MHz */
703 			break;
704 		}
705 	}
706 
707 	/*
708 	 * TSC frequency determined by CPUID is a "hardware reported"
709 	 * frequency and is the most accurate one so far we have. This
710 	 * is considered a known frequency.
711 	 */
712 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
713 
714 	/*
715 	 * For Atom SoCs TSC is the only reliable clocksource.
716 	 * Mark TSC reliable so no watchdog on it.
717 	 */
718 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
719 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
720 
721 	return crystal_khz * ebx_numerator / eax_denominator;
722 }
723 
724 static unsigned long cpu_khz_from_cpuid(void)
725 {
726 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
727 
728 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
729 		return 0;
730 
731 	if (boot_cpu_data.cpuid_level < 0x16)
732 		return 0;
733 
734 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
735 
736 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
737 
738 	return eax_base_mhz * 1000;
739 }
740 
741 /**
742  * native_calibrate_cpu - calibrate the cpu on boot
743  */
744 unsigned long native_calibrate_cpu(void)
745 {
746 	u64 tsc1, tsc2, delta, ref1, ref2;
747 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
748 	unsigned long flags, latch, ms, fast_calibrate;
749 	int hpet = is_hpet_enabled(), i, loopmin;
750 
751 	fast_calibrate = cpu_khz_from_cpuid();
752 	if (fast_calibrate)
753 		return fast_calibrate;
754 
755 	fast_calibrate = cpu_khz_from_msr();
756 	if (fast_calibrate)
757 		return fast_calibrate;
758 
759 	local_irq_save(flags);
760 	fast_calibrate = quick_pit_calibrate();
761 	local_irq_restore(flags);
762 	if (fast_calibrate)
763 		return fast_calibrate;
764 
765 	/*
766 	 * Run 5 calibration loops to get the lowest frequency value
767 	 * (the best estimate). We use two different calibration modes
768 	 * here:
769 	 *
770 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
771 	 * load a timeout of 50ms. We read the time right after we
772 	 * started the timer and wait until the PIT count down reaches
773 	 * zero. In each wait loop iteration we read the TSC and check
774 	 * the delta to the previous read. We keep track of the min
775 	 * and max values of that delta. The delta is mostly defined
776 	 * by the IO time of the PIT access, so we can detect when a
777 	 * SMI/SMM disturbance happened between the two reads. If the
778 	 * maximum time is significantly larger than the minimum time,
779 	 * then we discard the result and have another try.
780 	 *
781 	 * 2) Reference counter. If available we use the HPET or the
782 	 * PMTIMER as a reference to check the sanity of that value.
783 	 * We use separate TSC readouts and check inside of the
784 	 * reference read for a SMI/SMM disturbance. We dicard
785 	 * disturbed values here as well. We do that around the PIT
786 	 * calibration delay loop as we have to wait for a certain
787 	 * amount of time anyway.
788 	 */
789 
790 	/* Preset PIT loop values */
791 	latch = CAL_LATCH;
792 	ms = CAL_MS;
793 	loopmin = CAL_PIT_LOOPS;
794 
795 	for (i = 0; i < 3; i++) {
796 		unsigned long tsc_pit_khz;
797 
798 		/*
799 		 * Read the start value and the reference count of
800 		 * hpet/pmtimer when available. Then do the PIT
801 		 * calibration, which will take at least 50ms, and
802 		 * read the end value.
803 		 */
804 		local_irq_save(flags);
805 		tsc1 = tsc_read_refs(&ref1, hpet);
806 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
807 		tsc2 = tsc_read_refs(&ref2, hpet);
808 		local_irq_restore(flags);
809 
810 		/* Pick the lowest PIT TSC calibration so far */
811 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
812 
813 		/* hpet or pmtimer available ? */
814 		if (ref1 == ref2)
815 			continue;
816 
817 		/* Check, whether the sampling was disturbed by an SMI */
818 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
819 			continue;
820 
821 		tsc2 = (tsc2 - tsc1) * 1000000LL;
822 		if (hpet)
823 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
824 		else
825 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
826 
827 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
828 
829 		/* Check the reference deviation */
830 		delta = ((u64) tsc_pit_min) * 100;
831 		do_div(delta, tsc_ref_min);
832 
833 		/*
834 		 * If both calibration results are inside a 10% window
835 		 * then we can be sure, that the calibration
836 		 * succeeded. We break out of the loop right away. We
837 		 * use the reference value, as it is more precise.
838 		 */
839 		if (delta >= 90 && delta <= 110) {
840 			pr_info("PIT calibration matches %s. %d loops\n",
841 				hpet ? "HPET" : "PMTIMER", i + 1);
842 			return tsc_ref_min;
843 		}
844 
845 		/*
846 		 * Check whether PIT failed more than once. This
847 		 * happens in virtualized environments. We need to
848 		 * give the virtual PC a slightly longer timeframe for
849 		 * the HPET/PMTIMER to make the result precise.
850 		 */
851 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
852 			latch = CAL2_LATCH;
853 			ms = CAL2_MS;
854 			loopmin = CAL2_PIT_LOOPS;
855 		}
856 	}
857 
858 	/*
859 	 * Now check the results.
860 	 */
861 	if (tsc_pit_min == ULONG_MAX) {
862 		/* PIT gave no useful value */
863 		pr_warn("Unable to calibrate against PIT\n");
864 
865 		/* We don't have an alternative source, disable TSC */
866 		if (!hpet && !ref1 && !ref2) {
867 			pr_notice("No reference (HPET/PMTIMER) available\n");
868 			return 0;
869 		}
870 
871 		/* The alternative source failed as well, disable TSC */
872 		if (tsc_ref_min == ULONG_MAX) {
873 			pr_warn("HPET/PMTIMER calibration failed\n");
874 			return 0;
875 		}
876 
877 		/* Use the alternative source */
878 		pr_info("using %s reference calibration\n",
879 			hpet ? "HPET" : "PMTIMER");
880 
881 		return tsc_ref_min;
882 	}
883 
884 	/* We don't have an alternative source, use the PIT calibration value */
885 	if (!hpet && !ref1 && !ref2) {
886 		pr_info("Using PIT calibration value\n");
887 		return tsc_pit_min;
888 	}
889 
890 	/* The alternative source failed, use the PIT calibration value */
891 	if (tsc_ref_min == ULONG_MAX) {
892 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
893 		return tsc_pit_min;
894 	}
895 
896 	/*
897 	 * The calibration values differ too much. In doubt, we use
898 	 * the PIT value as we know that there are PMTIMERs around
899 	 * running at double speed. At least we let the user know:
900 	 */
901 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
902 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
903 	pr_info("Using PIT calibration value\n");
904 	return tsc_pit_min;
905 }
906 
907 int recalibrate_cpu_khz(void)
908 {
909 #ifndef CONFIG_SMP
910 	unsigned long cpu_khz_old = cpu_khz;
911 
912 	if (!boot_cpu_has(X86_FEATURE_TSC))
913 		return -ENODEV;
914 
915 	cpu_khz = x86_platform.calibrate_cpu();
916 	tsc_khz = x86_platform.calibrate_tsc();
917 	if (tsc_khz == 0)
918 		tsc_khz = cpu_khz;
919 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
920 		cpu_khz = tsc_khz;
921 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
922 						    cpu_khz_old, cpu_khz);
923 
924 	return 0;
925 #else
926 	return -ENODEV;
927 #endif
928 }
929 
930 EXPORT_SYMBOL(recalibrate_cpu_khz);
931 
932 
933 static unsigned long long cyc2ns_suspend;
934 
935 void tsc_save_sched_clock_state(void)
936 {
937 	if (!sched_clock_stable())
938 		return;
939 
940 	cyc2ns_suspend = sched_clock();
941 }
942 
943 /*
944  * Even on processors with invariant TSC, TSC gets reset in some the
945  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
946  * arbitrary value (still sync'd across cpu's) during resume from such sleep
947  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
948  * that sched_clock() continues from the point where it was left off during
949  * suspend.
950  */
951 void tsc_restore_sched_clock_state(void)
952 {
953 	unsigned long long offset;
954 	unsigned long flags;
955 	int cpu;
956 
957 	if (!sched_clock_stable())
958 		return;
959 
960 	local_irq_save(flags);
961 
962 	/*
963 	 * We're coming out of suspend, there's no concurrency yet; don't
964 	 * bother being nice about the RCU stuff, just write to both
965 	 * data fields.
966 	 */
967 
968 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
969 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
970 
971 	offset = cyc2ns_suspend - sched_clock();
972 
973 	for_each_possible_cpu(cpu) {
974 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
975 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
976 	}
977 
978 	local_irq_restore(flags);
979 }
980 
981 #ifdef CONFIG_CPU_FREQ
982 
983 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
984  * changes.
985  *
986  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
987  * not that important because current Opteron setups do not support
988  * scaling on SMP anyroads.
989  *
990  * Should fix up last_tsc too. Currently gettimeofday in the
991  * first tick after the change will be slightly wrong.
992  */
993 
994 static unsigned int  ref_freq;
995 static unsigned long loops_per_jiffy_ref;
996 static unsigned long tsc_khz_ref;
997 
998 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
999 				void *data)
1000 {
1001 	struct cpufreq_freqs *freq = data;
1002 	unsigned long *lpj;
1003 
1004 	lpj = &boot_cpu_data.loops_per_jiffy;
1005 #ifdef CONFIG_SMP
1006 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1007 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
1008 #endif
1009 
1010 	if (!ref_freq) {
1011 		ref_freq = freq->old;
1012 		loops_per_jiffy_ref = *lpj;
1013 		tsc_khz_ref = tsc_khz;
1014 	}
1015 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1016 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1017 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1018 
1019 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1020 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1021 			mark_tsc_unstable("cpufreq changes");
1022 
1023 		set_cyc2ns_scale(tsc_khz, freq->cpu);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static struct notifier_block time_cpufreq_notifier_block = {
1030 	.notifier_call  = time_cpufreq_notifier
1031 };
1032 
1033 static int __init cpufreq_register_tsc_scaling(void)
1034 {
1035 	if (!boot_cpu_has(X86_FEATURE_TSC))
1036 		return 0;
1037 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1038 		return 0;
1039 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1040 				CPUFREQ_TRANSITION_NOTIFIER);
1041 	return 0;
1042 }
1043 
1044 core_initcall(cpufreq_register_tsc_scaling);
1045 
1046 #endif /* CONFIG_CPU_FREQ */
1047 
1048 #define ART_CPUID_LEAF (0x15)
1049 #define ART_MIN_DENOMINATOR (1)
1050 
1051 
1052 /*
1053  * If ART is present detect the numerator:denominator to convert to TSC
1054  */
1055 static void detect_art(void)
1056 {
1057 	unsigned int unused[2];
1058 
1059 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1060 		return;
1061 
1062 	/* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1063 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1064 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1065 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1066 		return;
1067 
1068 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1069 	      &art_to_tsc_numerator, unused, unused+1);
1070 
1071 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1072 		return;
1073 
1074 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1075 
1076 	/* Make this sticky over multiple CPU init calls */
1077 	setup_force_cpu_cap(X86_FEATURE_ART);
1078 }
1079 
1080 
1081 /* clocksource code */
1082 
1083 static struct clocksource clocksource_tsc;
1084 
1085 static void tsc_resume(struct clocksource *cs)
1086 {
1087 	tsc_verify_tsc_adjust(true);
1088 }
1089 
1090 /*
1091  * We used to compare the TSC to the cycle_last value in the clocksource
1092  * structure to avoid a nasty time-warp. This can be observed in a
1093  * very small window right after one CPU updated cycle_last under
1094  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1095  * is smaller than the cycle_last reference value due to a TSC which
1096  * is slighty behind. This delta is nowhere else observable, but in
1097  * that case it results in a forward time jump in the range of hours
1098  * due to the unsigned delta calculation of the time keeping core
1099  * code, which is necessary to support wrapping clocksources like pm
1100  * timer.
1101  *
1102  * This sanity check is now done in the core timekeeping code.
1103  * checking the result of read_tsc() - cycle_last for being negative.
1104  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1105  */
1106 static u64 read_tsc(struct clocksource *cs)
1107 {
1108 	return (u64)rdtsc_ordered();
1109 }
1110 
1111 static void tsc_cs_mark_unstable(struct clocksource *cs)
1112 {
1113 	if (tsc_unstable)
1114 		return;
1115 	tsc_unstable = 1;
1116 	clear_sched_clock_stable();
1117 	disable_sched_clock_irqtime();
1118 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1119 }
1120 
1121 /*
1122  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1123  */
1124 static struct clocksource clocksource_tsc = {
1125 	.name                   = "tsc",
1126 	.rating                 = 300,
1127 	.read                   = read_tsc,
1128 	.mask                   = CLOCKSOURCE_MASK(64),
1129 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1130 				  CLOCK_SOURCE_MUST_VERIFY,
1131 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1132 	.resume			= tsc_resume,
1133 	.mark_unstable		= tsc_cs_mark_unstable,
1134 };
1135 
1136 void mark_tsc_unstable(char *reason)
1137 {
1138 	if (!tsc_unstable) {
1139 		tsc_unstable = 1;
1140 		clear_sched_clock_stable();
1141 		disable_sched_clock_irqtime();
1142 		pr_info("Marking TSC unstable due to %s\n", reason);
1143 		/* Change only the rating, when not registered */
1144 		if (clocksource_tsc.mult)
1145 			clocksource_mark_unstable(&clocksource_tsc);
1146 		else {
1147 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1148 			clocksource_tsc.rating = 0;
1149 		}
1150 	}
1151 }
1152 
1153 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1154 
1155 static void __init check_system_tsc_reliable(void)
1156 {
1157 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1158 	if (is_geode_lx()) {
1159 		/* RTSC counts during suspend */
1160 #define RTSC_SUSP 0x100
1161 		unsigned long res_low, res_high;
1162 
1163 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1164 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1165 		if (res_low & RTSC_SUSP)
1166 			tsc_clocksource_reliable = 1;
1167 	}
1168 #endif
1169 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1170 		tsc_clocksource_reliable = 1;
1171 }
1172 
1173 /*
1174  * Make an educated guess if the TSC is trustworthy and synchronized
1175  * over all CPUs.
1176  */
1177 int unsynchronized_tsc(void)
1178 {
1179 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1180 		return 1;
1181 
1182 #ifdef CONFIG_SMP
1183 	if (apic_is_clustered_box())
1184 		return 1;
1185 #endif
1186 
1187 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1188 		return 0;
1189 
1190 	if (tsc_clocksource_reliable)
1191 		return 0;
1192 	/*
1193 	 * Intel systems are normally all synchronized.
1194 	 * Exceptions must mark TSC as unstable:
1195 	 */
1196 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1197 		/* assume multi socket systems are not synchronized: */
1198 		if (num_possible_cpus() > 1)
1199 			return 1;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Convert ART to TSC given numerator/denominator found in detect_art()
1207  */
1208 struct system_counterval_t convert_art_to_tsc(u64 art)
1209 {
1210 	u64 tmp, res, rem;
1211 
1212 	rem = do_div(art, art_to_tsc_denominator);
1213 
1214 	res = art * art_to_tsc_numerator;
1215 	tmp = rem * art_to_tsc_numerator;
1216 
1217 	do_div(tmp, art_to_tsc_denominator);
1218 	res += tmp + art_to_tsc_offset;
1219 
1220 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1221 			.cycles = res};
1222 }
1223 EXPORT_SYMBOL(convert_art_to_tsc);
1224 
1225 static void tsc_refine_calibration_work(struct work_struct *work);
1226 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1227 /**
1228  * tsc_refine_calibration_work - Further refine tsc freq calibration
1229  * @work - ignored.
1230  *
1231  * This functions uses delayed work over a period of a
1232  * second to further refine the TSC freq value. Since this is
1233  * timer based, instead of loop based, we don't block the boot
1234  * process while this longer calibration is done.
1235  *
1236  * If there are any calibration anomalies (too many SMIs, etc),
1237  * or the refined calibration is off by 1% of the fast early
1238  * calibration, we throw out the new calibration and use the
1239  * early calibration.
1240  */
1241 static void tsc_refine_calibration_work(struct work_struct *work)
1242 {
1243 	static u64 tsc_start = -1, ref_start;
1244 	static int hpet;
1245 	u64 tsc_stop, ref_stop, delta;
1246 	unsigned long freq;
1247 
1248 	/* Don't bother refining TSC on unstable systems */
1249 	if (check_tsc_unstable())
1250 		goto out;
1251 
1252 	/*
1253 	 * Since the work is started early in boot, we may be
1254 	 * delayed the first time we expire. So set the workqueue
1255 	 * again once we know timers are working.
1256 	 */
1257 	if (tsc_start == -1) {
1258 		/*
1259 		 * Only set hpet once, to avoid mixing hardware
1260 		 * if the hpet becomes enabled later.
1261 		 */
1262 		hpet = is_hpet_enabled();
1263 		schedule_delayed_work(&tsc_irqwork, HZ);
1264 		tsc_start = tsc_read_refs(&ref_start, hpet);
1265 		return;
1266 	}
1267 
1268 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1269 
1270 	/* hpet or pmtimer available ? */
1271 	if (ref_start == ref_stop)
1272 		goto out;
1273 
1274 	/* Check, whether the sampling was disturbed by an SMI */
1275 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1276 		goto out;
1277 
1278 	delta = tsc_stop - tsc_start;
1279 	delta *= 1000000LL;
1280 	if (hpet)
1281 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1282 	else
1283 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1284 
1285 	/* Make sure we're within 1% */
1286 	if (abs(tsc_khz - freq) > tsc_khz/100)
1287 		goto out;
1288 
1289 	tsc_khz = freq;
1290 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1291 		(unsigned long)tsc_khz / 1000,
1292 		(unsigned long)tsc_khz % 1000);
1293 
1294 	/* Inform the TSC deadline clockevent devices about the recalibration */
1295 	lapic_update_tsc_freq();
1296 
1297 out:
1298 	if (boot_cpu_has(X86_FEATURE_ART))
1299 		art_related_clocksource = &clocksource_tsc;
1300 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1301 }
1302 
1303 
1304 static int __init init_tsc_clocksource(void)
1305 {
1306 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1307 		return 0;
1308 
1309 	if (tsc_clocksource_reliable)
1310 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1311 	/* lower the rating if we already know its unstable: */
1312 	if (check_tsc_unstable()) {
1313 		clocksource_tsc.rating = 0;
1314 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1315 	}
1316 
1317 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1318 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1319 
1320 	/*
1321 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1322 	 * the refined calibration and directly register it as a clocksource.
1323 	 */
1324 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1325 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1326 		return 0;
1327 	}
1328 
1329 	schedule_delayed_work(&tsc_irqwork, 0);
1330 	return 0;
1331 }
1332 /*
1333  * We use device_initcall here, to ensure we run after the hpet
1334  * is fully initialized, which may occur at fs_initcall time.
1335  */
1336 device_initcall(init_tsc_clocksource);
1337 
1338 void __init tsc_init(void)
1339 {
1340 	u64 lpj;
1341 	int cpu;
1342 
1343 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1344 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1345 		return;
1346 	}
1347 
1348 	cpu_khz = x86_platform.calibrate_cpu();
1349 	tsc_khz = x86_platform.calibrate_tsc();
1350 
1351 	/*
1352 	 * Trust non-zero tsc_khz as authorative,
1353 	 * and use it to sanity check cpu_khz,
1354 	 * which will be off if system timer is off.
1355 	 */
1356 	if (tsc_khz == 0)
1357 		tsc_khz = cpu_khz;
1358 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1359 		cpu_khz = tsc_khz;
1360 
1361 	if (!tsc_khz) {
1362 		mark_tsc_unstable("could not calculate TSC khz");
1363 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1364 		return;
1365 	}
1366 
1367 	pr_info("Detected %lu.%03lu MHz processor\n",
1368 		(unsigned long)cpu_khz / 1000,
1369 		(unsigned long)cpu_khz % 1000);
1370 
1371 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1372 	tsc_store_and_check_tsc_adjust(true);
1373 
1374 	/*
1375 	 * Secondary CPUs do not run through tsc_init(), so set up
1376 	 * all the scale factors for all CPUs, assuming the same
1377 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1378 	 * up if their speed diverges)
1379 	 */
1380 	for_each_possible_cpu(cpu) {
1381 		cyc2ns_init(cpu);
1382 		set_cyc2ns_scale(tsc_khz, cpu);
1383 	}
1384 
1385 	if (tsc_disabled > 0)
1386 		return;
1387 
1388 	/* now allow native_sched_clock() to use rdtsc */
1389 
1390 	tsc_disabled = 0;
1391 	static_branch_enable(&__use_tsc);
1392 
1393 	if (!no_sched_irq_time)
1394 		enable_sched_clock_irqtime();
1395 
1396 	lpj = ((u64)tsc_khz * 1000);
1397 	do_div(lpj, HZ);
1398 	lpj_fine = lpj;
1399 
1400 	use_tsc_delay();
1401 
1402 	if (unsynchronized_tsc())
1403 		mark_tsc_unstable("TSCs unsynchronized");
1404 
1405 	check_system_tsc_reliable();
1406 
1407 	detect_art();
1408 }
1409 
1410 #ifdef CONFIG_SMP
1411 /*
1412  * If we have a constant TSC and are using the TSC for the delay loop,
1413  * we can skip clock calibration if another cpu in the same socket has already
1414  * been calibrated. This assumes that CONSTANT_TSC applies to all
1415  * cpus in the socket - this should be a safe assumption.
1416  */
1417 unsigned long calibrate_delay_is_known(void)
1418 {
1419 	int sibling, cpu = smp_processor_id();
1420 	struct cpumask *mask = topology_core_cpumask(cpu);
1421 
1422 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1423 		return 0;
1424 
1425 	if (!mask)
1426 		return 0;
1427 
1428 	sibling = cpumask_any_but(mask, cpu);
1429 	if (sibling < nr_cpu_ids)
1430 		return cpu_data(sibling).loops_per_jiffy;
1431 	return 0;
1432 }
1433 #endif
1434