xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 82003e04)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/export.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 #include <asm/apic.h>
26 #include <asm/intel-family.h>
27 
28 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
29 EXPORT_SYMBOL(cpu_khz);
30 
31 unsigned int __read_mostly tsc_khz;
32 EXPORT_SYMBOL(tsc_khz);
33 
34 /*
35  * TSC can be unstable due to cpufreq or due to unsynced TSCs
36  */
37 static int __read_mostly tsc_unstable;
38 
39 /* native_sched_clock() is called before tsc_init(), so
40    we must start with the TSC soft disabled to prevent
41    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
42 static int __read_mostly tsc_disabled = -1;
43 
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45 
46 int tsc_clocksource_reliable;
47 
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
52 
53 /*
54  * Use a ring-buffer like data structure, where a writer advances the head by
55  * writing a new data entry and a reader advances the tail when it observes a
56  * new entry.
57  *
58  * Writers are made to wait on readers until there's space to write a new
59  * entry.
60  *
61  * This means that we can always use an {offset, mul} pair to compute a ns
62  * value that is 'roughly' in the right direction, even if we're writing a new
63  * {offset, mul} pair during the clock read.
64  *
65  * The down-side is that we can no longer guarantee strict monotonicity anymore
66  * (assuming the TSC was that to begin with), because while we compute the
67  * intersection point of the two clock slopes and make sure the time is
68  * continuous at the point of switching; we can no longer guarantee a reader is
69  * strictly before or after the switch point.
70  *
71  * It does mean a reader no longer needs to disable IRQs in order to avoid
72  * CPU-Freq updates messing with his times, and similarly an NMI reader will
73  * no longer run the risk of hitting half-written state.
74  */
75 
76 struct cyc2ns {
77 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
78 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
79 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
80 }; /* exactly fits one cacheline */
81 
82 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
83 
84 struct cyc2ns_data *cyc2ns_read_begin(void)
85 {
86 	struct cyc2ns_data *head;
87 
88 	preempt_disable();
89 
90 	head = this_cpu_read(cyc2ns.head);
91 	/*
92 	 * Ensure we observe the entry when we observe the pointer to it.
93 	 * matches the wmb from cyc2ns_write_end().
94 	 */
95 	smp_read_barrier_depends();
96 	head->__count++;
97 	barrier();
98 
99 	return head;
100 }
101 
102 void cyc2ns_read_end(struct cyc2ns_data *head)
103 {
104 	barrier();
105 	/*
106 	 * If we're the outer most nested read; update the tail pointer
107 	 * when we're done. This notifies possible pending writers
108 	 * that we've observed the head pointer and that the other
109 	 * entry is now free.
110 	 */
111 	if (!--head->__count) {
112 		/*
113 		 * x86-TSO does not reorder writes with older reads;
114 		 * therefore once this write becomes visible to another
115 		 * cpu, we must be finished reading the cyc2ns_data.
116 		 *
117 		 * matches with cyc2ns_write_begin().
118 		 */
119 		this_cpu_write(cyc2ns.tail, head);
120 	}
121 	preempt_enable();
122 }
123 
124 /*
125  * Begin writing a new @data entry for @cpu.
126  *
127  * Assumes some sort of write side lock; currently 'provided' by the assumption
128  * that cpufreq will call its notifiers sequentially.
129  */
130 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
131 {
132 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
133 	struct cyc2ns_data *data = c2n->data;
134 
135 	if (data == c2n->head)
136 		data++;
137 
138 	/* XXX send an IPI to @cpu in order to guarantee a read? */
139 
140 	/*
141 	 * When we observe the tail write from cyc2ns_read_end(),
142 	 * the cpu must be done with that entry and its safe
143 	 * to start writing to it.
144 	 */
145 	while (c2n->tail == data)
146 		cpu_relax();
147 
148 	return data;
149 }
150 
151 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
152 {
153 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
154 
155 	/*
156 	 * Ensure the @data writes are visible before we publish the
157 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
158 	 */
159 	smp_wmb();
160 
161 	ACCESS_ONCE(c2n->head) = data;
162 }
163 
164 /*
165  * Accelerators for sched_clock()
166  * convert from cycles(64bits) => nanoseconds (64bits)
167  *  basic equation:
168  *              ns = cycles / (freq / ns_per_sec)
169  *              ns = cycles * (ns_per_sec / freq)
170  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
171  *              ns = cycles * (10^6 / cpu_khz)
172  *
173  *      Then we use scaling math (suggested by george@mvista.com) to get:
174  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
175  *              ns = cycles * cyc2ns_scale / SC
176  *
177  *      And since SC is a constant power of two, we can convert the div
178  *  into a shift. The larger SC is, the more accurate the conversion, but
179  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
180  *  (64-bit result) can be used.
181  *
182  *  We can use khz divisor instead of mhz to keep a better precision.
183  *  (mathieu.desnoyers@polymtl.ca)
184  *
185  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
186  */
187 
188 static void cyc2ns_data_init(struct cyc2ns_data *data)
189 {
190 	data->cyc2ns_mul = 0;
191 	data->cyc2ns_shift = 0;
192 	data->cyc2ns_offset = 0;
193 	data->__count = 0;
194 }
195 
196 static void cyc2ns_init(int cpu)
197 {
198 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
199 
200 	cyc2ns_data_init(&c2n->data[0]);
201 	cyc2ns_data_init(&c2n->data[1]);
202 
203 	c2n->head = c2n->data;
204 	c2n->tail = c2n->data;
205 }
206 
207 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
208 {
209 	struct cyc2ns_data *data, *tail;
210 	unsigned long long ns;
211 
212 	/*
213 	 * See cyc2ns_read_*() for details; replicated in order to avoid
214 	 * an extra few instructions that came with the abstraction.
215 	 * Notable, it allows us to only do the __count and tail update
216 	 * dance when its actually needed.
217 	 */
218 
219 	preempt_disable_notrace();
220 	data = this_cpu_read(cyc2ns.head);
221 	tail = this_cpu_read(cyc2ns.tail);
222 
223 	if (likely(data == tail)) {
224 		ns = data->cyc2ns_offset;
225 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
226 	} else {
227 		data->__count++;
228 
229 		barrier();
230 
231 		ns = data->cyc2ns_offset;
232 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
233 
234 		barrier();
235 
236 		if (!--data->__count)
237 			this_cpu_write(cyc2ns.tail, data);
238 	}
239 	preempt_enable_notrace();
240 
241 	return ns;
242 }
243 
244 static void set_cyc2ns_scale(unsigned long khz, int cpu)
245 {
246 	unsigned long long tsc_now, ns_now;
247 	struct cyc2ns_data *data;
248 	unsigned long flags;
249 
250 	local_irq_save(flags);
251 	sched_clock_idle_sleep_event();
252 
253 	if (!khz)
254 		goto done;
255 
256 	data = cyc2ns_write_begin(cpu);
257 
258 	tsc_now = rdtsc();
259 	ns_now = cycles_2_ns(tsc_now);
260 
261 	/*
262 	 * Compute a new multiplier as per the above comment and ensure our
263 	 * time function is continuous; see the comment near struct
264 	 * cyc2ns_data.
265 	 */
266 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
267 			       NSEC_PER_MSEC, 0);
268 
269 	/*
270 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
271 	 * not expected to be greater than 31 due to the original published
272 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
273 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
274 	 */
275 	if (data->cyc2ns_shift == 32) {
276 		data->cyc2ns_shift = 31;
277 		data->cyc2ns_mul >>= 1;
278 	}
279 
280 	data->cyc2ns_offset = ns_now -
281 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
282 
283 	cyc2ns_write_end(cpu, data);
284 
285 done:
286 	sched_clock_idle_wakeup_event(0);
287 	local_irq_restore(flags);
288 }
289 /*
290  * Scheduler clock - returns current time in nanosec units.
291  */
292 u64 native_sched_clock(void)
293 {
294 	if (static_branch_likely(&__use_tsc)) {
295 		u64 tsc_now = rdtsc();
296 
297 		/* return the value in ns */
298 		return cycles_2_ns(tsc_now);
299 	}
300 
301 	/*
302 	 * Fall back to jiffies if there's no TSC available:
303 	 * ( But note that we still use it if the TSC is marked
304 	 *   unstable. We do this because unlike Time Of Day,
305 	 *   the scheduler clock tolerates small errors and it's
306 	 *   very important for it to be as fast as the platform
307 	 *   can achieve it. )
308 	 */
309 
310 	/* No locking but a rare wrong value is not a big deal: */
311 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
312 }
313 
314 /*
315  * Generate a sched_clock if you already have a TSC value.
316  */
317 u64 native_sched_clock_from_tsc(u64 tsc)
318 {
319 	return cycles_2_ns(tsc);
320 }
321 
322 /* We need to define a real function for sched_clock, to override the
323    weak default version */
324 #ifdef CONFIG_PARAVIRT
325 unsigned long long sched_clock(void)
326 {
327 	return paravirt_sched_clock();
328 }
329 #else
330 unsigned long long
331 sched_clock(void) __attribute__((alias("native_sched_clock")));
332 #endif
333 
334 int check_tsc_unstable(void)
335 {
336 	return tsc_unstable;
337 }
338 EXPORT_SYMBOL_GPL(check_tsc_unstable);
339 
340 #ifdef CONFIG_X86_TSC
341 int __init notsc_setup(char *str)
342 {
343 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
344 	tsc_disabled = 1;
345 	return 1;
346 }
347 #else
348 /*
349  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
350  * in cpu/common.c
351  */
352 int __init notsc_setup(char *str)
353 {
354 	setup_clear_cpu_cap(X86_FEATURE_TSC);
355 	return 1;
356 }
357 #endif
358 
359 __setup("notsc", notsc_setup);
360 
361 static int no_sched_irq_time;
362 
363 static int __init tsc_setup(char *str)
364 {
365 	if (!strcmp(str, "reliable"))
366 		tsc_clocksource_reliable = 1;
367 	if (!strncmp(str, "noirqtime", 9))
368 		no_sched_irq_time = 1;
369 	return 1;
370 }
371 
372 __setup("tsc=", tsc_setup);
373 
374 #define MAX_RETRIES     5
375 #define SMI_TRESHOLD    50000
376 
377 /*
378  * Read TSC and the reference counters. Take care of SMI disturbance
379  */
380 static u64 tsc_read_refs(u64 *p, int hpet)
381 {
382 	u64 t1, t2;
383 	int i;
384 
385 	for (i = 0; i < MAX_RETRIES; i++) {
386 		t1 = get_cycles();
387 		if (hpet)
388 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
389 		else
390 			*p = acpi_pm_read_early();
391 		t2 = get_cycles();
392 		if ((t2 - t1) < SMI_TRESHOLD)
393 			return t2;
394 	}
395 	return ULLONG_MAX;
396 }
397 
398 /*
399  * Calculate the TSC frequency from HPET reference
400  */
401 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
402 {
403 	u64 tmp;
404 
405 	if (hpet2 < hpet1)
406 		hpet2 += 0x100000000ULL;
407 	hpet2 -= hpet1;
408 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
409 	do_div(tmp, 1000000);
410 	do_div(deltatsc, tmp);
411 
412 	return (unsigned long) deltatsc;
413 }
414 
415 /*
416  * Calculate the TSC frequency from PMTimer reference
417  */
418 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
419 {
420 	u64 tmp;
421 
422 	if (!pm1 && !pm2)
423 		return ULONG_MAX;
424 
425 	if (pm2 < pm1)
426 		pm2 += (u64)ACPI_PM_OVRRUN;
427 	pm2 -= pm1;
428 	tmp = pm2 * 1000000000LL;
429 	do_div(tmp, PMTMR_TICKS_PER_SEC);
430 	do_div(deltatsc, tmp);
431 
432 	return (unsigned long) deltatsc;
433 }
434 
435 #define CAL_MS		10
436 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
437 #define CAL_PIT_LOOPS	1000
438 
439 #define CAL2_MS		50
440 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
441 #define CAL2_PIT_LOOPS	5000
442 
443 
444 /*
445  * Try to calibrate the TSC against the Programmable
446  * Interrupt Timer and return the frequency of the TSC
447  * in kHz.
448  *
449  * Return ULONG_MAX on failure to calibrate.
450  */
451 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
452 {
453 	u64 tsc, t1, t2, delta;
454 	unsigned long tscmin, tscmax;
455 	int pitcnt;
456 
457 	/* Set the Gate high, disable speaker */
458 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
459 
460 	/*
461 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
462 	 * count mode), binary count. Set the latch register to 50ms
463 	 * (LSB then MSB) to begin countdown.
464 	 */
465 	outb(0xb0, 0x43);
466 	outb(latch & 0xff, 0x42);
467 	outb(latch >> 8, 0x42);
468 
469 	tsc = t1 = t2 = get_cycles();
470 
471 	pitcnt = 0;
472 	tscmax = 0;
473 	tscmin = ULONG_MAX;
474 	while ((inb(0x61) & 0x20) == 0) {
475 		t2 = get_cycles();
476 		delta = t2 - tsc;
477 		tsc = t2;
478 		if ((unsigned long) delta < tscmin)
479 			tscmin = (unsigned int) delta;
480 		if ((unsigned long) delta > tscmax)
481 			tscmax = (unsigned int) delta;
482 		pitcnt++;
483 	}
484 
485 	/*
486 	 * Sanity checks:
487 	 *
488 	 * If we were not able to read the PIT more than loopmin
489 	 * times, then we have been hit by a massive SMI
490 	 *
491 	 * If the maximum is 10 times larger than the minimum,
492 	 * then we got hit by an SMI as well.
493 	 */
494 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
495 		return ULONG_MAX;
496 
497 	/* Calculate the PIT value */
498 	delta = t2 - t1;
499 	do_div(delta, ms);
500 	return delta;
501 }
502 
503 /*
504  * This reads the current MSB of the PIT counter, and
505  * checks if we are running on sufficiently fast and
506  * non-virtualized hardware.
507  *
508  * Our expectations are:
509  *
510  *  - the PIT is running at roughly 1.19MHz
511  *
512  *  - each IO is going to take about 1us on real hardware,
513  *    but we allow it to be much faster (by a factor of 10) or
514  *    _slightly_ slower (ie we allow up to a 2us read+counter
515  *    update - anything else implies a unacceptably slow CPU
516  *    or PIT for the fast calibration to work.
517  *
518  *  - with 256 PIT ticks to read the value, we have 214us to
519  *    see the same MSB (and overhead like doing a single TSC
520  *    read per MSB value etc).
521  *
522  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
523  *    them each to take about a microsecond on real hardware.
524  *    So we expect a count value of around 100. But we'll be
525  *    generous, and accept anything over 50.
526  *
527  *  - if the PIT is stuck, and we see *many* more reads, we
528  *    return early (and the next caller of pit_expect_msb()
529  *    then consider it a failure when they don't see the
530  *    next expected value).
531  *
532  * These expectations mean that we know that we have seen the
533  * transition from one expected value to another with a fairly
534  * high accuracy, and we didn't miss any events. We can thus
535  * use the TSC value at the transitions to calculate a pretty
536  * good value for the TSC frequencty.
537  */
538 static inline int pit_verify_msb(unsigned char val)
539 {
540 	/* Ignore LSB */
541 	inb(0x42);
542 	return inb(0x42) == val;
543 }
544 
545 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
546 {
547 	int count;
548 	u64 tsc = 0, prev_tsc = 0;
549 
550 	for (count = 0; count < 50000; count++) {
551 		if (!pit_verify_msb(val))
552 			break;
553 		prev_tsc = tsc;
554 		tsc = get_cycles();
555 	}
556 	*deltap = get_cycles() - prev_tsc;
557 	*tscp = tsc;
558 
559 	/*
560 	 * We require _some_ success, but the quality control
561 	 * will be based on the error terms on the TSC values.
562 	 */
563 	return count > 5;
564 }
565 
566 /*
567  * How many MSB values do we want to see? We aim for
568  * a maximum error rate of 500ppm (in practice the
569  * real error is much smaller), but refuse to spend
570  * more than 50ms on it.
571  */
572 #define MAX_QUICK_PIT_MS 50
573 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
574 
575 static unsigned long quick_pit_calibrate(void)
576 {
577 	int i;
578 	u64 tsc, delta;
579 	unsigned long d1, d2;
580 
581 	/* Set the Gate high, disable speaker */
582 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
583 
584 	/*
585 	 * Counter 2, mode 0 (one-shot), binary count
586 	 *
587 	 * NOTE! Mode 2 decrements by two (and then the
588 	 * output is flipped each time, giving the same
589 	 * final output frequency as a decrement-by-one),
590 	 * so mode 0 is much better when looking at the
591 	 * individual counts.
592 	 */
593 	outb(0xb0, 0x43);
594 
595 	/* Start at 0xffff */
596 	outb(0xff, 0x42);
597 	outb(0xff, 0x42);
598 
599 	/*
600 	 * The PIT starts counting at the next edge, so we
601 	 * need to delay for a microsecond. The easiest way
602 	 * to do that is to just read back the 16-bit counter
603 	 * once from the PIT.
604 	 */
605 	pit_verify_msb(0);
606 
607 	if (pit_expect_msb(0xff, &tsc, &d1)) {
608 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
609 			if (!pit_expect_msb(0xff-i, &delta, &d2))
610 				break;
611 
612 			delta -= tsc;
613 
614 			/*
615 			 * Extrapolate the error and fail fast if the error will
616 			 * never be below 500 ppm.
617 			 */
618 			if (i == 1 &&
619 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
620 				return 0;
621 
622 			/*
623 			 * Iterate until the error is less than 500 ppm
624 			 */
625 			if (d1+d2 >= delta >> 11)
626 				continue;
627 
628 			/*
629 			 * Check the PIT one more time to verify that
630 			 * all TSC reads were stable wrt the PIT.
631 			 *
632 			 * This also guarantees serialization of the
633 			 * last cycle read ('d2') in pit_expect_msb.
634 			 */
635 			if (!pit_verify_msb(0xfe - i))
636 				break;
637 			goto success;
638 		}
639 	}
640 	pr_info("Fast TSC calibration failed\n");
641 	return 0;
642 
643 success:
644 	/*
645 	 * Ok, if we get here, then we've seen the
646 	 * MSB of the PIT decrement 'i' times, and the
647 	 * error has shrunk to less than 500 ppm.
648 	 *
649 	 * As a result, we can depend on there not being
650 	 * any odd delays anywhere, and the TSC reads are
651 	 * reliable (within the error).
652 	 *
653 	 * kHz = ticks / time-in-seconds / 1000;
654 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
655 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
656 	 */
657 	delta *= PIT_TICK_RATE;
658 	do_div(delta, i*256*1000);
659 	pr_info("Fast TSC calibration using PIT\n");
660 	return delta;
661 }
662 
663 /**
664  * native_calibrate_tsc
665  * Determine TSC frequency via CPUID, else return 0.
666  */
667 unsigned long native_calibrate_tsc(void)
668 {
669 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
670 	unsigned int crystal_khz;
671 
672 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
673 		return 0;
674 
675 	if (boot_cpu_data.cpuid_level < 0x15)
676 		return 0;
677 
678 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
679 
680 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
681 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
682 
683 	if (ebx_numerator == 0 || eax_denominator == 0)
684 		return 0;
685 
686 	crystal_khz = ecx_hz / 1000;
687 
688 	if (crystal_khz == 0) {
689 		switch (boot_cpu_data.x86_model) {
690 		case INTEL_FAM6_SKYLAKE_MOBILE:
691 		case INTEL_FAM6_SKYLAKE_DESKTOP:
692 		case INTEL_FAM6_KABYLAKE_MOBILE:
693 		case INTEL_FAM6_KABYLAKE_DESKTOP:
694 			crystal_khz = 24000;	/* 24.0 MHz */
695 			break;
696 		case INTEL_FAM6_SKYLAKE_X:
697 			crystal_khz = 25000;	/* 25.0 MHz */
698 			break;
699 		case INTEL_FAM6_ATOM_GOLDMONT:
700 			crystal_khz = 19200;	/* 19.2 MHz */
701 			break;
702 		}
703 	}
704 
705 	return crystal_khz * ebx_numerator / eax_denominator;
706 }
707 
708 static unsigned long cpu_khz_from_cpuid(void)
709 {
710 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
711 
712 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
713 		return 0;
714 
715 	if (boot_cpu_data.cpuid_level < 0x16)
716 		return 0;
717 
718 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
719 
720 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
721 
722 	return eax_base_mhz * 1000;
723 }
724 
725 /**
726  * native_calibrate_cpu - calibrate the cpu on boot
727  */
728 unsigned long native_calibrate_cpu(void)
729 {
730 	u64 tsc1, tsc2, delta, ref1, ref2;
731 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
732 	unsigned long flags, latch, ms, fast_calibrate;
733 	int hpet = is_hpet_enabled(), i, loopmin;
734 
735 	fast_calibrate = cpu_khz_from_cpuid();
736 	if (fast_calibrate)
737 		return fast_calibrate;
738 
739 	fast_calibrate = cpu_khz_from_msr();
740 	if (fast_calibrate)
741 		return fast_calibrate;
742 
743 	local_irq_save(flags);
744 	fast_calibrate = quick_pit_calibrate();
745 	local_irq_restore(flags);
746 	if (fast_calibrate)
747 		return fast_calibrate;
748 
749 	/*
750 	 * Run 5 calibration loops to get the lowest frequency value
751 	 * (the best estimate). We use two different calibration modes
752 	 * here:
753 	 *
754 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
755 	 * load a timeout of 50ms. We read the time right after we
756 	 * started the timer and wait until the PIT count down reaches
757 	 * zero. In each wait loop iteration we read the TSC and check
758 	 * the delta to the previous read. We keep track of the min
759 	 * and max values of that delta. The delta is mostly defined
760 	 * by the IO time of the PIT access, so we can detect when a
761 	 * SMI/SMM disturbance happened between the two reads. If the
762 	 * maximum time is significantly larger than the minimum time,
763 	 * then we discard the result and have another try.
764 	 *
765 	 * 2) Reference counter. If available we use the HPET or the
766 	 * PMTIMER as a reference to check the sanity of that value.
767 	 * We use separate TSC readouts and check inside of the
768 	 * reference read for a SMI/SMM disturbance. We dicard
769 	 * disturbed values here as well. We do that around the PIT
770 	 * calibration delay loop as we have to wait for a certain
771 	 * amount of time anyway.
772 	 */
773 
774 	/* Preset PIT loop values */
775 	latch = CAL_LATCH;
776 	ms = CAL_MS;
777 	loopmin = CAL_PIT_LOOPS;
778 
779 	for (i = 0; i < 3; i++) {
780 		unsigned long tsc_pit_khz;
781 
782 		/*
783 		 * Read the start value and the reference count of
784 		 * hpet/pmtimer when available. Then do the PIT
785 		 * calibration, which will take at least 50ms, and
786 		 * read the end value.
787 		 */
788 		local_irq_save(flags);
789 		tsc1 = tsc_read_refs(&ref1, hpet);
790 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
791 		tsc2 = tsc_read_refs(&ref2, hpet);
792 		local_irq_restore(flags);
793 
794 		/* Pick the lowest PIT TSC calibration so far */
795 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
796 
797 		/* hpet or pmtimer available ? */
798 		if (ref1 == ref2)
799 			continue;
800 
801 		/* Check, whether the sampling was disturbed by an SMI */
802 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
803 			continue;
804 
805 		tsc2 = (tsc2 - tsc1) * 1000000LL;
806 		if (hpet)
807 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
808 		else
809 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
810 
811 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
812 
813 		/* Check the reference deviation */
814 		delta = ((u64) tsc_pit_min) * 100;
815 		do_div(delta, tsc_ref_min);
816 
817 		/*
818 		 * If both calibration results are inside a 10% window
819 		 * then we can be sure, that the calibration
820 		 * succeeded. We break out of the loop right away. We
821 		 * use the reference value, as it is more precise.
822 		 */
823 		if (delta >= 90 && delta <= 110) {
824 			pr_info("PIT calibration matches %s. %d loops\n",
825 				hpet ? "HPET" : "PMTIMER", i + 1);
826 			return tsc_ref_min;
827 		}
828 
829 		/*
830 		 * Check whether PIT failed more than once. This
831 		 * happens in virtualized environments. We need to
832 		 * give the virtual PC a slightly longer timeframe for
833 		 * the HPET/PMTIMER to make the result precise.
834 		 */
835 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
836 			latch = CAL2_LATCH;
837 			ms = CAL2_MS;
838 			loopmin = CAL2_PIT_LOOPS;
839 		}
840 	}
841 
842 	/*
843 	 * Now check the results.
844 	 */
845 	if (tsc_pit_min == ULONG_MAX) {
846 		/* PIT gave no useful value */
847 		pr_warn("Unable to calibrate against PIT\n");
848 
849 		/* We don't have an alternative source, disable TSC */
850 		if (!hpet && !ref1 && !ref2) {
851 			pr_notice("No reference (HPET/PMTIMER) available\n");
852 			return 0;
853 		}
854 
855 		/* The alternative source failed as well, disable TSC */
856 		if (tsc_ref_min == ULONG_MAX) {
857 			pr_warn("HPET/PMTIMER calibration failed\n");
858 			return 0;
859 		}
860 
861 		/* Use the alternative source */
862 		pr_info("using %s reference calibration\n",
863 			hpet ? "HPET" : "PMTIMER");
864 
865 		return tsc_ref_min;
866 	}
867 
868 	/* We don't have an alternative source, use the PIT calibration value */
869 	if (!hpet && !ref1 && !ref2) {
870 		pr_info("Using PIT calibration value\n");
871 		return tsc_pit_min;
872 	}
873 
874 	/* The alternative source failed, use the PIT calibration value */
875 	if (tsc_ref_min == ULONG_MAX) {
876 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
877 		return tsc_pit_min;
878 	}
879 
880 	/*
881 	 * The calibration values differ too much. In doubt, we use
882 	 * the PIT value as we know that there are PMTIMERs around
883 	 * running at double speed. At least we let the user know:
884 	 */
885 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
886 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
887 	pr_info("Using PIT calibration value\n");
888 	return tsc_pit_min;
889 }
890 
891 int recalibrate_cpu_khz(void)
892 {
893 #ifndef CONFIG_SMP
894 	unsigned long cpu_khz_old = cpu_khz;
895 
896 	if (!boot_cpu_has(X86_FEATURE_TSC))
897 		return -ENODEV;
898 
899 	cpu_khz = x86_platform.calibrate_cpu();
900 	tsc_khz = x86_platform.calibrate_tsc();
901 	if (tsc_khz == 0)
902 		tsc_khz = cpu_khz;
903 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
904 		cpu_khz = tsc_khz;
905 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
906 						    cpu_khz_old, cpu_khz);
907 
908 	return 0;
909 #else
910 	return -ENODEV;
911 #endif
912 }
913 
914 EXPORT_SYMBOL(recalibrate_cpu_khz);
915 
916 
917 static unsigned long long cyc2ns_suspend;
918 
919 void tsc_save_sched_clock_state(void)
920 {
921 	if (!sched_clock_stable())
922 		return;
923 
924 	cyc2ns_suspend = sched_clock();
925 }
926 
927 /*
928  * Even on processors with invariant TSC, TSC gets reset in some the
929  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
930  * arbitrary value (still sync'd across cpu's) during resume from such sleep
931  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
932  * that sched_clock() continues from the point where it was left off during
933  * suspend.
934  */
935 void tsc_restore_sched_clock_state(void)
936 {
937 	unsigned long long offset;
938 	unsigned long flags;
939 	int cpu;
940 
941 	if (!sched_clock_stable())
942 		return;
943 
944 	local_irq_save(flags);
945 
946 	/*
947 	 * We're coming out of suspend, there's no concurrency yet; don't
948 	 * bother being nice about the RCU stuff, just write to both
949 	 * data fields.
950 	 */
951 
952 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
953 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
954 
955 	offset = cyc2ns_suspend - sched_clock();
956 
957 	for_each_possible_cpu(cpu) {
958 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
959 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
960 	}
961 
962 	local_irq_restore(flags);
963 }
964 
965 #ifdef CONFIG_CPU_FREQ
966 
967 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
968  * changes.
969  *
970  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
971  * not that important because current Opteron setups do not support
972  * scaling on SMP anyroads.
973  *
974  * Should fix up last_tsc too. Currently gettimeofday in the
975  * first tick after the change will be slightly wrong.
976  */
977 
978 static unsigned int  ref_freq;
979 static unsigned long loops_per_jiffy_ref;
980 static unsigned long tsc_khz_ref;
981 
982 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
983 				void *data)
984 {
985 	struct cpufreq_freqs *freq = data;
986 	unsigned long *lpj;
987 
988 	lpj = &boot_cpu_data.loops_per_jiffy;
989 #ifdef CONFIG_SMP
990 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
991 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
992 #endif
993 
994 	if (!ref_freq) {
995 		ref_freq = freq->old;
996 		loops_per_jiffy_ref = *lpj;
997 		tsc_khz_ref = tsc_khz;
998 	}
999 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1000 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1001 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1002 
1003 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1004 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1005 			mark_tsc_unstable("cpufreq changes");
1006 
1007 		set_cyc2ns_scale(tsc_khz, freq->cpu);
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static struct notifier_block time_cpufreq_notifier_block = {
1014 	.notifier_call  = time_cpufreq_notifier
1015 };
1016 
1017 static int __init cpufreq_register_tsc_scaling(void)
1018 {
1019 	if (!boot_cpu_has(X86_FEATURE_TSC))
1020 		return 0;
1021 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1022 		return 0;
1023 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1024 				CPUFREQ_TRANSITION_NOTIFIER);
1025 	return 0;
1026 }
1027 
1028 core_initcall(cpufreq_register_tsc_scaling);
1029 
1030 #endif /* CONFIG_CPU_FREQ */
1031 
1032 #define ART_CPUID_LEAF (0x15)
1033 #define ART_MIN_DENOMINATOR (1)
1034 
1035 
1036 /*
1037  * If ART is present detect the numerator:denominator to convert to TSC
1038  */
1039 static void detect_art(void)
1040 {
1041 	unsigned int unused[2];
1042 
1043 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1044 		return;
1045 
1046 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1047 	      &art_to_tsc_numerator, unused, unused+1);
1048 
1049 	/* Don't enable ART in a VM, non-stop TSC required */
1050 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1051 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1052 	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1053 		return;
1054 
1055 	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1056 		return;
1057 
1058 	/* Make this sticky over multiple CPU init calls */
1059 	setup_force_cpu_cap(X86_FEATURE_ART);
1060 }
1061 
1062 
1063 /* clocksource code */
1064 
1065 static struct clocksource clocksource_tsc;
1066 
1067 /*
1068  * We used to compare the TSC to the cycle_last value in the clocksource
1069  * structure to avoid a nasty time-warp. This can be observed in a
1070  * very small window right after one CPU updated cycle_last under
1071  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1072  * is smaller than the cycle_last reference value due to a TSC which
1073  * is slighty behind. This delta is nowhere else observable, but in
1074  * that case it results in a forward time jump in the range of hours
1075  * due to the unsigned delta calculation of the time keeping core
1076  * code, which is necessary to support wrapping clocksources like pm
1077  * timer.
1078  *
1079  * This sanity check is now done in the core timekeeping code.
1080  * checking the result of read_tsc() - cycle_last for being negative.
1081  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1082  */
1083 static cycle_t read_tsc(struct clocksource *cs)
1084 {
1085 	return (cycle_t)rdtsc_ordered();
1086 }
1087 
1088 /*
1089  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1090  */
1091 static struct clocksource clocksource_tsc = {
1092 	.name                   = "tsc",
1093 	.rating                 = 300,
1094 	.read                   = read_tsc,
1095 	.mask                   = CLOCKSOURCE_MASK(64),
1096 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1097 				  CLOCK_SOURCE_MUST_VERIFY,
1098 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1099 };
1100 
1101 void mark_tsc_unstable(char *reason)
1102 {
1103 	if (!tsc_unstable) {
1104 		tsc_unstable = 1;
1105 		clear_sched_clock_stable();
1106 		disable_sched_clock_irqtime();
1107 		pr_info("Marking TSC unstable due to %s\n", reason);
1108 		/* Change only the rating, when not registered */
1109 		if (clocksource_tsc.mult)
1110 			clocksource_mark_unstable(&clocksource_tsc);
1111 		else {
1112 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1113 			clocksource_tsc.rating = 0;
1114 		}
1115 	}
1116 }
1117 
1118 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1119 
1120 static void __init check_system_tsc_reliable(void)
1121 {
1122 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1123 	if (is_geode_lx()) {
1124 		/* RTSC counts during suspend */
1125 #define RTSC_SUSP 0x100
1126 		unsigned long res_low, res_high;
1127 
1128 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1129 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1130 		if (res_low & RTSC_SUSP)
1131 			tsc_clocksource_reliable = 1;
1132 	}
1133 #endif
1134 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1135 		tsc_clocksource_reliable = 1;
1136 }
1137 
1138 /*
1139  * Make an educated guess if the TSC is trustworthy and synchronized
1140  * over all CPUs.
1141  */
1142 int unsynchronized_tsc(void)
1143 {
1144 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1145 		return 1;
1146 
1147 #ifdef CONFIG_SMP
1148 	if (apic_is_clustered_box())
1149 		return 1;
1150 #endif
1151 
1152 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1153 		return 0;
1154 
1155 	if (tsc_clocksource_reliable)
1156 		return 0;
1157 	/*
1158 	 * Intel systems are normally all synchronized.
1159 	 * Exceptions must mark TSC as unstable:
1160 	 */
1161 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1162 		/* assume multi socket systems are not synchronized: */
1163 		if (num_possible_cpus() > 1)
1164 			return 1;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Convert ART to TSC given numerator/denominator found in detect_art()
1172  */
1173 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1174 {
1175 	u64 tmp, res, rem;
1176 
1177 	rem = do_div(art, art_to_tsc_denominator);
1178 
1179 	res = art * art_to_tsc_numerator;
1180 	tmp = rem * art_to_tsc_numerator;
1181 
1182 	do_div(tmp, art_to_tsc_denominator);
1183 	res += tmp + art_to_tsc_offset;
1184 
1185 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1186 			.cycles = res};
1187 }
1188 EXPORT_SYMBOL(convert_art_to_tsc);
1189 
1190 static void tsc_refine_calibration_work(struct work_struct *work);
1191 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1192 /**
1193  * tsc_refine_calibration_work - Further refine tsc freq calibration
1194  * @work - ignored.
1195  *
1196  * This functions uses delayed work over a period of a
1197  * second to further refine the TSC freq value. Since this is
1198  * timer based, instead of loop based, we don't block the boot
1199  * process while this longer calibration is done.
1200  *
1201  * If there are any calibration anomalies (too many SMIs, etc),
1202  * or the refined calibration is off by 1% of the fast early
1203  * calibration, we throw out the new calibration and use the
1204  * early calibration.
1205  */
1206 static void tsc_refine_calibration_work(struct work_struct *work)
1207 {
1208 	static u64 tsc_start = -1, ref_start;
1209 	static int hpet;
1210 	u64 tsc_stop, ref_stop, delta;
1211 	unsigned long freq;
1212 
1213 	/* Don't bother refining TSC on unstable systems */
1214 	if (check_tsc_unstable())
1215 		goto out;
1216 
1217 	/*
1218 	 * Since the work is started early in boot, we may be
1219 	 * delayed the first time we expire. So set the workqueue
1220 	 * again once we know timers are working.
1221 	 */
1222 	if (tsc_start == -1) {
1223 		/*
1224 		 * Only set hpet once, to avoid mixing hardware
1225 		 * if the hpet becomes enabled later.
1226 		 */
1227 		hpet = is_hpet_enabled();
1228 		schedule_delayed_work(&tsc_irqwork, HZ);
1229 		tsc_start = tsc_read_refs(&ref_start, hpet);
1230 		return;
1231 	}
1232 
1233 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1234 
1235 	/* hpet or pmtimer available ? */
1236 	if (ref_start == ref_stop)
1237 		goto out;
1238 
1239 	/* Check, whether the sampling was disturbed by an SMI */
1240 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1241 		goto out;
1242 
1243 	delta = tsc_stop - tsc_start;
1244 	delta *= 1000000LL;
1245 	if (hpet)
1246 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1247 	else
1248 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1249 
1250 	/* Make sure we're within 1% */
1251 	if (abs(tsc_khz - freq) > tsc_khz/100)
1252 		goto out;
1253 
1254 	tsc_khz = freq;
1255 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1256 		(unsigned long)tsc_khz / 1000,
1257 		(unsigned long)tsc_khz % 1000);
1258 
1259 	/* Inform the TSC deadline clockevent devices about the recalibration */
1260 	lapic_update_tsc_freq();
1261 
1262 out:
1263 	if (boot_cpu_has(X86_FEATURE_ART))
1264 		art_related_clocksource = &clocksource_tsc;
1265 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1266 }
1267 
1268 
1269 static int __init init_tsc_clocksource(void)
1270 {
1271 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1272 		return 0;
1273 
1274 	if (tsc_clocksource_reliable)
1275 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1276 	/* lower the rating if we already know its unstable: */
1277 	if (check_tsc_unstable()) {
1278 		clocksource_tsc.rating = 0;
1279 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1280 	}
1281 
1282 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1283 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1284 
1285 	/*
1286 	 * Trust the results of the earlier calibration on systems
1287 	 * exporting a reliable TSC.
1288 	 */
1289 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1290 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1291 		return 0;
1292 	}
1293 
1294 	schedule_delayed_work(&tsc_irqwork, 0);
1295 	return 0;
1296 }
1297 /*
1298  * We use device_initcall here, to ensure we run after the hpet
1299  * is fully initialized, which may occur at fs_initcall time.
1300  */
1301 device_initcall(init_tsc_clocksource);
1302 
1303 void __init tsc_init(void)
1304 {
1305 	u64 lpj;
1306 	int cpu;
1307 
1308 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1309 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1310 		return;
1311 	}
1312 
1313 	cpu_khz = x86_platform.calibrate_cpu();
1314 	tsc_khz = x86_platform.calibrate_tsc();
1315 
1316 	/*
1317 	 * Trust non-zero tsc_khz as authorative,
1318 	 * and use it to sanity check cpu_khz,
1319 	 * which will be off if system timer is off.
1320 	 */
1321 	if (tsc_khz == 0)
1322 		tsc_khz = cpu_khz;
1323 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1324 		cpu_khz = tsc_khz;
1325 
1326 	if (!tsc_khz) {
1327 		mark_tsc_unstable("could not calculate TSC khz");
1328 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1329 		return;
1330 	}
1331 
1332 	pr_info("Detected %lu.%03lu MHz processor\n",
1333 		(unsigned long)cpu_khz / 1000,
1334 		(unsigned long)cpu_khz % 1000);
1335 
1336 	/*
1337 	 * Secondary CPUs do not run through tsc_init(), so set up
1338 	 * all the scale factors for all CPUs, assuming the same
1339 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1340 	 * up if their speed diverges)
1341 	 */
1342 	for_each_possible_cpu(cpu) {
1343 		cyc2ns_init(cpu);
1344 		set_cyc2ns_scale(tsc_khz, cpu);
1345 	}
1346 
1347 	if (tsc_disabled > 0)
1348 		return;
1349 
1350 	/* now allow native_sched_clock() to use rdtsc */
1351 
1352 	tsc_disabled = 0;
1353 	static_branch_enable(&__use_tsc);
1354 
1355 	if (!no_sched_irq_time)
1356 		enable_sched_clock_irqtime();
1357 
1358 	lpj = ((u64)tsc_khz * 1000);
1359 	do_div(lpj, HZ);
1360 	lpj_fine = lpj;
1361 
1362 	use_tsc_delay();
1363 
1364 	if (unsynchronized_tsc())
1365 		mark_tsc_unstable("TSCs unsynchronized");
1366 
1367 	check_system_tsc_reliable();
1368 
1369 	detect_art();
1370 }
1371 
1372 #ifdef CONFIG_SMP
1373 /*
1374  * If we have a constant TSC and are using the TSC for the delay loop,
1375  * we can skip clock calibration if another cpu in the same socket has already
1376  * been calibrated. This assumes that CONSTANT_TSC applies to all
1377  * cpus in the socket - this should be a safe assumption.
1378  */
1379 unsigned long calibrate_delay_is_known(void)
1380 {
1381 	int sibling, cpu = smp_processor_id();
1382 	struct cpumask *mask = topology_core_cpumask(cpu);
1383 
1384 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1385 		return 0;
1386 
1387 	if (!mask)
1388 		return 0;
1389 
1390 	sibling = cpumask_any_but(mask, cpu);
1391 	if (sibling < nr_cpu_ids)
1392 		return cpu_data(sibling).loops_per_jiffy;
1393 	return 0;
1394 }
1395 #endif
1396