1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 #include <asm/geode.h> 25 26 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 27 EXPORT_SYMBOL(cpu_khz); 28 29 unsigned int __read_mostly tsc_khz; 30 EXPORT_SYMBOL(tsc_khz); 31 32 /* 33 * TSC can be unstable due to cpufreq or due to unsynced TSCs 34 */ 35 static int __read_mostly tsc_unstable; 36 37 /* native_sched_clock() is called before tsc_init(), so 38 we must start with the TSC soft disabled to prevent 39 erroneous rdtsc usage on !cpu_has_tsc processors */ 40 static int __read_mostly tsc_disabled = -1; 41 42 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 43 44 int tsc_clocksource_reliable; 45 46 /* 47 * Use a ring-buffer like data structure, where a writer advances the head by 48 * writing a new data entry and a reader advances the tail when it observes a 49 * new entry. 50 * 51 * Writers are made to wait on readers until there's space to write a new 52 * entry. 53 * 54 * This means that we can always use an {offset, mul} pair to compute a ns 55 * value that is 'roughly' in the right direction, even if we're writing a new 56 * {offset, mul} pair during the clock read. 57 * 58 * The down-side is that we can no longer guarantee strict monotonicity anymore 59 * (assuming the TSC was that to begin with), because while we compute the 60 * intersection point of the two clock slopes and make sure the time is 61 * continuous at the point of switching; we can no longer guarantee a reader is 62 * strictly before or after the switch point. 63 * 64 * It does mean a reader no longer needs to disable IRQs in order to avoid 65 * CPU-Freq updates messing with his times, and similarly an NMI reader will 66 * no longer run the risk of hitting half-written state. 67 */ 68 69 struct cyc2ns { 70 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 71 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 72 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 73 }; /* exactly fits one cacheline */ 74 75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 76 77 struct cyc2ns_data *cyc2ns_read_begin(void) 78 { 79 struct cyc2ns_data *head; 80 81 preempt_disable(); 82 83 head = this_cpu_read(cyc2ns.head); 84 /* 85 * Ensure we observe the entry when we observe the pointer to it. 86 * matches the wmb from cyc2ns_write_end(). 87 */ 88 smp_read_barrier_depends(); 89 head->__count++; 90 barrier(); 91 92 return head; 93 } 94 95 void cyc2ns_read_end(struct cyc2ns_data *head) 96 { 97 barrier(); 98 /* 99 * If we're the outer most nested read; update the tail pointer 100 * when we're done. This notifies possible pending writers 101 * that we've observed the head pointer and that the other 102 * entry is now free. 103 */ 104 if (!--head->__count) { 105 /* 106 * x86-TSO does not reorder writes with older reads; 107 * therefore once this write becomes visible to another 108 * cpu, we must be finished reading the cyc2ns_data. 109 * 110 * matches with cyc2ns_write_begin(). 111 */ 112 this_cpu_write(cyc2ns.tail, head); 113 } 114 preempt_enable(); 115 } 116 117 /* 118 * Begin writing a new @data entry for @cpu. 119 * 120 * Assumes some sort of write side lock; currently 'provided' by the assumption 121 * that cpufreq will call its notifiers sequentially. 122 */ 123 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 124 { 125 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 126 struct cyc2ns_data *data = c2n->data; 127 128 if (data == c2n->head) 129 data++; 130 131 /* XXX send an IPI to @cpu in order to guarantee a read? */ 132 133 /* 134 * When we observe the tail write from cyc2ns_read_end(), 135 * the cpu must be done with that entry and its safe 136 * to start writing to it. 137 */ 138 while (c2n->tail == data) 139 cpu_relax(); 140 141 return data; 142 } 143 144 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 145 { 146 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 147 148 /* 149 * Ensure the @data writes are visible before we publish the 150 * entry. Matches the data-depencency in cyc2ns_read_begin(). 151 */ 152 smp_wmb(); 153 154 ACCESS_ONCE(c2n->head) = data; 155 } 156 157 /* 158 * Accelerators for sched_clock() 159 * convert from cycles(64bits) => nanoseconds (64bits) 160 * basic equation: 161 * ns = cycles / (freq / ns_per_sec) 162 * ns = cycles * (ns_per_sec / freq) 163 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 164 * ns = cycles * (10^6 / cpu_khz) 165 * 166 * Then we use scaling math (suggested by george@mvista.com) to get: 167 * ns = cycles * (10^6 * SC / cpu_khz) / SC 168 * ns = cycles * cyc2ns_scale / SC 169 * 170 * And since SC is a constant power of two, we can convert the div 171 * into a shift. 172 * 173 * We can use khz divisor instead of mhz to keep a better precision, since 174 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 175 * (mathieu.desnoyers@polymtl.ca) 176 * 177 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 178 */ 179 180 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ 181 182 static void cyc2ns_data_init(struct cyc2ns_data *data) 183 { 184 data->cyc2ns_mul = 0; 185 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 186 data->cyc2ns_offset = 0; 187 data->__count = 0; 188 } 189 190 static void cyc2ns_init(int cpu) 191 { 192 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 193 194 cyc2ns_data_init(&c2n->data[0]); 195 cyc2ns_data_init(&c2n->data[1]); 196 197 c2n->head = c2n->data; 198 c2n->tail = c2n->data; 199 } 200 201 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 202 { 203 struct cyc2ns_data *data, *tail; 204 unsigned long long ns; 205 206 /* 207 * See cyc2ns_read_*() for details; replicated in order to avoid 208 * an extra few instructions that came with the abstraction. 209 * Notable, it allows us to only do the __count and tail update 210 * dance when its actually needed. 211 */ 212 213 preempt_disable_notrace(); 214 data = this_cpu_read(cyc2ns.head); 215 tail = this_cpu_read(cyc2ns.tail); 216 217 if (likely(data == tail)) { 218 ns = data->cyc2ns_offset; 219 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 220 } else { 221 data->__count++; 222 223 barrier(); 224 225 ns = data->cyc2ns_offset; 226 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 227 228 barrier(); 229 230 if (!--data->__count) 231 this_cpu_write(cyc2ns.tail, data); 232 } 233 preempt_enable_notrace(); 234 235 return ns; 236 } 237 238 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 239 { 240 unsigned long long tsc_now, ns_now; 241 struct cyc2ns_data *data; 242 unsigned long flags; 243 244 local_irq_save(flags); 245 sched_clock_idle_sleep_event(); 246 247 if (!cpu_khz) 248 goto done; 249 250 data = cyc2ns_write_begin(cpu); 251 252 tsc_now = rdtsc(); 253 ns_now = cycles_2_ns(tsc_now); 254 255 /* 256 * Compute a new multiplier as per the above comment and ensure our 257 * time function is continuous; see the comment near struct 258 * cyc2ns_data. 259 */ 260 data->cyc2ns_mul = 261 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, 262 cpu_khz); 263 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 264 data->cyc2ns_offset = ns_now - 265 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 266 267 cyc2ns_write_end(cpu, data); 268 269 done: 270 sched_clock_idle_wakeup_event(0); 271 local_irq_restore(flags); 272 } 273 /* 274 * Scheduler clock - returns current time in nanosec units. 275 */ 276 u64 native_sched_clock(void) 277 { 278 if (static_branch_likely(&__use_tsc)) { 279 u64 tsc_now = rdtsc(); 280 281 /* return the value in ns */ 282 return cycles_2_ns(tsc_now); 283 } 284 285 /* 286 * Fall back to jiffies if there's no TSC available: 287 * ( But note that we still use it if the TSC is marked 288 * unstable. We do this because unlike Time Of Day, 289 * the scheduler clock tolerates small errors and it's 290 * very important for it to be as fast as the platform 291 * can achieve it. ) 292 */ 293 294 /* No locking but a rare wrong value is not a big deal: */ 295 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 296 } 297 298 /* 299 * Generate a sched_clock if you already have a TSC value. 300 */ 301 u64 native_sched_clock_from_tsc(u64 tsc) 302 { 303 return cycles_2_ns(tsc); 304 } 305 306 /* We need to define a real function for sched_clock, to override the 307 weak default version */ 308 #ifdef CONFIG_PARAVIRT 309 unsigned long long sched_clock(void) 310 { 311 return paravirt_sched_clock(); 312 } 313 #else 314 unsigned long long 315 sched_clock(void) __attribute__((alias("native_sched_clock"))); 316 #endif 317 318 int check_tsc_unstable(void) 319 { 320 return tsc_unstable; 321 } 322 EXPORT_SYMBOL_GPL(check_tsc_unstable); 323 324 int check_tsc_disabled(void) 325 { 326 return tsc_disabled; 327 } 328 EXPORT_SYMBOL_GPL(check_tsc_disabled); 329 330 #ifdef CONFIG_X86_TSC 331 int __init notsc_setup(char *str) 332 { 333 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 334 tsc_disabled = 1; 335 return 1; 336 } 337 #else 338 /* 339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 340 * in cpu/common.c 341 */ 342 int __init notsc_setup(char *str) 343 { 344 setup_clear_cpu_cap(X86_FEATURE_TSC); 345 return 1; 346 } 347 #endif 348 349 __setup("notsc", notsc_setup); 350 351 static int no_sched_irq_time; 352 353 static int __init tsc_setup(char *str) 354 { 355 if (!strcmp(str, "reliable")) 356 tsc_clocksource_reliable = 1; 357 if (!strncmp(str, "noirqtime", 9)) 358 no_sched_irq_time = 1; 359 return 1; 360 } 361 362 __setup("tsc=", tsc_setup); 363 364 #define MAX_RETRIES 5 365 #define SMI_TRESHOLD 50000 366 367 /* 368 * Read TSC and the reference counters. Take care of SMI disturbance 369 */ 370 static u64 tsc_read_refs(u64 *p, int hpet) 371 { 372 u64 t1, t2; 373 int i; 374 375 for (i = 0; i < MAX_RETRIES; i++) { 376 t1 = get_cycles(); 377 if (hpet) 378 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 379 else 380 *p = acpi_pm_read_early(); 381 t2 = get_cycles(); 382 if ((t2 - t1) < SMI_TRESHOLD) 383 return t2; 384 } 385 return ULLONG_MAX; 386 } 387 388 /* 389 * Calculate the TSC frequency from HPET reference 390 */ 391 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 392 { 393 u64 tmp; 394 395 if (hpet2 < hpet1) 396 hpet2 += 0x100000000ULL; 397 hpet2 -= hpet1; 398 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 399 do_div(tmp, 1000000); 400 do_div(deltatsc, tmp); 401 402 return (unsigned long) deltatsc; 403 } 404 405 /* 406 * Calculate the TSC frequency from PMTimer reference 407 */ 408 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 409 { 410 u64 tmp; 411 412 if (!pm1 && !pm2) 413 return ULONG_MAX; 414 415 if (pm2 < pm1) 416 pm2 += (u64)ACPI_PM_OVRRUN; 417 pm2 -= pm1; 418 tmp = pm2 * 1000000000LL; 419 do_div(tmp, PMTMR_TICKS_PER_SEC); 420 do_div(deltatsc, tmp); 421 422 return (unsigned long) deltatsc; 423 } 424 425 #define CAL_MS 10 426 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 427 #define CAL_PIT_LOOPS 1000 428 429 #define CAL2_MS 50 430 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 431 #define CAL2_PIT_LOOPS 5000 432 433 434 /* 435 * Try to calibrate the TSC against the Programmable 436 * Interrupt Timer and return the frequency of the TSC 437 * in kHz. 438 * 439 * Return ULONG_MAX on failure to calibrate. 440 */ 441 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 442 { 443 u64 tsc, t1, t2, delta; 444 unsigned long tscmin, tscmax; 445 int pitcnt; 446 447 /* Set the Gate high, disable speaker */ 448 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 449 450 /* 451 * Setup CTC channel 2* for mode 0, (interrupt on terminal 452 * count mode), binary count. Set the latch register to 50ms 453 * (LSB then MSB) to begin countdown. 454 */ 455 outb(0xb0, 0x43); 456 outb(latch & 0xff, 0x42); 457 outb(latch >> 8, 0x42); 458 459 tsc = t1 = t2 = get_cycles(); 460 461 pitcnt = 0; 462 tscmax = 0; 463 tscmin = ULONG_MAX; 464 while ((inb(0x61) & 0x20) == 0) { 465 t2 = get_cycles(); 466 delta = t2 - tsc; 467 tsc = t2; 468 if ((unsigned long) delta < tscmin) 469 tscmin = (unsigned int) delta; 470 if ((unsigned long) delta > tscmax) 471 tscmax = (unsigned int) delta; 472 pitcnt++; 473 } 474 475 /* 476 * Sanity checks: 477 * 478 * If we were not able to read the PIT more than loopmin 479 * times, then we have been hit by a massive SMI 480 * 481 * If the maximum is 10 times larger than the minimum, 482 * then we got hit by an SMI as well. 483 */ 484 if (pitcnt < loopmin || tscmax > 10 * tscmin) 485 return ULONG_MAX; 486 487 /* Calculate the PIT value */ 488 delta = t2 - t1; 489 do_div(delta, ms); 490 return delta; 491 } 492 493 /* 494 * This reads the current MSB of the PIT counter, and 495 * checks if we are running on sufficiently fast and 496 * non-virtualized hardware. 497 * 498 * Our expectations are: 499 * 500 * - the PIT is running at roughly 1.19MHz 501 * 502 * - each IO is going to take about 1us on real hardware, 503 * but we allow it to be much faster (by a factor of 10) or 504 * _slightly_ slower (ie we allow up to a 2us read+counter 505 * update - anything else implies a unacceptably slow CPU 506 * or PIT for the fast calibration to work. 507 * 508 * - with 256 PIT ticks to read the value, we have 214us to 509 * see the same MSB (and overhead like doing a single TSC 510 * read per MSB value etc). 511 * 512 * - We're doing 2 reads per loop (LSB, MSB), and we expect 513 * them each to take about a microsecond on real hardware. 514 * So we expect a count value of around 100. But we'll be 515 * generous, and accept anything over 50. 516 * 517 * - if the PIT is stuck, and we see *many* more reads, we 518 * return early (and the next caller of pit_expect_msb() 519 * then consider it a failure when they don't see the 520 * next expected value). 521 * 522 * These expectations mean that we know that we have seen the 523 * transition from one expected value to another with a fairly 524 * high accuracy, and we didn't miss any events. We can thus 525 * use the TSC value at the transitions to calculate a pretty 526 * good value for the TSC frequencty. 527 */ 528 static inline int pit_verify_msb(unsigned char val) 529 { 530 /* Ignore LSB */ 531 inb(0x42); 532 return inb(0x42) == val; 533 } 534 535 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 536 { 537 int count; 538 u64 tsc = 0, prev_tsc = 0; 539 540 for (count = 0; count < 50000; count++) { 541 if (!pit_verify_msb(val)) 542 break; 543 prev_tsc = tsc; 544 tsc = get_cycles(); 545 } 546 *deltap = get_cycles() - prev_tsc; 547 *tscp = tsc; 548 549 /* 550 * We require _some_ success, but the quality control 551 * will be based on the error terms on the TSC values. 552 */ 553 return count > 5; 554 } 555 556 /* 557 * How many MSB values do we want to see? We aim for 558 * a maximum error rate of 500ppm (in practice the 559 * real error is much smaller), but refuse to spend 560 * more than 50ms on it. 561 */ 562 #define MAX_QUICK_PIT_MS 50 563 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 564 565 static unsigned long quick_pit_calibrate(void) 566 { 567 int i; 568 u64 tsc, delta; 569 unsigned long d1, d2; 570 571 /* Set the Gate high, disable speaker */ 572 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 573 574 /* 575 * Counter 2, mode 0 (one-shot), binary count 576 * 577 * NOTE! Mode 2 decrements by two (and then the 578 * output is flipped each time, giving the same 579 * final output frequency as a decrement-by-one), 580 * so mode 0 is much better when looking at the 581 * individual counts. 582 */ 583 outb(0xb0, 0x43); 584 585 /* Start at 0xffff */ 586 outb(0xff, 0x42); 587 outb(0xff, 0x42); 588 589 /* 590 * The PIT starts counting at the next edge, so we 591 * need to delay for a microsecond. The easiest way 592 * to do that is to just read back the 16-bit counter 593 * once from the PIT. 594 */ 595 pit_verify_msb(0); 596 597 if (pit_expect_msb(0xff, &tsc, &d1)) { 598 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 599 if (!pit_expect_msb(0xff-i, &delta, &d2)) 600 break; 601 602 delta -= tsc; 603 604 /* 605 * Extrapolate the error and fail fast if the error will 606 * never be below 500 ppm. 607 */ 608 if (i == 1 && 609 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 610 return 0; 611 612 /* 613 * Iterate until the error is less than 500 ppm 614 */ 615 if (d1+d2 >= delta >> 11) 616 continue; 617 618 /* 619 * Check the PIT one more time to verify that 620 * all TSC reads were stable wrt the PIT. 621 * 622 * This also guarantees serialization of the 623 * last cycle read ('d2') in pit_expect_msb. 624 */ 625 if (!pit_verify_msb(0xfe - i)) 626 break; 627 goto success; 628 } 629 } 630 pr_info("Fast TSC calibration failed\n"); 631 return 0; 632 633 success: 634 /* 635 * Ok, if we get here, then we've seen the 636 * MSB of the PIT decrement 'i' times, and the 637 * error has shrunk to less than 500 ppm. 638 * 639 * As a result, we can depend on there not being 640 * any odd delays anywhere, and the TSC reads are 641 * reliable (within the error). 642 * 643 * kHz = ticks / time-in-seconds / 1000; 644 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 645 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 646 */ 647 delta *= PIT_TICK_RATE; 648 do_div(delta, i*256*1000); 649 pr_info("Fast TSC calibration using PIT\n"); 650 return delta; 651 } 652 653 /** 654 * native_calibrate_tsc - calibrate the tsc on boot 655 */ 656 unsigned long native_calibrate_tsc(void) 657 { 658 u64 tsc1, tsc2, delta, ref1, ref2; 659 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 660 unsigned long flags, latch, ms, fast_calibrate; 661 int hpet = is_hpet_enabled(), i, loopmin; 662 663 /* Calibrate TSC using MSR for Intel Atom SoCs */ 664 local_irq_save(flags); 665 fast_calibrate = try_msr_calibrate_tsc(); 666 local_irq_restore(flags); 667 if (fast_calibrate) 668 return fast_calibrate; 669 670 local_irq_save(flags); 671 fast_calibrate = quick_pit_calibrate(); 672 local_irq_restore(flags); 673 if (fast_calibrate) 674 return fast_calibrate; 675 676 /* 677 * Run 5 calibration loops to get the lowest frequency value 678 * (the best estimate). We use two different calibration modes 679 * here: 680 * 681 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 682 * load a timeout of 50ms. We read the time right after we 683 * started the timer and wait until the PIT count down reaches 684 * zero. In each wait loop iteration we read the TSC and check 685 * the delta to the previous read. We keep track of the min 686 * and max values of that delta. The delta is mostly defined 687 * by the IO time of the PIT access, so we can detect when a 688 * SMI/SMM disturbance happened between the two reads. If the 689 * maximum time is significantly larger than the minimum time, 690 * then we discard the result and have another try. 691 * 692 * 2) Reference counter. If available we use the HPET or the 693 * PMTIMER as a reference to check the sanity of that value. 694 * We use separate TSC readouts and check inside of the 695 * reference read for a SMI/SMM disturbance. We dicard 696 * disturbed values here as well. We do that around the PIT 697 * calibration delay loop as we have to wait for a certain 698 * amount of time anyway. 699 */ 700 701 /* Preset PIT loop values */ 702 latch = CAL_LATCH; 703 ms = CAL_MS; 704 loopmin = CAL_PIT_LOOPS; 705 706 for (i = 0; i < 3; i++) { 707 unsigned long tsc_pit_khz; 708 709 /* 710 * Read the start value and the reference count of 711 * hpet/pmtimer when available. Then do the PIT 712 * calibration, which will take at least 50ms, and 713 * read the end value. 714 */ 715 local_irq_save(flags); 716 tsc1 = tsc_read_refs(&ref1, hpet); 717 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 718 tsc2 = tsc_read_refs(&ref2, hpet); 719 local_irq_restore(flags); 720 721 /* Pick the lowest PIT TSC calibration so far */ 722 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 723 724 /* hpet or pmtimer available ? */ 725 if (ref1 == ref2) 726 continue; 727 728 /* Check, whether the sampling was disturbed by an SMI */ 729 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 730 continue; 731 732 tsc2 = (tsc2 - tsc1) * 1000000LL; 733 if (hpet) 734 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 735 else 736 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 737 738 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 739 740 /* Check the reference deviation */ 741 delta = ((u64) tsc_pit_min) * 100; 742 do_div(delta, tsc_ref_min); 743 744 /* 745 * If both calibration results are inside a 10% window 746 * then we can be sure, that the calibration 747 * succeeded. We break out of the loop right away. We 748 * use the reference value, as it is more precise. 749 */ 750 if (delta >= 90 && delta <= 110) { 751 pr_info("PIT calibration matches %s. %d loops\n", 752 hpet ? "HPET" : "PMTIMER", i + 1); 753 return tsc_ref_min; 754 } 755 756 /* 757 * Check whether PIT failed more than once. This 758 * happens in virtualized environments. We need to 759 * give the virtual PC a slightly longer timeframe for 760 * the HPET/PMTIMER to make the result precise. 761 */ 762 if (i == 1 && tsc_pit_min == ULONG_MAX) { 763 latch = CAL2_LATCH; 764 ms = CAL2_MS; 765 loopmin = CAL2_PIT_LOOPS; 766 } 767 } 768 769 /* 770 * Now check the results. 771 */ 772 if (tsc_pit_min == ULONG_MAX) { 773 /* PIT gave no useful value */ 774 pr_warn("Unable to calibrate against PIT\n"); 775 776 /* We don't have an alternative source, disable TSC */ 777 if (!hpet && !ref1 && !ref2) { 778 pr_notice("No reference (HPET/PMTIMER) available\n"); 779 return 0; 780 } 781 782 /* The alternative source failed as well, disable TSC */ 783 if (tsc_ref_min == ULONG_MAX) { 784 pr_warn("HPET/PMTIMER calibration failed\n"); 785 return 0; 786 } 787 788 /* Use the alternative source */ 789 pr_info("using %s reference calibration\n", 790 hpet ? "HPET" : "PMTIMER"); 791 792 return tsc_ref_min; 793 } 794 795 /* We don't have an alternative source, use the PIT calibration value */ 796 if (!hpet && !ref1 && !ref2) { 797 pr_info("Using PIT calibration value\n"); 798 return tsc_pit_min; 799 } 800 801 /* The alternative source failed, use the PIT calibration value */ 802 if (tsc_ref_min == ULONG_MAX) { 803 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 804 return tsc_pit_min; 805 } 806 807 /* 808 * The calibration values differ too much. In doubt, we use 809 * the PIT value as we know that there are PMTIMERs around 810 * running at double speed. At least we let the user know: 811 */ 812 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 813 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 814 pr_info("Using PIT calibration value\n"); 815 return tsc_pit_min; 816 } 817 818 int recalibrate_cpu_khz(void) 819 { 820 #ifndef CONFIG_SMP 821 unsigned long cpu_khz_old = cpu_khz; 822 823 if (cpu_has_tsc) { 824 tsc_khz = x86_platform.calibrate_tsc(); 825 cpu_khz = tsc_khz; 826 cpu_data(0).loops_per_jiffy = 827 cpufreq_scale(cpu_data(0).loops_per_jiffy, 828 cpu_khz_old, cpu_khz); 829 return 0; 830 } else 831 return -ENODEV; 832 #else 833 return -ENODEV; 834 #endif 835 } 836 837 EXPORT_SYMBOL(recalibrate_cpu_khz); 838 839 840 static unsigned long long cyc2ns_suspend; 841 842 void tsc_save_sched_clock_state(void) 843 { 844 if (!sched_clock_stable()) 845 return; 846 847 cyc2ns_suspend = sched_clock(); 848 } 849 850 /* 851 * Even on processors with invariant TSC, TSC gets reset in some the 852 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 853 * arbitrary value (still sync'd across cpu's) during resume from such sleep 854 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 855 * that sched_clock() continues from the point where it was left off during 856 * suspend. 857 */ 858 void tsc_restore_sched_clock_state(void) 859 { 860 unsigned long long offset; 861 unsigned long flags; 862 int cpu; 863 864 if (!sched_clock_stable()) 865 return; 866 867 local_irq_save(flags); 868 869 /* 870 * We're comming out of suspend, there's no concurrency yet; don't 871 * bother being nice about the RCU stuff, just write to both 872 * data fields. 873 */ 874 875 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 876 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 877 878 offset = cyc2ns_suspend - sched_clock(); 879 880 for_each_possible_cpu(cpu) { 881 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 882 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 883 } 884 885 local_irq_restore(flags); 886 } 887 888 #ifdef CONFIG_CPU_FREQ 889 890 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 891 * changes. 892 * 893 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 894 * not that important because current Opteron setups do not support 895 * scaling on SMP anyroads. 896 * 897 * Should fix up last_tsc too. Currently gettimeofday in the 898 * first tick after the change will be slightly wrong. 899 */ 900 901 static unsigned int ref_freq; 902 static unsigned long loops_per_jiffy_ref; 903 static unsigned long tsc_khz_ref; 904 905 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 906 void *data) 907 { 908 struct cpufreq_freqs *freq = data; 909 unsigned long *lpj; 910 911 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 912 return 0; 913 914 lpj = &boot_cpu_data.loops_per_jiffy; 915 #ifdef CONFIG_SMP 916 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 917 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 918 #endif 919 920 if (!ref_freq) { 921 ref_freq = freq->old; 922 loops_per_jiffy_ref = *lpj; 923 tsc_khz_ref = tsc_khz; 924 } 925 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 926 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 927 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 928 929 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 930 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 931 mark_tsc_unstable("cpufreq changes"); 932 933 set_cyc2ns_scale(tsc_khz, freq->cpu); 934 } 935 936 return 0; 937 } 938 939 static struct notifier_block time_cpufreq_notifier_block = { 940 .notifier_call = time_cpufreq_notifier 941 }; 942 943 static int __init cpufreq_tsc(void) 944 { 945 if (!cpu_has_tsc) 946 return 0; 947 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 948 return 0; 949 cpufreq_register_notifier(&time_cpufreq_notifier_block, 950 CPUFREQ_TRANSITION_NOTIFIER); 951 return 0; 952 } 953 954 core_initcall(cpufreq_tsc); 955 956 #endif /* CONFIG_CPU_FREQ */ 957 958 /* clocksource code */ 959 960 static struct clocksource clocksource_tsc; 961 962 /* 963 * We used to compare the TSC to the cycle_last value in the clocksource 964 * structure to avoid a nasty time-warp. This can be observed in a 965 * very small window right after one CPU updated cycle_last under 966 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 967 * is smaller than the cycle_last reference value due to a TSC which 968 * is slighty behind. This delta is nowhere else observable, but in 969 * that case it results in a forward time jump in the range of hours 970 * due to the unsigned delta calculation of the time keeping core 971 * code, which is necessary to support wrapping clocksources like pm 972 * timer. 973 * 974 * This sanity check is now done in the core timekeeping code. 975 * checking the result of read_tsc() - cycle_last for being negative. 976 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 977 */ 978 static cycle_t read_tsc(struct clocksource *cs) 979 { 980 return (cycle_t)rdtsc_ordered(); 981 } 982 983 /* 984 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 985 */ 986 static struct clocksource clocksource_tsc = { 987 .name = "tsc", 988 .rating = 300, 989 .read = read_tsc, 990 .mask = CLOCKSOURCE_MASK(64), 991 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 992 CLOCK_SOURCE_MUST_VERIFY, 993 .archdata = { .vclock_mode = VCLOCK_TSC }, 994 }; 995 996 void mark_tsc_unstable(char *reason) 997 { 998 if (!tsc_unstable) { 999 tsc_unstable = 1; 1000 clear_sched_clock_stable(); 1001 disable_sched_clock_irqtime(); 1002 pr_info("Marking TSC unstable due to %s\n", reason); 1003 /* Change only the rating, when not registered */ 1004 if (clocksource_tsc.mult) 1005 clocksource_mark_unstable(&clocksource_tsc); 1006 else { 1007 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1008 clocksource_tsc.rating = 0; 1009 } 1010 } 1011 } 1012 1013 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1014 1015 static void __init check_system_tsc_reliable(void) 1016 { 1017 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1018 if (is_geode_lx()) { 1019 /* RTSC counts during suspend */ 1020 #define RTSC_SUSP 0x100 1021 unsigned long res_low, res_high; 1022 1023 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1024 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1025 if (res_low & RTSC_SUSP) 1026 tsc_clocksource_reliable = 1; 1027 } 1028 #endif 1029 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1030 tsc_clocksource_reliable = 1; 1031 } 1032 1033 /* 1034 * Make an educated guess if the TSC is trustworthy and synchronized 1035 * over all CPUs. 1036 */ 1037 int unsynchronized_tsc(void) 1038 { 1039 if (!cpu_has_tsc || tsc_unstable) 1040 return 1; 1041 1042 #ifdef CONFIG_SMP 1043 if (apic_is_clustered_box()) 1044 return 1; 1045 #endif 1046 1047 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1048 return 0; 1049 1050 if (tsc_clocksource_reliable) 1051 return 0; 1052 /* 1053 * Intel systems are normally all synchronized. 1054 * Exceptions must mark TSC as unstable: 1055 */ 1056 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1057 /* assume multi socket systems are not synchronized: */ 1058 if (num_possible_cpus() > 1) 1059 return 1; 1060 } 1061 1062 return 0; 1063 } 1064 1065 1066 static void tsc_refine_calibration_work(struct work_struct *work); 1067 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1068 /** 1069 * tsc_refine_calibration_work - Further refine tsc freq calibration 1070 * @work - ignored. 1071 * 1072 * This functions uses delayed work over a period of a 1073 * second to further refine the TSC freq value. Since this is 1074 * timer based, instead of loop based, we don't block the boot 1075 * process while this longer calibration is done. 1076 * 1077 * If there are any calibration anomalies (too many SMIs, etc), 1078 * or the refined calibration is off by 1% of the fast early 1079 * calibration, we throw out the new calibration and use the 1080 * early calibration. 1081 */ 1082 static void tsc_refine_calibration_work(struct work_struct *work) 1083 { 1084 static u64 tsc_start = -1, ref_start; 1085 static int hpet; 1086 u64 tsc_stop, ref_stop, delta; 1087 unsigned long freq; 1088 1089 /* Don't bother refining TSC on unstable systems */ 1090 if (check_tsc_unstable()) 1091 goto out; 1092 1093 /* 1094 * Since the work is started early in boot, we may be 1095 * delayed the first time we expire. So set the workqueue 1096 * again once we know timers are working. 1097 */ 1098 if (tsc_start == -1) { 1099 /* 1100 * Only set hpet once, to avoid mixing hardware 1101 * if the hpet becomes enabled later. 1102 */ 1103 hpet = is_hpet_enabled(); 1104 schedule_delayed_work(&tsc_irqwork, HZ); 1105 tsc_start = tsc_read_refs(&ref_start, hpet); 1106 return; 1107 } 1108 1109 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1110 1111 /* hpet or pmtimer available ? */ 1112 if (ref_start == ref_stop) 1113 goto out; 1114 1115 /* Check, whether the sampling was disturbed by an SMI */ 1116 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1117 goto out; 1118 1119 delta = tsc_stop - tsc_start; 1120 delta *= 1000000LL; 1121 if (hpet) 1122 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1123 else 1124 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1125 1126 /* Make sure we're within 1% */ 1127 if (abs(tsc_khz - freq) > tsc_khz/100) 1128 goto out; 1129 1130 tsc_khz = freq; 1131 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1132 (unsigned long)tsc_khz / 1000, 1133 (unsigned long)tsc_khz % 1000); 1134 1135 out: 1136 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1137 } 1138 1139 1140 static int __init init_tsc_clocksource(void) 1141 { 1142 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 1143 return 0; 1144 1145 if (tsc_clocksource_reliable) 1146 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1147 /* lower the rating if we already know its unstable: */ 1148 if (check_tsc_unstable()) { 1149 clocksource_tsc.rating = 0; 1150 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1151 } 1152 1153 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1154 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1155 1156 /* 1157 * Trust the results of the earlier calibration on systems 1158 * exporting a reliable TSC. 1159 */ 1160 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1161 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1162 return 0; 1163 } 1164 1165 schedule_delayed_work(&tsc_irqwork, 0); 1166 return 0; 1167 } 1168 /* 1169 * We use device_initcall here, to ensure we run after the hpet 1170 * is fully initialized, which may occur at fs_initcall time. 1171 */ 1172 device_initcall(init_tsc_clocksource); 1173 1174 void __init tsc_init(void) 1175 { 1176 u64 lpj; 1177 int cpu; 1178 1179 x86_init.timers.tsc_pre_init(); 1180 1181 if (!cpu_has_tsc) { 1182 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1183 return; 1184 } 1185 1186 tsc_khz = x86_platform.calibrate_tsc(); 1187 cpu_khz = tsc_khz; 1188 1189 if (!tsc_khz) { 1190 mark_tsc_unstable("could not calculate TSC khz"); 1191 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1192 return; 1193 } 1194 1195 pr_info("Detected %lu.%03lu MHz processor\n", 1196 (unsigned long)cpu_khz / 1000, 1197 (unsigned long)cpu_khz % 1000); 1198 1199 /* 1200 * Secondary CPUs do not run through tsc_init(), so set up 1201 * all the scale factors for all CPUs, assuming the same 1202 * speed as the bootup CPU. (cpufreq notifiers will fix this 1203 * up if their speed diverges) 1204 */ 1205 for_each_possible_cpu(cpu) { 1206 cyc2ns_init(cpu); 1207 set_cyc2ns_scale(cpu_khz, cpu); 1208 } 1209 1210 if (tsc_disabled > 0) 1211 return; 1212 1213 /* now allow native_sched_clock() to use rdtsc */ 1214 1215 tsc_disabled = 0; 1216 static_branch_enable(&__use_tsc); 1217 1218 if (!no_sched_irq_time) 1219 enable_sched_clock_irqtime(); 1220 1221 lpj = ((u64)tsc_khz * 1000); 1222 do_div(lpj, HZ); 1223 lpj_fine = lpj; 1224 1225 use_tsc_delay(); 1226 1227 if (unsynchronized_tsc()) 1228 mark_tsc_unstable("TSCs unsynchronized"); 1229 1230 check_system_tsc_reliable(); 1231 } 1232 1233 #ifdef CONFIG_SMP 1234 /* 1235 * If we have a constant TSC and are using the TSC for the delay loop, 1236 * we can skip clock calibration if another cpu in the same socket has already 1237 * been calibrated. This assumes that CONSTANT_TSC applies to all 1238 * cpus in the socket - this should be a safe assumption. 1239 */ 1240 unsigned long calibrate_delay_is_known(void) 1241 { 1242 int i, cpu = smp_processor_id(); 1243 1244 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1245 return 0; 1246 1247 for_each_online_cpu(i) 1248 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) 1249 return cpu_data(i).loops_per_jiffy; 1250 return 0; 1251 } 1252 #endif 1253