xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 95e9fd10)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 
15 #include <asm/hpet.h>
16 #include <asm/timer.h>
17 #include <asm/vgtod.h>
18 #include <asm/time.h>
19 #include <asm/delay.h>
20 #include <asm/hypervisor.h>
21 #include <asm/nmi.h>
22 #include <asm/x86_init.h>
23 
24 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
25 EXPORT_SYMBOL(cpu_khz);
26 
27 unsigned int __read_mostly tsc_khz;
28 EXPORT_SYMBOL(tsc_khz);
29 
30 /*
31  * TSC can be unstable due to cpufreq or due to unsynced TSCs
32  */
33 static int __read_mostly tsc_unstable;
34 
35 /* native_sched_clock() is called before tsc_init(), so
36    we must start with the TSC soft disabled to prevent
37    erroneous rdtsc usage on !cpu_has_tsc processors */
38 static int __read_mostly tsc_disabled = -1;
39 
40 int tsc_clocksource_reliable;
41 /*
42  * Scheduler clock - returns current time in nanosec units.
43  */
44 u64 native_sched_clock(void)
45 {
46 	u64 this_offset;
47 
48 	/*
49 	 * Fall back to jiffies if there's no TSC available:
50 	 * ( But note that we still use it if the TSC is marked
51 	 *   unstable. We do this because unlike Time Of Day,
52 	 *   the scheduler clock tolerates small errors and it's
53 	 *   very important for it to be as fast as the platform
54 	 *   can achieve it. )
55 	 */
56 	if (unlikely(tsc_disabled)) {
57 		/* No locking but a rare wrong value is not a big deal: */
58 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
59 	}
60 
61 	/* read the Time Stamp Counter: */
62 	rdtscll(this_offset);
63 
64 	/* return the value in ns */
65 	return __cycles_2_ns(this_offset);
66 }
67 
68 /* We need to define a real function for sched_clock, to override the
69    weak default version */
70 #ifdef CONFIG_PARAVIRT
71 unsigned long long sched_clock(void)
72 {
73 	return paravirt_sched_clock();
74 }
75 #else
76 unsigned long long
77 sched_clock(void) __attribute__((alias("native_sched_clock")));
78 #endif
79 
80 int check_tsc_unstable(void)
81 {
82 	return tsc_unstable;
83 }
84 EXPORT_SYMBOL_GPL(check_tsc_unstable);
85 
86 #ifdef CONFIG_X86_TSC
87 int __init notsc_setup(char *str)
88 {
89 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
90 	tsc_disabled = 1;
91 	return 1;
92 }
93 #else
94 /*
95  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
96  * in cpu/common.c
97  */
98 int __init notsc_setup(char *str)
99 {
100 	setup_clear_cpu_cap(X86_FEATURE_TSC);
101 	return 1;
102 }
103 #endif
104 
105 __setup("notsc", notsc_setup);
106 
107 static int no_sched_irq_time;
108 
109 static int __init tsc_setup(char *str)
110 {
111 	if (!strcmp(str, "reliable"))
112 		tsc_clocksource_reliable = 1;
113 	if (!strncmp(str, "noirqtime", 9))
114 		no_sched_irq_time = 1;
115 	return 1;
116 }
117 
118 __setup("tsc=", tsc_setup);
119 
120 #define MAX_RETRIES     5
121 #define SMI_TRESHOLD    50000
122 
123 /*
124  * Read TSC and the reference counters. Take care of SMI disturbance
125  */
126 static u64 tsc_read_refs(u64 *p, int hpet)
127 {
128 	u64 t1, t2;
129 	int i;
130 
131 	for (i = 0; i < MAX_RETRIES; i++) {
132 		t1 = get_cycles();
133 		if (hpet)
134 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
135 		else
136 			*p = acpi_pm_read_early();
137 		t2 = get_cycles();
138 		if ((t2 - t1) < SMI_TRESHOLD)
139 			return t2;
140 	}
141 	return ULLONG_MAX;
142 }
143 
144 /*
145  * Calculate the TSC frequency from HPET reference
146  */
147 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
148 {
149 	u64 tmp;
150 
151 	if (hpet2 < hpet1)
152 		hpet2 += 0x100000000ULL;
153 	hpet2 -= hpet1;
154 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
155 	do_div(tmp, 1000000);
156 	do_div(deltatsc, tmp);
157 
158 	return (unsigned long) deltatsc;
159 }
160 
161 /*
162  * Calculate the TSC frequency from PMTimer reference
163  */
164 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
165 {
166 	u64 tmp;
167 
168 	if (!pm1 && !pm2)
169 		return ULONG_MAX;
170 
171 	if (pm2 < pm1)
172 		pm2 += (u64)ACPI_PM_OVRRUN;
173 	pm2 -= pm1;
174 	tmp = pm2 * 1000000000LL;
175 	do_div(tmp, PMTMR_TICKS_PER_SEC);
176 	do_div(deltatsc, tmp);
177 
178 	return (unsigned long) deltatsc;
179 }
180 
181 #define CAL_MS		10
182 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
183 #define CAL_PIT_LOOPS	1000
184 
185 #define CAL2_MS		50
186 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
187 #define CAL2_PIT_LOOPS	5000
188 
189 
190 /*
191  * Try to calibrate the TSC against the Programmable
192  * Interrupt Timer and return the frequency of the TSC
193  * in kHz.
194  *
195  * Return ULONG_MAX on failure to calibrate.
196  */
197 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
198 {
199 	u64 tsc, t1, t2, delta;
200 	unsigned long tscmin, tscmax;
201 	int pitcnt;
202 
203 	/* Set the Gate high, disable speaker */
204 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
205 
206 	/*
207 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
208 	 * count mode), binary count. Set the latch register to 50ms
209 	 * (LSB then MSB) to begin countdown.
210 	 */
211 	outb(0xb0, 0x43);
212 	outb(latch & 0xff, 0x42);
213 	outb(latch >> 8, 0x42);
214 
215 	tsc = t1 = t2 = get_cycles();
216 
217 	pitcnt = 0;
218 	tscmax = 0;
219 	tscmin = ULONG_MAX;
220 	while ((inb(0x61) & 0x20) == 0) {
221 		t2 = get_cycles();
222 		delta = t2 - tsc;
223 		tsc = t2;
224 		if ((unsigned long) delta < tscmin)
225 			tscmin = (unsigned int) delta;
226 		if ((unsigned long) delta > tscmax)
227 			tscmax = (unsigned int) delta;
228 		pitcnt++;
229 	}
230 
231 	/*
232 	 * Sanity checks:
233 	 *
234 	 * If we were not able to read the PIT more than loopmin
235 	 * times, then we have been hit by a massive SMI
236 	 *
237 	 * If the maximum is 10 times larger than the minimum,
238 	 * then we got hit by an SMI as well.
239 	 */
240 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
241 		return ULONG_MAX;
242 
243 	/* Calculate the PIT value */
244 	delta = t2 - t1;
245 	do_div(delta, ms);
246 	return delta;
247 }
248 
249 /*
250  * This reads the current MSB of the PIT counter, and
251  * checks if we are running on sufficiently fast and
252  * non-virtualized hardware.
253  *
254  * Our expectations are:
255  *
256  *  - the PIT is running at roughly 1.19MHz
257  *
258  *  - each IO is going to take about 1us on real hardware,
259  *    but we allow it to be much faster (by a factor of 10) or
260  *    _slightly_ slower (ie we allow up to a 2us read+counter
261  *    update - anything else implies a unacceptably slow CPU
262  *    or PIT for the fast calibration to work.
263  *
264  *  - with 256 PIT ticks to read the value, we have 214us to
265  *    see the same MSB (and overhead like doing a single TSC
266  *    read per MSB value etc).
267  *
268  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
269  *    them each to take about a microsecond on real hardware.
270  *    So we expect a count value of around 100. But we'll be
271  *    generous, and accept anything over 50.
272  *
273  *  - if the PIT is stuck, and we see *many* more reads, we
274  *    return early (and the next caller of pit_expect_msb()
275  *    then consider it a failure when they don't see the
276  *    next expected value).
277  *
278  * These expectations mean that we know that we have seen the
279  * transition from one expected value to another with a fairly
280  * high accuracy, and we didn't miss any events. We can thus
281  * use the TSC value at the transitions to calculate a pretty
282  * good value for the TSC frequencty.
283  */
284 static inline int pit_verify_msb(unsigned char val)
285 {
286 	/* Ignore LSB */
287 	inb(0x42);
288 	return inb(0x42) == val;
289 }
290 
291 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
292 {
293 	int count;
294 	u64 tsc = 0, prev_tsc = 0;
295 
296 	for (count = 0; count < 50000; count++) {
297 		if (!pit_verify_msb(val))
298 			break;
299 		prev_tsc = tsc;
300 		tsc = get_cycles();
301 	}
302 	*deltap = get_cycles() - prev_tsc;
303 	*tscp = tsc;
304 
305 	/*
306 	 * We require _some_ success, but the quality control
307 	 * will be based on the error terms on the TSC values.
308 	 */
309 	return count > 5;
310 }
311 
312 /*
313  * How many MSB values do we want to see? We aim for
314  * a maximum error rate of 500ppm (in practice the
315  * real error is much smaller), but refuse to spend
316  * more than 50ms on it.
317  */
318 #define MAX_QUICK_PIT_MS 50
319 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
320 
321 static unsigned long quick_pit_calibrate(void)
322 {
323 	int i;
324 	u64 tsc, delta;
325 	unsigned long d1, d2;
326 
327 	/* Set the Gate high, disable speaker */
328 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
329 
330 	/*
331 	 * Counter 2, mode 0 (one-shot), binary count
332 	 *
333 	 * NOTE! Mode 2 decrements by two (and then the
334 	 * output is flipped each time, giving the same
335 	 * final output frequency as a decrement-by-one),
336 	 * so mode 0 is much better when looking at the
337 	 * individual counts.
338 	 */
339 	outb(0xb0, 0x43);
340 
341 	/* Start at 0xffff */
342 	outb(0xff, 0x42);
343 	outb(0xff, 0x42);
344 
345 	/*
346 	 * The PIT starts counting at the next edge, so we
347 	 * need to delay for a microsecond. The easiest way
348 	 * to do that is to just read back the 16-bit counter
349 	 * once from the PIT.
350 	 */
351 	pit_verify_msb(0);
352 
353 	if (pit_expect_msb(0xff, &tsc, &d1)) {
354 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
355 			if (!pit_expect_msb(0xff-i, &delta, &d2))
356 				break;
357 
358 			/*
359 			 * Iterate until the error is less than 500 ppm
360 			 */
361 			delta -= tsc;
362 			if (d1+d2 >= delta >> 11)
363 				continue;
364 
365 			/*
366 			 * Check the PIT one more time to verify that
367 			 * all TSC reads were stable wrt the PIT.
368 			 *
369 			 * This also guarantees serialization of the
370 			 * last cycle read ('d2') in pit_expect_msb.
371 			 */
372 			if (!pit_verify_msb(0xfe - i))
373 				break;
374 			goto success;
375 		}
376 	}
377 	pr_err("Fast TSC calibration failed\n");
378 	return 0;
379 
380 success:
381 	/*
382 	 * Ok, if we get here, then we've seen the
383 	 * MSB of the PIT decrement 'i' times, and the
384 	 * error has shrunk to less than 500 ppm.
385 	 *
386 	 * As a result, we can depend on there not being
387 	 * any odd delays anywhere, and the TSC reads are
388 	 * reliable (within the error).
389 	 *
390 	 * kHz = ticks / time-in-seconds / 1000;
391 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
392 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
393 	 */
394 	delta *= PIT_TICK_RATE;
395 	do_div(delta, i*256*1000);
396 	pr_info("Fast TSC calibration using PIT\n");
397 	return delta;
398 }
399 
400 /**
401  * native_calibrate_tsc - calibrate the tsc on boot
402  */
403 unsigned long native_calibrate_tsc(void)
404 {
405 	u64 tsc1, tsc2, delta, ref1, ref2;
406 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
407 	unsigned long flags, latch, ms, fast_calibrate;
408 	int hpet = is_hpet_enabled(), i, loopmin;
409 
410 	local_irq_save(flags);
411 	fast_calibrate = quick_pit_calibrate();
412 	local_irq_restore(flags);
413 	if (fast_calibrate)
414 		return fast_calibrate;
415 
416 	/*
417 	 * Run 5 calibration loops to get the lowest frequency value
418 	 * (the best estimate). We use two different calibration modes
419 	 * here:
420 	 *
421 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
422 	 * load a timeout of 50ms. We read the time right after we
423 	 * started the timer and wait until the PIT count down reaches
424 	 * zero. In each wait loop iteration we read the TSC and check
425 	 * the delta to the previous read. We keep track of the min
426 	 * and max values of that delta. The delta is mostly defined
427 	 * by the IO time of the PIT access, so we can detect when a
428 	 * SMI/SMM disturbance happened between the two reads. If the
429 	 * maximum time is significantly larger than the minimum time,
430 	 * then we discard the result and have another try.
431 	 *
432 	 * 2) Reference counter. If available we use the HPET or the
433 	 * PMTIMER as a reference to check the sanity of that value.
434 	 * We use separate TSC readouts and check inside of the
435 	 * reference read for a SMI/SMM disturbance. We dicard
436 	 * disturbed values here as well. We do that around the PIT
437 	 * calibration delay loop as we have to wait for a certain
438 	 * amount of time anyway.
439 	 */
440 
441 	/* Preset PIT loop values */
442 	latch = CAL_LATCH;
443 	ms = CAL_MS;
444 	loopmin = CAL_PIT_LOOPS;
445 
446 	for (i = 0; i < 3; i++) {
447 		unsigned long tsc_pit_khz;
448 
449 		/*
450 		 * Read the start value and the reference count of
451 		 * hpet/pmtimer when available. Then do the PIT
452 		 * calibration, which will take at least 50ms, and
453 		 * read the end value.
454 		 */
455 		local_irq_save(flags);
456 		tsc1 = tsc_read_refs(&ref1, hpet);
457 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
458 		tsc2 = tsc_read_refs(&ref2, hpet);
459 		local_irq_restore(flags);
460 
461 		/* Pick the lowest PIT TSC calibration so far */
462 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
463 
464 		/* hpet or pmtimer available ? */
465 		if (ref1 == ref2)
466 			continue;
467 
468 		/* Check, whether the sampling was disturbed by an SMI */
469 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
470 			continue;
471 
472 		tsc2 = (tsc2 - tsc1) * 1000000LL;
473 		if (hpet)
474 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
475 		else
476 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
477 
478 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
479 
480 		/* Check the reference deviation */
481 		delta = ((u64) tsc_pit_min) * 100;
482 		do_div(delta, tsc_ref_min);
483 
484 		/*
485 		 * If both calibration results are inside a 10% window
486 		 * then we can be sure, that the calibration
487 		 * succeeded. We break out of the loop right away. We
488 		 * use the reference value, as it is more precise.
489 		 */
490 		if (delta >= 90 && delta <= 110) {
491 			pr_info("PIT calibration matches %s. %d loops\n",
492 				hpet ? "HPET" : "PMTIMER", i + 1);
493 			return tsc_ref_min;
494 		}
495 
496 		/*
497 		 * Check whether PIT failed more than once. This
498 		 * happens in virtualized environments. We need to
499 		 * give the virtual PC a slightly longer timeframe for
500 		 * the HPET/PMTIMER to make the result precise.
501 		 */
502 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
503 			latch = CAL2_LATCH;
504 			ms = CAL2_MS;
505 			loopmin = CAL2_PIT_LOOPS;
506 		}
507 	}
508 
509 	/*
510 	 * Now check the results.
511 	 */
512 	if (tsc_pit_min == ULONG_MAX) {
513 		/* PIT gave no useful value */
514 		pr_warn("Unable to calibrate against PIT\n");
515 
516 		/* We don't have an alternative source, disable TSC */
517 		if (!hpet && !ref1 && !ref2) {
518 			pr_notice("No reference (HPET/PMTIMER) available\n");
519 			return 0;
520 		}
521 
522 		/* The alternative source failed as well, disable TSC */
523 		if (tsc_ref_min == ULONG_MAX) {
524 			pr_warn("HPET/PMTIMER calibration failed\n");
525 			return 0;
526 		}
527 
528 		/* Use the alternative source */
529 		pr_info("using %s reference calibration\n",
530 			hpet ? "HPET" : "PMTIMER");
531 
532 		return tsc_ref_min;
533 	}
534 
535 	/* We don't have an alternative source, use the PIT calibration value */
536 	if (!hpet && !ref1 && !ref2) {
537 		pr_info("Using PIT calibration value\n");
538 		return tsc_pit_min;
539 	}
540 
541 	/* The alternative source failed, use the PIT calibration value */
542 	if (tsc_ref_min == ULONG_MAX) {
543 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
544 		return tsc_pit_min;
545 	}
546 
547 	/*
548 	 * The calibration values differ too much. In doubt, we use
549 	 * the PIT value as we know that there are PMTIMERs around
550 	 * running at double speed. At least we let the user know:
551 	 */
552 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
553 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
554 	pr_info("Using PIT calibration value\n");
555 	return tsc_pit_min;
556 }
557 
558 int recalibrate_cpu_khz(void)
559 {
560 #ifndef CONFIG_SMP
561 	unsigned long cpu_khz_old = cpu_khz;
562 
563 	if (cpu_has_tsc) {
564 		tsc_khz = x86_platform.calibrate_tsc();
565 		cpu_khz = tsc_khz;
566 		cpu_data(0).loops_per_jiffy =
567 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
568 					cpu_khz_old, cpu_khz);
569 		return 0;
570 	} else
571 		return -ENODEV;
572 #else
573 	return -ENODEV;
574 #endif
575 }
576 
577 EXPORT_SYMBOL(recalibrate_cpu_khz);
578 
579 
580 /* Accelerators for sched_clock()
581  * convert from cycles(64bits) => nanoseconds (64bits)
582  *  basic equation:
583  *              ns = cycles / (freq / ns_per_sec)
584  *              ns = cycles * (ns_per_sec / freq)
585  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
586  *              ns = cycles * (10^6 / cpu_khz)
587  *
588  *      Then we use scaling math (suggested by george@mvista.com) to get:
589  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
590  *              ns = cycles * cyc2ns_scale / SC
591  *
592  *      And since SC is a constant power of two, we can convert the div
593  *  into a shift.
594  *
595  *  We can use khz divisor instead of mhz to keep a better precision, since
596  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
597  *  (mathieu.desnoyers@polymtl.ca)
598  *
599  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
600  */
601 
602 DEFINE_PER_CPU(unsigned long, cyc2ns);
603 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
604 
605 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
606 {
607 	unsigned long long tsc_now, ns_now, *offset;
608 	unsigned long flags, *scale;
609 
610 	local_irq_save(flags);
611 	sched_clock_idle_sleep_event();
612 
613 	scale = &per_cpu(cyc2ns, cpu);
614 	offset = &per_cpu(cyc2ns_offset, cpu);
615 
616 	rdtscll(tsc_now);
617 	ns_now = __cycles_2_ns(tsc_now);
618 
619 	if (cpu_khz) {
620 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
621 		*offset = ns_now - mult_frac(tsc_now, *scale,
622 					     (1UL << CYC2NS_SCALE_FACTOR));
623 	}
624 
625 	sched_clock_idle_wakeup_event(0);
626 	local_irq_restore(flags);
627 }
628 
629 static unsigned long long cyc2ns_suspend;
630 
631 void tsc_save_sched_clock_state(void)
632 {
633 	if (!sched_clock_stable)
634 		return;
635 
636 	cyc2ns_suspend = sched_clock();
637 }
638 
639 /*
640  * Even on processors with invariant TSC, TSC gets reset in some the
641  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
642  * arbitrary value (still sync'd across cpu's) during resume from such sleep
643  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
644  * that sched_clock() continues from the point where it was left off during
645  * suspend.
646  */
647 void tsc_restore_sched_clock_state(void)
648 {
649 	unsigned long long offset;
650 	unsigned long flags;
651 	int cpu;
652 
653 	if (!sched_clock_stable)
654 		return;
655 
656 	local_irq_save(flags);
657 
658 	__this_cpu_write(cyc2ns_offset, 0);
659 	offset = cyc2ns_suspend - sched_clock();
660 
661 	for_each_possible_cpu(cpu)
662 		per_cpu(cyc2ns_offset, cpu) = offset;
663 
664 	local_irq_restore(flags);
665 }
666 
667 #ifdef CONFIG_CPU_FREQ
668 
669 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
670  * changes.
671  *
672  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
673  * not that important because current Opteron setups do not support
674  * scaling on SMP anyroads.
675  *
676  * Should fix up last_tsc too. Currently gettimeofday in the
677  * first tick after the change will be slightly wrong.
678  */
679 
680 static unsigned int  ref_freq;
681 static unsigned long loops_per_jiffy_ref;
682 static unsigned long tsc_khz_ref;
683 
684 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
685 				void *data)
686 {
687 	struct cpufreq_freqs *freq = data;
688 	unsigned long *lpj;
689 
690 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
691 		return 0;
692 
693 	lpj = &boot_cpu_data.loops_per_jiffy;
694 #ifdef CONFIG_SMP
695 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
696 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
697 #endif
698 
699 	if (!ref_freq) {
700 		ref_freq = freq->old;
701 		loops_per_jiffy_ref = *lpj;
702 		tsc_khz_ref = tsc_khz;
703 	}
704 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
705 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
706 			(val == CPUFREQ_RESUMECHANGE)) {
707 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
708 
709 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
710 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
711 			mark_tsc_unstable("cpufreq changes");
712 	}
713 
714 	set_cyc2ns_scale(tsc_khz, freq->cpu);
715 
716 	return 0;
717 }
718 
719 static struct notifier_block time_cpufreq_notifier_block = {
720 	.notifier_call  = time_cpufreq_notifier
721 };
722 
723 static int __init cpufreq_tsc(void)
724 {
725 	if (!cpu_has_tsc)
726 		return 0;
727 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
728 		return 0;
729 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
730 				CPUFREQ_TRANSITION_NOTIFIER);
731 	return 0;
732 }
733 
734 core_initcall(cpufreq_tsc);
735 
736 #endif /* CONFIG_CPU_FREQ */
737 
738 /* clocksource code */
739 
740 static struct clocksource clocksource_tsc;
741 
742 /*
743  * We compare the TSC to the cycle_last value in the clocksource
744  * structure to avoid a nasty time-warp. This can be observed in a
745  * very small window right after one CPU updated cycle_last under
746  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
747  * is smaller than the cycle_last reference value due to a TSC which
748  * is slighty behind. This delta is nowhere else observable, but in
749  * that case it results in a forward time jump in the range of hours
750  * due to the unsigned delta calculation of the time keeping core
751  * code, which is necessary to support wrapping clocksources like pm
752  * timer.
753  */
754 static cycle_t read_tsc(struct clocksource *cs)
755 {
756 	cycle_t ret = (cycle_t)get_cycles();
757 
758 	return ret >= clocksource_tsc.cycle_last ?
759 		ret : clocksource_tsc.cycle_last;
760 }
761 
762 static void resume_tsc(struct clocksource *cs)
763 {
764 	clocksource_tsc.cycle_last = 0;
765 }
766 
767 static struct clocksource clocksource_tsc = {
768 	.name                   = "tsc",
769 	.rating                 = 300,
770 	.read                   = read_tsc,
771 	.resume			= resume_tsc,
772 	.mask                   = CLOCKSOURCE_MASK(64),
773 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
774 				  CLOCK_SOURCE_MUST_VERIFY,
775 #ifdef CONFIG_X86_64
776 	.archdata               = { .vclock_mode = VCLOCK_TSC },
777 #endif
778 };
779 
780 void mark_tsc_unstable(char *reason)
781 {
782 	if (!tsc_unstable) {
783 		tsc_unstable = 1;
784 		sched_clock_stable = 0;
785 		disable_sched_clock_irqtime();
786 		pr_info("Marking TSC unstable due to %s\n", reason);
787 		/* Change only the rating, when not registered */
788 		if (clocksource_tsc.mult)
789 			clocksource_mark_unstable(&clocksource_tsc);
790 		else {
791 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
792 			clocksource_tsc.rating = 0;
793 		}
794 	}
795 }
796 
797 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
798 
799 static void __init check_system_tsc_reliable(void)
800 {
801 #ifdef CONFIG_MGEODE_LX
802 	/* RTSC counts during suspend */
803 #define RTSC_SUSP 0x100
804 	unsigned long res_low, res_high;
805 
806 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
807 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
808 	if (res_low & RTSC_SUSP)
809 		tsc_clocksource_reliable = 1;
810 #endif
811 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
812 		tsc_clocksource_reliable = 1;
813 }
814 
815 /*
816  * Make an educated guess if the TSC is trustworthy and synchronized
817  * over all CPUs.
818  */
819 __cpuinit int unsynchronized_tsc(void)
820 {
821 	if (!cpu_has_tsc || tsc_unstable)
822 		return 1;
823 
824 #ifdef CONFIG_SMP
825 	if (apic_is_clustered_box())
826 		return 1;
827 #endif
828 
829 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
830 		return 0;
831 
832 	if (tsc_clocksource_reliable)
833 		return 0;
834 	/*
835 	 * Intel systems are normally all synchronized.
836 	 * Exceptions must mark TSC as unstable:
837 	 */
838 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
839 		/* assume multi socket systems are not synchronized: */
840 		if (num_possible_cpus() > 1)
841 			return 1;
842 	}
843 
844 	return 0;
845 }
846 
847 
848 static void tsc_refine_calibration_work(struct work_struct *work);
849 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
850 /**
851  * tsc_refine_calibration_work - Further refine tsc freq calibration
852  * @work - ignored.
853  *
854  * This functions uses delayed work over a period of a
855  * second to further refine the TSC freq value. Since this is
856  * timer based, instead of loop based, we don't block the boot
857  * process while this longer calibration is done.
858  *
859  * If there are any calibration anomalies (too many SMIs, etc),
860  * or the refined calibration is off by 1% of the fast early
861  * calibration, we throw out the new calibration and use the
862  * early calibration.
863  */
864 static void tsc_refine_calibration_work(struct work_struct *work)
865 {
866 	static u64 tsc_start = -1, ref_start;
867 	static int hpet;
868 	u64 tsc_stop, ref_stop, delta;
869 	unsigned long freq;
870 
871 	/* Don't bother refining TSC on unstable systems */
872 	if (check_tsc_unstable())
873 		goto out;
874 
875 	/*
876 	 * Since the work is started early in boot, we may be
877 	 * delayed the first time we expire. So set the workqueue
878 	 * again once we know timers are working.
879 	 */
880 	if (tsc_start == -1) {
881 		/*
882 		 * Only set hpet once, to avoid mixing hardware
883 		 * if the hpet becomes enabled later.
884 		 */
885 		hpet = is_hpet_enabled();
886 		schedule_delayed_work(&tsc_irqwork, HZ);
887 		tsc_start = tsc_read_refs(&ref_start, hpet);
888 		return;
889 	}
890 
891 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
892 
893 	/* hpet or pmtimer available ? */
894 	if (ref_start == ref_stop)
895 		goto out;
896 
897 	/* Check, whether the sampling was disturbed by an SMI */
898 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
899 		goto out;
900 
901 	delta = tsc_stop - tsc_start;
902 	delta *= 1000000LL;
903 	if (hpet)
904 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
905 	else
906 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
907 
908 	/* Make sure we're within 1% */
909 	if (abs(tsc_khz - freq) > tsc_khz/100)
910 		goto out;
911 
912 	tsc_khz = freq;
913 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
914 		(unsigned long)tsc_khz / 1000,
915 		(unsigned long)tsc_khz % 1000);
916 
917 out:
918 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
919 }
920 
921 
922 static int __init init_tsc_clocksource(void)
923 {
924 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
925 		return 0;
926 
927 	if (tsc_clocksource_reliable)
928 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
929 	/* lower the rating if we already know its unstable: */
930 	if (check_tsc_unstable()) {
931 		clocksource_tsc.rating = 0;
932 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
933 	}
934 
935 	/*
936 	 * Trust the results of the earlier calibration on systems
937 	 * exporting a reliable TSC.
938 	 */
939 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
940 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
941 		return 0;
942 	}
943 
944 	schedule_delayed_work(&tsc_irqwork, 0);
945 	return 0;
946 }
947 /*
948  * We use device_initcall here, to ensure we run after the hpet
949  * is fully initialized, which may occur at fs_initcall time.
950  */
951 device_initcall(init_tsc_clocksource);
952 
953 void __init tsc_init(void)
954 {
955 	u64 lpj;
956 	int cpu;
957 
958 	x86_init.timers.tsc_pre_init();
959 
960 	if (!cpu_has_tsc)
961 		return;
962 
963 	tsc_khz = x86_platform.calibrate_tsc();
964 	cpu_khz = tsc_khz;
965 
966 	if (!tsc_khz) {
967 		mark_tsc_unstable("could not calculate TSC khz");
968 		return;
969 	}
970 
971 	pr_info("Detected %lu.%03lu MHz processor\n",
972 		(unsigned long)cpu_khz / 1000,
973 		(unsigned long)cpu_khz % 1000);
974 
975 	/*
976 	 * Secondary CPUs do not run through tsc_init(), so set up
977 	 * all the scale factors for all CPUs, assuming the same
978 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
979 	 * up if their speed diverges)
980 	 */
981 	for_each_possible_cpu(cpu)
982 		set_cyc2ns_scale(cpu_khz, cpu);
983 
984 	if (tsc_disabled > 0)
985 		return;
986 
987 	/* now allow native_sched_clock() to use rdtsc */
988 	tsc_disabled = 0;
989 
990 	if (!no_sched_irq_time)
991 		enable_sched_clock_irqtime();
992 
993 	lpj = ((u64)tsc_khz * 1000);
994 	do_div(lpj, HZ);
995 	lpj_fine = lpj;
996 
997 	use_tsc_delay();
998 
999 	if (unsynchronized_tsc())
1000 		mark_tsc_unstable("TSCs unsynchronized");
1001 
1002 	check_system_tsc_reliable();
1003 }
1004 
1005 #ifdef CONFIG_SMP
1006 /*
1007  * If we have a constant TSC and are using the TSC for the delay loop,
1008  * we can skip clock calibration if another cpu in the same socket has already
1009  * been calibrated. This assumes that CONSTANT_TSC applies to all
1010  * cpus in the socket - this should be a safe assumption.
1011  */
1012 unsigned long __cpuinit calibrate_delay_is_known(void)
1013 {
1014 	int i, cpu = smp_processor_id();
1015 
1016 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1017 		return 0;
1018 
1019 	for_each_online_cpu(i)
1020 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1021 			return cpu_data(i).loops_per_jiffy;
1022 	return 0;
1023 }
1024 #endif
1025