1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 15 #include <asm/hpet.h> 16 #include <asm/timer.h> 17 #include <asm/vgtod.h> 18 #include <asm/time.h> 19 #include <asm/delay.h> 20 #include <asm/hypervisor.h> 21 #include <asm/nmi.h> 22 #include <asm/x86_init.h> 23 24 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 25 EXPORT_SYMBOL(cpu_khz); 26 27 unsigned int __read_mostly tsc_khz; 28 EXPORT_SYMBOL(tsc_khz); 29 30 /* 31 * TSC can be unstable due to cpufreq or due to unsynced TSCs 32 */ 33 static int __read_mostly tsc_unstable; 34 35 /* native_sched_clock() is called before tsc_init(), so 36 we must start with the TSC soft disabled to prevent 37 erroneous rdtsc usage on !cpu_has_tsc processors */ 38 static int __read_mostly tsc_disabled = -1; 39 40 int tsc_clocksource_reliable; 41 /* 42 * Scheduler clock - returns current time in nanosec units. 43 */ 44 u64 native_sched_clock(void) 45 { 46 u64 this_offset; 47 48 /* 49 * Fall back to jiffies if there's no TSC available: 50 * ( But note that we still use it if the TSC is marked 51 * unstable. We do this because unlike Time Of Day, 52 * the scheduler clock tolerates small errors and it's 53 * very important for it to be as fast as the platform 54 * can achieve it. ) 55 */ 56 if (unlikely(tsc_disabled)) { 57 /* No locking but a rare wrong value is not a big deal: */ 58 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 59 } 60 61 /* read the Time Stamp Counter: */ 62 rdtscll(this_offset); 63 64 /* return the value in ns */ 65 return __cycles_2_ns(this_offset); 66 } 67 68 /* We need to define a real function for sched_clock, to override the 69 weak default version */ 70 #ifdef CONFIG_PARAVIRT 71 unsigned long long sched_clock(void) 72 { 73 return paravirt_sched_clock(); 74 } 75 #else 76 unsigned long long 77 sched_clock(void) __attribute__((alias("native_sched_clock"))); 78 #endif 79 80 int check_tsc_unstable(void) 81 { 82 return tsc_unstable; 83 } 84 EXPORT_SYMBOL_GPL(check_tsc_unstable); 85 86 #ifdef CONFIG_X86_TSC 87 int __init notsc_setup(char *str) 88 { 89 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 90 tsc_disabled = 1; 91 return 1; 92 } 93 #else 94 /* 95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 96 * in cpu/common.c 97 */ 98 int __init notsc_setup(char *str) 99 { 100 setup_clear_cpu_cap(X86_FEATURE_TSC); 101 return 1; 102 } 103 #endif 104 105 __setup("notsc", notsc_setup); 106 107 static int no_sched_irq_time; 108 109 static int __init tsc_setup(char *str) 110 { 111 if (!strcmp(str, "reliable")) 112 tsc_clocksource_reliable = 1; 113 if (!strncmp(str, "noirqtime", 9)) 114 no_sched_irq_time = 1; 115 return 1; 116 } 117 118 __setup("tsc=", tsc_setup); 119 120 #define MAX_RETRIES 5 121 #define SMI_TRESHOLD 50000 122 123 /* 124 * Read TSC and the reference counters. Take care of SMI disturbance 125 */ 126 static u64 tsc_read_refs(u64 *p, int hpet) 127 { 128 u64 t1, t2; 129 int i; 130 131 for (i = 0; i < MAX_RETRIES; i++) { 132 t1 = get_cycles(); 133 if (hpet) 134 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 135 else 136 *p = acpi_pm_read_early(); 137 t2 = get_cycles(); 138 if ((t2 - t1) < SMI_TRESHOLD) 139 return t2; 140 } 141 return ULLONG_MAX; 142 } 143 144 /* 145 * Calculate the TSC frequency from HPET reference 146 */ 147 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 148 { 149 u64 tmp; 150 151 if (hpet2 < hpet1) 152 hpet2 += 0x100000000ULL; 153 hpet2 -= hpet1; 154 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 155 do_div(tmp, 1000000); 156 do_div(deltatsc, tmp); 157 158 return (unsigned long) deltatsc; 159 } 160 161 /* 162 * Calculate the TSC frequency from PMTimer reference 163 */ 164 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 165 { 166 u64 tmp; 167 168 if (!pm1 && !pm2) 169 return ULONG_MAX; 170 171 if (pm2 < pm1) 172 pm2 += (u64)ACPI_PM_OVRRUN; 173 pm2 -= pm1; 174 tmp = pm2 * 1000000000LL; 175 do_div(tmp, PMTMR_TICKS_PER_SEC); 176 do_div(deltatsc, tmp); 177 178 return (unsigned long) deltatsc; 179 } 180 181 #define CAL_MS 10 182 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 183 #define CAL_PIT_LOOPS 1000 184 185 #define CAL2_MS 50 186 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 187 #define CAL2_PIT_LOOPS 5000 188 189 190 /* 191 * Try to calibrate the TSC against the Programmable 192 * Interrupt Timer and return the frequency of the TSC 193 * in kHz. 194 * 195 * Return ULONG_MAX on failure to calibrate. 196 */ 197 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 198 { 199 u64 tsc, t1, t2, delta; 200 unsigned long tscmin, tscmax; 201 int pitcnt; 202 203 /* Set the Gate high, disable speaker */ 204 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 205 206 /* 207 * Setup CTC channel 2* for mode 0, (interrupt on terminal 208 * count mode), binary count. Set the latch register to 50ms 209 * (LSB then MSB) to begin countdown. 210 */ 211 outb(0xb0, 0x43); 212 outb(latch & 0xff, 0x42); 213 outb(latch >> 8, 0x42); 214 215 tsc = t1 = t2 = get_cycles(); 216 217 pitcnt = 0; 218 tscmax = 0; 219 tscmin = ULONG_MAX; 220 while ((inb(0x61) & 0x20) == 0) { 221 t2 = get_cycles(); 222 delta = t2 - tsc; 223 tsc = t2; 224 if ((unsigned long) delta < tscmin) 225 tscmin = (unsigned int) delta; 226 if ((unsigned long) delta > tscmax) 227 tscmax = (unsigned int) delta; 228 pitcnt++; 229 } 230 231 /* 232 * Sanity checks: 233 * 234 * If we were not able to read the PIT more than loopmin 235 * times, then we have been hit by a massive SMI 236 * 237 * If the maximum is 10 times larger than the minimum, 238 * then we got hit by an SMI as well. 239 */ 240 if (pitcnt < loopmin || tscmax > 10 * tscmin) 241 return ULONG_MAX; 242 243 /* Calculate the PIT value */ 244 delta = t2 - t1; 245 do_div(delta, ms); 246 return delta; 247 } 248 249 /* 250 * This reads the current MSB of the PIT counter, and 251 * checks if we are running on sufficiently fast and 252 * non-virtualized hardware. 253 * 254 * Our expectations are: 255 * 256 * - the PIT is running at roughly 1.19MHz 257 * 258 * - each IO is going to take about 1us on real hardware, 259 * but we allow it to be much faster (by a factor of 10) or 260 * _slightly_ slower (ie we allow up to a 2us read+counter 261 * update - anything else implies a unacceptably slow CPU 262 * or PIT for the fast calibration to work. 263 * 264 * - with 256 PIT ticks to read the value, we have 214us to 265 * see the same MSB (and overhead like doing a single TSC 266 * read per MSB value etc). 267 * 268 * - We're doing 2 reads per loop (LSB, MSB), and we expect 269 * them each to take about a microsecond on real hardware. 270 * So we expect a count value of around 100. But we'll be 271 * generous, and accept anything over 50. 272 * 273 * - if the PIT is stuck, and we see *many* more reads, we 274 * return early (and the next caller of pit_expect_msb() 275 * then consider it a failure when they don't see the 276 * next expected value). 277 * 278 * These expectations mean that we know that we have seen the 279 * transition from one expected value to another with a fairly 280 * high accuracy, and we didn't miss any events. We can thus 281 * use the TSC value at the transitions to calculate a pretty 282 * good value for the TSC frequencty. 283 */ 284 static inline int pit_verify_msb(unsigned char val) 285 { 286 /* Ignore LSB */ 287 inb(0x42); 288 return inb(0x42) == val; 289 } 290 291 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 292 { 293 int count; 294 u64 tsc = 0, prev_tsc = 0; 295 296 for (count = 0; count < 50000; count++) { 297 if (!pit_verify_msb(val)) 298 break; 299 prev_tsc = tsc; 300 tsc = get_cycles(); 301 } 302 *deltap = get_cycles() - prev_tsc; 303 *tscp = tsc; 304 305 /* 306 * We require _some_ success, but the quality control 307 * will be based on the error terms on the TSC values. 308 */ 309 return count > 5; 310 } 311 312 /* 313 * How many MSB values do we want to see? We aim for 314 * a maximum error rate of 500ppm (in practice the 315 * real error is much smaller), but refuse to spend 316 * more than 50ms on it. 317 */ 318 #define MAX_QUICK_PIT_MS 50 319 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 320 321 static unsigned long quick_pit_calibrate(void) 322 { 323 int i; 324 u64 tsc, delta; 325 unsigned long d1, d2; 326 327 /* Set the Gate high, disable speaker */ 328 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 329 330 /* 331 * Counter 2, mode 0 (one-shot), binary count 332 * 333 * NOTE! Mode 2 decrements by two (and then the 334 * output is flipped each time, giving the same 335 * final output frequency as a decrement-by-one), 336 * so mode 0 is much better when looking at the 337 * individual counts. 338 */ 339 outb(0xb0, 0x43); 340 341 /* Start at 0xffff */ 342 outb(0xff, 0x42); 343 outb(0xff, 0x42); 344 345 /* 346 * The PIT starts counting at the next edge, so we 347 * need to delay for a microsecond. The easiest way 348 * to do that is to just read back the 16-bit counter 349 * once from the PIT. 350 */ 351 pit_verify_msb(0); 352 353 if (pit_expect_msb(0xff, &tsc, &d1)) { 354 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 355 if (!pit_expect_msb(0xff-i, &delta, &d2)) 356 break; 357 358 /* 359 * Iterate until the error is less than 500 ppm 360 */ 361 delta -= tsc; 362 if (d1+d2 >= delta >> 11) 363 continue; 364 365 /* 366 * Check the PIT one more time to verify that 367 * all TSC reads were stable wrt the PIT. 368 * 369 * This also guarantees serialization of the 370 * last cycle read ('d2') in pit_expect_msb. 371 */ 372 if (!pit_verify_msb(0xfe - i)) 373 break; 374 goto success; 375 } 376 } 377 pr_err("Fast TSC calibration failed\n"); 378 return 0; 379 380 success: 381 /* 382 * Ok, if we get here, then we've seen the 383 * MSB of the PIT decrement 'i' times, and the 384 * error has shrunk to less than 500 ppm. 385 * 386 * As a result, we can depend on there not being 387 * any odd delays anywhere, and the TSC reads are 388 * reliable (within the error). 389 * 390 * kHz = ticks / time-in-seconds / 1000; 391 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 392 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 393 */ 394 delta *= PIT_TICK_RATE; 395 do_div(delta, i*256*1000); 396 pr_info("Fast TSC calibration using PIT\n"); 397 return delta; 398 } 399 400 /** 401 * native_calibrate_tsc - calibrate the tsc on boot 402 */ 403 unsigned long native_calibrate_tsc(void) 404 { 405 u64 tsc1, tsc2, delta, ref1, ref2; 406 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 407 unsigned long flags, latch, ms, fast_calibrate; 408 int hpet = is_hpet_enabled(), i, loopmin; 409 410 local_irq_save(flags); 411 fast_calibrate = quick_pit_calibrate(); 412 local_irq_restore(flags); 413 if (fast_calibrate) 414 return fast_calibrate; 415 416 /* 417 * Run 5 calibration loops to get the lowest frequency value 418 * (the best estimate). We use two different calibration modes 419 * here: 420 * 421 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 422 * load a timeout of 50ms. We read the time right after we 423 * started the timer and wait until the PIT count down reaches 424 * zero. In each wait loop iteration we read the TSC and check 425 * the delta to the previous read. We keep track of the min 426 * and max values of that delta. The delta is mostly defined 427 * by the IO time of the PIT access, so we can detect when a 428 * SMI/SMM disturbance happened between the two reads. If the 429 * maximum time is significantly larger than the minimum time, 430 * then we discard the result and have another try. 431 * 432 * 2) Reference counter. If available we use the HPET or the 433 * PMTIMER as a reference to check the sanity of that value. 434 * We use separate TSC readouts and check inside of the 435 * reference read for a SMI/SMM disturbance. We dicard 436 * disturbed values here as well. We do that around the PIT 437 * calibration delay loop as we have to wait for a certain 438 * amount of time anyway. 439 */ 440 441 /* Preset PIT loop values */ 442 latch = CAL_LATCH; 443 ms = CAL_MS; 444 loopmin = CAL_PIT_LOOPS; 445 446 for (i = 0; i < 3; i++) { 447 unsigned long tsc_pit_khz; 448 449 /* 450 * Read the start value and the reference count of 451 * hpet/pmtimer when available. Then do the PIT 452 * calibration, which will take at least 50ms, and 453 * read the end value. 454 */ 455 local_irq_save(flags); 456 tsc1 = tsc_read_refs(&ref1, hpet); 457 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 458 tsc2 = tsc_read_refs(&ref2, hpet); 459 local_irq_restore(flags); 460 461 /* Pick the lowest PIT TSC calibration so far */ 462 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 463 464 /* hpet or pmtimer available ? */ 465 if (ref1 == ref2) 466 continue; 467 468 /* Check, whether the sampling was disturbed by an SMI */ 469 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 470 continue; 471 472 tsc2 = (tsc2 - tsc1) * 1000000LL; 473 if (hpet) 474 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 475 else 476 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 477 478 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 479 480 /* Check the reference deviation */ 481 delta = ((u64) tsc_pit_min) * 100; 482 do_div(delta, tsc_ref_min); 483 484 /* 485 * If both calibration results are inside a 10% window 486 * then we can be sure, that the calibration 487 * succeeded. We break out of the loop right away. We 488 * use the reference value, as it is more precise. 489 */ 490 if (delta >= 90 && delta <= 110) { 491 pr_info("PIT calibration matches %s. %d loops\n", 492 hpet ? "HPET" : "PMTIMER", i + 1); 493 return tsc_ref_min; 494 } 495 496 /* 497 * Check whether PIT failed more than once. This 498 * happens in virtualized environments. We need to 499 * give the virtual PC a slightly longer timeframe for 500 * the HPET/PMTIMER to make the result precise. 501 */ 502 if (i == 1 && tsc_pit_min == ULONG_MAX) { 503 latch = CAL2_LATCH; 504 ms = CAL2_MS; 505 loopmin = CAL2_PIT_LOOPS; 506 } 507 } 508 509 /* 510 * Now check the results. 511 */ 512 if (tsc_pit_min == ULONG_MAX) { 513 /* PIT gave no useful value */ 514 pr_warn("Unable to calibrate against PIT\n"); 515 516 /* We don't have an alternative source, disable TSC */ 517 if (!hpet && !ref1 && !ref2) { 518 pr_notice("No reference (HPET/PMTIMER) available\n"); 519 return 0; 520 } 521 522 /* The alternative source failed as well, disable TSC */ 523 if (tsc_ref_min == ULONG_MAX) { 524 pr_warn("HPET/PMTIMER calibration failed\n"); 525 return 0; 526 } 527 528 /* Use the alternative source */ 529 pr_info("using %s reference calibration\n", 530 hpet ? "HPET" : "PMTIMER"); 531 532 return tsc_ref_min; 533 } 534 535 /* We don't have an alternative source, use the PIT calibration value */ 536 if (!hpet && !ref1 && !ref2) { 537 pr_info("Using PIT calibration value\n"); 538 return tsc_pit_min; 539 } 540 541 /* The alternative source failed, use the PIT calibration value */ 542 if (tsc_ref_min == ULONG_MAX) { 543 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 544 return tsc_pit_min; 545 } 546 547 /* 548 * The calibration values differ too much. In doubt, we use 549 * the PIT value as we know that there are PMTIMERs around 550 * running at double speed. At least we let the user know: 551 */ 552 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 553 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 554 pr_info("Using PIT calibration value\n"); 555 return tsc_pit_min; 556 } 557 558 int recalibrate_cpu_khz(void) 559 { 560 #ifndef CONFIG_SMP 561 unsigned long cpu_khz_old = cpu_khz; 562 563 if (cpu_has_tsc) { 564 tsc_khz = x86_platform.calibrate_tsc(); 565 cpu_khz = tsc_khz; 566 cpu_data(0).loops_per_jiffy = 567 cpufreq_scale(cpu_data(0).loops_per_jiffy, 568 cpu_khz_old, cpu_khz); 569 return 0; 570 } else 571 return -ENODEV; 572 #else 573 return -ENODEV; 574 #endif 575 } 576 577 EXPORT_SYMBOL(recalibrate_cpu_khz); 578 579 580 /* Accelerators for sched_clock() 581 * convert from cycles(64bits) => nanoseconds (64bits) 582 * basic equation: 583 * ns = cycles / (freq / ns_per_sec) 584 * ns = cycles * (ns_per_sec / freq) 585 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 586 * ns = cycles * (10^6 / cpu_khz) 587 * 588 * Then we use scaling math (suggested by george@mvista.com) to get: 589 * ns = cycles * (10^6 * SC / cpu_khz) / SC 590 * ns = cycles * cyc2ns_scale / SC 591 * 592 * And since SC is a constant power of two, we can convert the div 593 * into a shift. 594 * 595 * We can use khz divisor instead of mhz to keep a better precision, since 596 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 597 * (mathieu.desnoyers@polymtl.ca) 598 * 599 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 600 */ 601 602 DEFINE_PER_CPU(unsigned long, cyc2ns); 603 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); 604 605 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 606 { 607 unsigned long long tsc_now, ns_now, *offset; 608 unsigned long flags, *scale; 609 610 local_irq_save(flags); 611 sched_clock_idle_sleep_event(); 612 613 scale = &per_cpu(cyc2ns, cpu); 614 offset = &per_cpu(cyc2ns_offset, cpu); 615 616 rdtscll(tsc_now); 617 ns_now = __cycles_2_ns(tsc_now); 618 619 if (cpu_khz) { 620 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; 621 *offset = ns_now - mult_frac(tsc_now, *scale, 622 (1UL << CYC2NS_SCALE_FACTOR)); 623 } 624 625 sched_clock_idle_wakeup_event(0); 626 local_irq_restore(flags); 627 } 628 629 static unsigned long long cyc2ns_suspend; 630 631 void tsc_save_sched_clock_state(void) 632 { 633 if (!sched_clock_stable) 634 return; 635 636 cyc2ns_suspend = sched_clock(); 637 } 638 639 /* 640 * Even on processors with invariant TSC, TSC gets reset in some the 641 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 642 * arbitrary value (still sync'd across cpu's) during resume from such sleep 643 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 644 * that sched_clock() continues from the point where it was left off during 645 * suspend. 646 */ 647 void tsc_restore_sched_clock_state(void) 648 { 649 unsigned long long offset; 650 unsigned long flags; 651 int cpu; 652 653 if (!sched_clock_stable) 654 return; 655 656 local_irq_save(flags); 657 658 __this_cpu_write(cyc2ns_offset, 0); 659 offset = cyc2ns_suspend - sched_clock(); 660 661 for_each_possible_cpu(cpu) 662 per_cpu(cyc2ns_offset, cpu) = offset; 663 664 local_irq_restore(flags); 665 } 666 667 #ifdef CONFIG_CPU_FREQ 668 669 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 670 * changes. 671 * 672 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 673 * not that important because current Opteron setups do not support 674 * scaling on SMP anyroads. 675 * 676 * Should fix up last_tsc too. Currently gettimeofday in the 677 * first tick after the change will be slightly wrong. 678 */ 679 680 static unsigned int ref_freq; 681 static unsigned long loops_per_jiffy_ref; 682 static unsigned long tsc_khz_ref; 683 684 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 685 void *data) 686 { 687 struct cpufreq_freqs *freq = data; 688 unsigned long *lpj; 689 690 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 691 return 0; 692 693 lpj = &boot_cpu_data.loops_per_jiffy; 694 #ifdef CONFIG_SMP 695 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 696 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 697 #endif 698 699 if (!ref_freq) { 700 ref_freq = freq->old; 701 loops_per_jiffy_ref = *lpj; 702 tsc_khz_ref = tsc_khz; 703 } 704 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 705 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 706 (val == CPUFREQ_RESUMECHANGE)) { 707 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 708 709 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 710 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 711 mark_tsc_unstable("cpufreq changes"); 712 } 713 714 set_cyc2ns_scale(tsc_khz, freq->cpu); 715 716 return 0; 717 } 718 719 static struct notifier_block time_cpufreq_notifier_block = { 720 .notifier_call = time_cpufreq_notifier 721 }; 722 723 static int __init cpufreq_tsc(void) 724 { 725 if (!cpu_has_tsc) 726 return 0; 727 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 728 return 0; 729 cpufreq_register_notifier(&time_cpufreq_notifier_block, 730 CPUFREQ_TRANSITION_NOTIFIER); 731 return 0; 732 } 733 734 core_initcall(cpufreq_tsc); 735 736 #endif /* CONFIG_CPU_FREQ */ 737 738 /* clocksource code */ 739 740 static struct clocksource clocksource_tsc; 741 742 /* 743 * We compare the TSC to the cycle_last value in the clocksource 744 * structure to avoid a nasty time-warp. This can be observed in a 745 * very small window right after one CPU updated cycle_last under 746 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 747 * is smaller than the cycle_last reference value due to a TSC which 748 * is slighty behind. This delta is nowhere else observable, but in 749 * that case it results in a forward time jump in the range of hours 750 * due to the unsigned delta calculation of the time keeping core 751 * code, which is necessary to support wrapping clocksources like pm 752 * timer. 753 */ 754 static cycle_t read_tsc(struct clocksource *cs) 755 { 756 cycle_t ret = (cycle_t)get_cycles(); 757 758 return ret >= clocksource_tsc.cycle_last ? 759 ret : clocksource_tsc.cycle_last; 760 } 761 762 static void resume_tsc(struct clocksource *cs) 763 { 764 clocksource_tsc.cycle_last = 0; 765 } 766 767 static struct clocksource clocksource_tsc = { 768 .name = "tsc", 769 .rating = 300, 770 .read = read_tsc, 771 .resume = resume_tsc, 772 .mask = CLOCKSOURCE_MASK(64), 773 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 774 CLOCK_SOURCE_MUST_VERIFY, 775 #ifdef CONFIG_X86_64 776 .archdata = { .vclock_mode = VCLOCK_TSC }, 777 #endif 778 }; 779 780 void mark_tsc_unstable(char *reason) 781 { 782 if (!tsc_unstable) { 783 tsc_unstable = 1; 784 sched_clock_stable = 0; 785 disable_sched_clock_irqtime(); 786 pr_info("Marking TSC unstable due to %s\n", reason); 787 /* Change only the rating, when not registered */ 788 if (clocksource_tsc.mult) 789 clocksource_mark_unstable(&clocksource_tsc); 790 else { 791 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 792 clocksource_tsc.rating = 0; 793 } 794 } 795 } 796 797 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 798 799 static void __init check_system_tsc_reliable(void) 800 { 801 #ifdef CONFIG_MGEODE_LX 802 /* RTSC counts during suspend */ 803 #define RTSC_SUSP 0x100 804 unsigned long res_low, res_high; 805 806 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 807 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 808 if (res_low & RTSC_SUSP) 809 tsc_clocksource_reliable = 1; 810 #endif 811 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 812 tsc_clocksource_reliable = 1; 813 } 814 815 /* 816 * Make an educated guess if the TSC is trustworthy and synchronized 817 * over all CPUs. 818 */ 819 __cpuinit int unsynchronized_tsc(void) 820 { 821 if (!cpu_has_tsc || tsc_unstable) 822 return 1; 823 824 #ifdef CONFIG_SMP 825 if (apic_is_clustered_box()) 826 return 1; 827 #endif 828 829 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 830 return 0; 831 832 if (tsc_clocksource_reliable) 833 return 0; 834 /* 835 * Intel systems are normally all synchronized. 836 * Exceptions must mark TSC as unstable: 837 */ 838 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 839 /* assume multi socket systems are not synchronized: */ 840 if (num_possible_cpus() > 1) 841 return 1; 842 } 843 844 return 0; 845 } 846 847 848 static void tsc_refine_calibration_work(struct work_struct *work); 849 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 850 /** 851 * tsc_refine_calibration_work - Further refine tsc freq calibration 852 * @work - ignored. 853 * 854 * This functions uses delayed work over a period of a 855 * second to further refine the TSC freq value. Since this is 856 * timer based, instead of loop based, we don't block the boot 857 * process while this longer calibration is done. 858 * 859 * If there are any calibration anomalies (too many SMIs, etc), 860 * or the refined calibration is off by 1% of the fast early 861 * calibration, we throw out the new calibration and use the 862 * early calibration. 863 */ 864 static void tsc_refine_calibration_work(struct work_struct *work) 865 { 866 static u64 tsc_start = -1, ref_start; 867 static int hpet; 868 u64 tsc_stop, ref_stop, delta; 869 unsigned long freq; 870 871 /* Don't bother refining TSC on unstable systems */ 872 if (check_tsc_unstable()) 873 goto out; 874 875 /* 876 * Since the work is started early in boot, we may be 877 * delayed the first time we expire. So set the workqueue 878 * again once we know timers are working. 879 */ 880 if (tsc_start == -1) { 881 /* 882 * Only set hpet once, to avoid mixing hardware 883 * if the hpet becomes enabled later. 884 */ 885 hpet = is_hpet_enabled(); 886 schedule_delayed_work(&tsc_irqwork, HZ); 887 tsc_start = tsc_read_refs(&ref_start, hpet); 888 return; 889 } 890 891 tsc_stop = tsc_read_refs(&ref_stop, hpet); 892 893 /* hpet or pmtimer available ? */ 894 if (ref_start == ref_stop) 895 goto out; 896 897 /* Check, whether the sampling was disturbed by an SMI */ 898 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 899 goto out; 900 901 delta = tsc_stop - tsc_start; 902 delta *= 1000000LL; 903 if (hpet) 904 freq = calc_hpet_ref(delta, ref_start, ref_stop); 905 else 906 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 907 908 /* Make sure we're within 1% */ 909 if (abs(tsc_khz - freq) > tsc_khz/100) 910 goto out; 911 912 tsc_khz = freq; 913 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 914 (unsigned long)tsc_khz / 1000, 915 (unsigned long)tsc_khz % 1000); 916 917 out: 918 clocksource_register_khz(&clocksource_tsc, tsc_khz); 919 } 920 921 922 static int __init init_tsc_clocksource(void) 923 { 924 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 925 return 0; 926 927 if (tsc_clocksource_reliable) 928 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 929 /* lower the rating if we already know its unstable: */ 930 if (check_tsc_unstable()) { 931 clocksource_tsc.rating = 0; 932 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 933 } 934 935 /* 936 * Trust the results of the earlier calibration on systems 937 * exporting a reliable TSC. 938 */ 939 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 940 clocksource_register_khz(&clocksource_tsc, tsc_khz); 941 return 0; 942 } 943 944 schedule_delayed_work(&tsc_irqwork, 0); 945 return 0; 946 } 947 /* 948 * We use device_initcall here, to ensure we run after the hpet 949 * is fully initialized, which may occur at fs_initcall time. 950 */ 951 device_initcall(init_tsc_clocksource); 952 953 void __init tsc_init(void) 954 { 955 u64 lpj; 956 int cpu; 957 958 x86_init.timers.tsc_pre_init(); 959 960 if (!cpu_has_tsc) 961 return; 962 963 tsc_khz = x86_platform.calibrate_tsc(); 964 cpu_khz = tsc_khz; 965 966 if (!tsc_khz) { 967 mark_tsc_unstable("could not calculate TSC khz"); 968 return; 969 } 970 971 pr_info("Detected %lu.%03lu MHz processor\n", 972 (unsigned long)cpu_khz / 1000, 973 (unsigned long)cpu_khz % 1000); 974 975 /* 976 * Secondary CPUs do not run through tsc_init(), so set up 977 * all the scale factors for all CPUs, assuming the same 978 * speed as the bootup CPU. (cpufreq notifiers will fix this 979 * up if their speed diverges) 980 */ 981 for_each_possible_cpu(cpu) 982 set_cyc2ns_scale(cpu_khz, cpu); 983 984 if (tsc_disabled > 0) 985 return; 986 987 /* now allow native_sched_clock() to use rdtsc */ 988 tsc_disabled = 0; 989 990 if (!no_sched_irq_time) 991 enable_sched_clock_irqtime(); 992 993 lpj = ((u64)tsc_khz * 1000); 994 do_div(lpj, HZ); 995 lpj_fine = lpj; 996 997 use_tsc_delay(); 998 999 if (unsynchronized_tsc()) 1000 mark_tsc_unstable("TSCs unsynchronized"); 1001 1002 check_system_tsc_reliable(); 1003 } 1004 1005 #ifdef CONFIG_SMP 1006 /* 1007 * If we have a constant TSC and are using the TSC for the delay loop, 1008 * we can skip clock calibration if another cpu in the same socket has already 1009 * been calibrated. This assumes that CONSTANT_TSC applies to all 1010 * cpus in the socket - this should be a safe assumption. 1011 */ 1012 unsigned long __cpuinit calibrate_delay_is_known(void) 1013 { 1014 int i, cpu = smp_processor_id(); 1015 1016 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1017 return 0; 1018 1019 for_each_online_cpu(i) 1020 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) 1021 return cpu_data(i).loops_per_jiffy; 1022 return 0; 1023 } 1024 #endif 1025