1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/export.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 #include <asm/geode.h> 25 #include <asm/apic.h> 26 #include <asm/intel-family.h> 27 28 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 29 EXPORT_SYMBOL(cpu_khz); 30 31 unsigned int __read_mostly tsc_khz; 32 EXPORT_SYMBOL(tsc_khz); 33 34 /* 35 * TSC can be unstable due to cpufreq or due to unsynced TSCs 36 */ 37 static int __read_mostly tsc_unstable; 38 39 /* native_sched_clock() is called before tsc_init(), so 40 we must start with the TSC soft disabled to prevent 41 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */ 42 static int __read_mostly tsc_disabled = -1; 43 44 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 45 46 int tsc_clocksource_reliable; 47 48 static u32 art_to_tsc_numerator; 49 static u32 art_to_tsc_denominator; 50 static u64 art_to_tsc_offset; 51 struct clocksource *art_related_clocksource; 52 53 /* 54 * Use a ring-buffer like data structure, where a writer advances the head by 55 * writing a new data entry and a reader advances the tail when it observes a 56 * new entry. 57 * 58 * Writers are made to wait on readers until there's space to write a new 59 * entry. 60 * 61 * This means that we can always use an {offset, mul} pair to compute a ns 62 * value that is 'roughly' in the right direction, even if we're writing a new 63 * {offset, mul} pair during the clock read. 64 * 65 * The down-side is that we can no longer guarantee strict monotonicity anymore 66 * (assuming the TSC was that to begin with), because while we compute the 67 * intersection point of the two clock slopes and make sure the time is 68 * continuous at the point of switching; we can no longer guarantee a reader is 69 * strictly before or after the switch point. 70 * 71 * It does mean a reader no longer needs to disable IRQs in order to avoid 72 * CPU-Freq updates messing with his times, and similarly an NMI reader will 73 * no longer run the risk of hitting half-written state. 74 */ 75 76 struct cyc2ns { 77 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 78 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 79 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 80 }; /* exactly fits one cacheline */ 81 82 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 83 84 struct cyc2ns_data *cyc2ns_read_begin(void) 85 { 86 struct cyc2ns_data *head; 87 88 preempt_disable(); 89 90 head = this_cpu_read(cyc2ns.head); 91 /* 92 * Ensure we observe the entry when we observe the pointer to it. 93 * matches the wmb from cyc2ns_write_end(). 94 */ 95 smp_read_barrier_depends(); 96 head->__count++; 97 barrier(); 98 99 return head; 100 } 101 102 void cyc2ns_read_end(struct cyc2ns_data *head) 103 { 104 barrier(); 105 /* 106 * If we're the outer most nested read; update the tail pointer 107 * when we're done. This notifies possible pending writers 108 * that we've observed the head pointer and that the other 109 * entry is now free. 110 */ 111 if (!--head->__count) { 112 /* 113 * x86-TSO does not reorder writes with older reads; 114 * therefore once this write becomes visible to another 115 * cpu, we must be finished reading the cyc2ns_data. 116 * 117 * matches with cyc2ns_write_begin(). 118 */ 119 this_cpu_write(cyc2ns.tail, head); 120 } 121 preempt_enable(); 122 } 123 124 /* 125 * Begin writing a new @data entry for @cpu. 126 * 127 * Assumes some sort of write side lock; currently 'provided' by the assumption 128 * that cpufreq will call its notifiers sequentially. 129 */ 130 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 131 { 132 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 133 struct cyc2ns_data *data = c2n->data; 134 135 if (data == c2n->head) 136 data++; 137 138 /* XXX send an IPI to @cpu in order to guarantee a read? */ 139 140 /* 141 * When we observe the tail write from cyc2ns_read_end(), 142 * the cpu must be done with that entry and its safe 143 * to start writing to it. 144 */ 145 while (c2n->tail == data) 146 cpu_relax(); 147 148 return data; 149 } 150 151 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 152 { 153 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 154 155 /* 156 * Ensure the @data writes are visible before we publish the 157 * entry. Matches the data-depencency in cyc2ns_read_begin(). 158 */ 159 smp_wmb(); 160 161 ACCESS_ONCE(c2n->head) = data; 162 } 163 164 /* 165 * Accelerators for sched_clock() 166 * convert from cycles(64bits) => nanoseconds (64bits) 167 * basic equation: 168 * ns = cycles / (freq / ns_per_sec) 169 * ns = cycles * (ns_per_sec / freq) 170 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 171 * ns = cycles * (10^6 / cpu_khz) 172 * 173 * Then we use scaling math (suggested by george@mvista.com) to get: 174 * ns = cycles * (10^6 * SC / cpu_khz) / SC 175 * ns = cycles * cyc2ns_scale / SC 176 * 177 * And since SC is a constant power of two, we can convert the div 178 * into a shift. The larger SC is, the more accurate the conversion, but 179 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 180 * (64-bit result) can be used. 181 * 182 * We can use khz divisor instead of mhz to keep a better precision. 183 * (mathieu.desnoyers@polymtl.ca) 184 * 185 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 186 */ 187 188 static void cyc2ns_data_init(struct cyc2ns_data *data) 189 { 190 data->cyc2ns_mul = 0; 191 data->cyc2ns_shift = 0; 192 data->cyc2ns_offset = 0; 193 data->__count = 0; 194 } 195 196 static void cyc2ns_init(int cpu) 197 { 198 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 199 200 cyc2ns_data_init(&c2n->data[0]); 201 cyc2ns_data_init(&c2n->data[1]); 202 203 c2n->head = c2n->data; 204 c2n->tail = c2n->data; 205 } 206 207 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 208 { 209 struct cyc2ns_data *data, *tail; 210 unsigned long long ns; 211 212 /* 213 * See cyc2ns_read_*() for details; replicated in order to avoid 214 * an extra few instructions that came with the abstraction. 215 * Notable, it allows us to only do the __count and tail update 216 * dance when its actually needed. 217 */ 218 219 preempt_disable_notrace(); 220 data = this_cpu_read(cyc2ns.head); 221 tail = this_cpu_read(cyc2ns.tail); 222 223 if (likely(data == tail)) { 224 ns = data->cyc2ns_offset; 225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 226 } else { 227 data->__count++; 228 229 barrier(); 230 231 ns = data->cyc2ns_offset; 232 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 233 234 barrier(); 235 236 if (!--data->__count) 237 this_cpu_write(cyc2ns.tail, data); 238 } 239 preempt_enable_notrace(); 240 241 return ns; 242 } 243 244 static void set_cyc2ns_scale(unsigned long khz, int cpu) 245 { 246 unsigned long long tsc_now, ns_now; 247 struct cyc2ns_data *data; 248 unsigned long flags; 249 250 local_irq_save(flags); 251 sched_clock_idle_sleep_event(); 252 253 if (!khz) 254 goto done; 255 256 data = cyc2ns_write_begin(cpu); 257 258 tsc_now = rdtsc(); 259 ns_now = cycles_2_ns(tsc_now); 260 261 /* 262 * Compute a new multiplier as per the above comment and ensure our 263 * time function is continuous; see the comment near struct 264 * cyc2ns_data. 265 */ 266 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz, 267 NSEC_PER_MSEC, 0); 268 269 /* 270 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 271 * not expected to be greater than 31 due to the original published 272 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 273 * value) - refer perf_event_mmap_page documentation in perf_event.h. 274 */ 275 if (data->cyc2ns_shift == 32) { 276 data->cyc2ns_shift = 31; 277 data->cyc2ns_mul >>= 1; 278 } 279 280 data->cyc2ns_offset = ns_now - 281 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift); 282 283 cyc2ns_write_end(cpu, data); 284 285 done: 286 sched_clock_idle_wakeup_event(0); 287 local_irq_restore(flags); 288 } 289 /* 290 * Scheduler clock - returns current time in nanosec units. 291 */ 292 u64 native_sched_clock(void) 293 { 294 if (static_branch_likely(&__use_tsc)) { 295 u64 tsc_now = rdtsc(); 296 297 /* return the value in ns */ 298 return cycles_2_ns(tsc_now); 299 } 300 301 /* 302 * Fall back to jiffies if there's no TSC available: 303 * ( But note that we still use it if the TSC is marked 304 * unstable. We do this because unlike Time Of Day, 305 * the scheduler clock tolerates small errors and it's 306 * very important for it to be as fast as the platform 307 * can achieve it. ) 308 */ 309 310 /* No locking but a rare wrong value is not a big deal: */ 311 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 312 } 313 314 /* 315 * Generate a sched_clock if you already have a TSC value. 316 */ 317 u64 native_sched_clock_from_tsc(u64 tsc) 318 { 319 return cycles_2_ns(tsc); 320 } 321 322 /* We need to define a real function for sched_clock, to override the 323 weak default version */ 324 #ifdef CONFIG_PARAVIRT 325 unsigned long long sched_clock(void) 326 { 327 return paravirt_sched_clock(); 328 } 329 #else 330 unsigned long long 331 sched_clock(void) __attribute__((alias("native_sched_clock"))); 332 #endif 333 334 int check_tsc_unstable(void) 335 { 336 return tsc_unstable; 337 } 338 EXPORT_SYMBOL_GPL(check_tsc_unstable); 339 340 #ifdef CONFIG_X86_TSC 341 int __init notsc_setup(char *str) 342 { 343 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 344 tsc_disabled = 1; 345 return 1; 346 } 347 #else 348 /* 349 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 350 * in cpu/common.c 351 */ 352 int __init notsc_setup(char *str) 353 { 354 setup_clear_cpu_cap(X86_FEATURE_TSC); 355 return 1; 356 } 357 #endif 358 359 __setup("notsc", notsc_setup); 360 361 static int no_sched_irq_time; 362 363 static int __init tsc_setup(char *str) 364 { 365 if (!strcmp(str, "reliable")) 366 tsc_clocksource_reliable = 1; 367 if (!strncmp(str, "noirqtime", 9)) 368 no_sched_irq_time = 1; 369 return 1; 370 } 371 372 __setup("tsc=", tsc_setup); 373 374 #define MAX_RETRIES 5 375 #define SMI_TRESHOLD 50000 376 377 /* 378 * Read TSC and the reference counters. Take care of SMI disturbance 379 */ 380 static u64 tsc_read_refs(u64 *p, int hpet) 381 { 382 u64 t1, t2; 383 int i; 384 385 for (i = 0; i < MAX_RETRIES; i++) { 386 t1 = get_cycles(); 387 if (hpet) 388 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 389 else 390 *p = acpi_pm_read_early(); 391 t2 = get_cycles(); 392 if ((t2 - t1) < SMI_TRESHOLD) 393 return t2; 394 } 395 return ULLONG_MAX; 396 } 397 398 /* 399 * Calculate the TSC frequency from HPET reference 400 */ 401 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 402 { 403 u64 tmp; 404 405 if (hpet2 < hpet1) 406 hpet2 += 0x100000000ULL; 407 hpet2 -= hpet1; 408 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 409 do_div(tmp, 1000000); 410 do_div(deltatsc, tmp); 411 412 return (unsigned long) deltatsc; 413 } 414 415 /* 416 * Calculate the TSC frequency from PMTimer reference 417 */ 418 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 419 { 420 u64 tmp; 421 422 if (!pm1 && !pm2) 423 return ULONG_MAX; 424 425 if (pm2 < pm1) 426 pm2 += (u64)ACPI_PM_OVRRUN; 427 pm2 -= pm1; 428 tmp = pm2 * 1000000000LL; 429 do_div(tmp, PMTMR_TICKS_PER_SEC); 430 do_div(deltatsc, tmp); 431 432 return (unsigned long) deltatsc; 433 } 434 435 #define CAL_MS 10 436 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 437 #define CAL_PIT_LOOPS 1000 438 439 #define CAL2_MS 50 440 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 441 #define CAL2_PIT_LOOPS 5000 442 443 444 /* 445 * Try to calibrate the TSC against the Programmable 446 * Interrupt Timer and return the frequency of the TSC 447 * in kHz. 448 * 449 * Return ULONG_MAX on failure to calibrate. 450 */ 451 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 452 { 453 u64 tsc, t1, t2, delta; 454 unsigned long tscmin, tscmax; 455 int pitcnt; 456 457 /* Set the Gate high, disable speaker */ 458 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 459 460 /* 461 * Setup CTC channel 2* for mode 0, (interrupt on terminal 462 * count mode), binary count. Set the latch register to 50ms 463 * (LSB then MSB) to begin countdown. 464 */ 465 outb(0xb0, 0x43); 466 outb(latch & 0xff, 0x42); 467 outb(latch >> 8, 0x42); 468 469 tsc = t1 = t2 = get_cycles(); 470 471 pitcnt = 0; 472 tscmax = 0; 473 tscmin = ULONG_MAX; 474 while ((inb(0x61) & 0x20) == 0) { 475 t2 = get_cycles(); 476 delta = t2 - tsc; 477 tsc = t2; 478 if ((unsigned long) delta < tscmin) 479 tscmin = (unsigned int) delta; 480 if ((unsigned long) delta > tscmax) 481 tscmax = (unsigned int) delta; 482 pitcnt++; 483 } 484 485 /* 486 * Sanity checks: 487 * 488 * If we were not able to read the PIT more than loopmin 489 * times, then we have been hit by a massive SMI 490 * 491 * If the maximum is 10 times larger than the minimum, 492 * then we got hit by an SMI as well. 493 */ 494 if (pitcnt < loopmin || tscmax > 10 * tscmin) 495 return ULONG_MAX; 496 497 /* Calculate the PIT value */ 498 delta = t2 - t1; 499 do_div(delta, ms); 500 return delta; 501 } 502 503 /* 504 * This reads the current MSB of the PIT counter, and 505 * checks if we are running on sufficiently fast and 506 * non-virtualized hardware. 507 * 508 * Our expectations are: 509 * 510 * - the PIT is running at roughly 1.19MHz 511 * 512 * - each IO is going to take about 1us on real hardware, 513 * but we allow it to be much faster (by a factor of 10) or 514 * _slightly_ slower (ie we allow up to a 2us read+counter 515 * update - anything else implies a unacceptably slow CPU 516 * or PIT for the fast calibration to work. 517 * 518 * - with 256 PIT ticks to read the value, we have 214us to 519 * see the same MSB (and overhead like doing a single TSC 520 * read per MSB value etc). 521 * 522 * - We're doing 2 reads per loop (LSB, MSB), and we expect 523 * them each to take about a microsecond on real hardware. 524 * So we expect a count value of around 100. But we'll be 525 * generous, and accept anything over 50. 526 * 527 * - if the PIT is stuck, and we see *many* more reads, we 528 * return early (and the next caller of pit_expect_msb() 529 * then consider it a failure when they don't see the 530 * next expected value). 531 * 532 * These expectations mean that we know that we have seen the 533 * transition from one expected value to another with a fairly 534 * high accuracy, and we didn't miss any events. We can thus 535 * use the TSC value at the transitions to calculate a pretty 536 * good value for the TSC frequencty. 537 */ 538 static inline int pit_verify_msb(unsigned char val) 539 { 540 /* Ignore LSB */ 541 inb(0x42); 542 return inb(0x42) == val; 543 } 544 545 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 546 { 547 int count; 548 u64 tsc = 0, prev_tsc = 0; 549 550 for (count = 0; count < 50000; count++) { 551 if (!pit_verify_msb(val)) 552 break; 553 prev_tsc = tsc; 554 tsc = get_cycles(); 555 } 556 *deltap = get_cycles() - prev_tsc; 557 *tscp = tsc; 558 559 /* 560 * We require _some_ success, but the quality control 561 * will be based on the error terms on the TSC values. 562 */ 563 return count > 5; 564 } 565 566 /* 567 * How many MSB values do we want to see? We aim for 568 * a maximum error rate of 500ppm (in practice the 569 * real error is much smaller), but refuse to spend 570 * more than 50ms on it. 571 */ 572 #define MAX_QUICK_PIT_MS 50 573 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 574 575 static unsigned long quick_pit_calibrate(void) 576 { 577 int i; 578 u64 tsc, delta; 579 unsigned long d1, d2; 580 581 /* Set the Gate high, disable speaker */ 582 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 583 584 /* 585 * Counter 2, mode 0 (one-shot), binary count 586 * 587 * NOTE! Mode 2 decrements by two (and then the 588 * output is flipped each time, giving the same 589 * final output frequency as a decrement-by-one), 590 * so mode 0 is much better when looking at the 591 * individual counts. 592 */ 593 outb(0xb0, 0x43); 594 595 /* Start at 0xffff */ 596 outb(0xff, 0x42); 597 outb(0xff, 0x42); 598 599 /* 600 * The PIT starts counting at the next edge, so we 601 * need to delay for a microsecond. The easiest way 602 * to do that is to just read back the 16-bit counter 603 * once from the PIT. 604 */ 605 pit_verify_msb(0); 606 607 if (pit_expect_msb(0xff, &tsc, &d1)) { 608 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 609 if (!pit_expect_msb(0xff-i, &delta, &d2)) 610 break; 611 612 delta -= tsc; 613 614 /* 615 * Extrapolate the error and fail fast if the error will 616 * never be below 500 ppm. 617 */ 618 if (i == 1 && 619 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 620 return 0; 621 622 /* 623 * Iterate until the error is less than 500 ppm 624 */ 625 if (d1+d2 >= delta >> 11) 626 continue; 627 628 /* 629 * Check the PIT one more time to verify that 630 * all TSC reads were stable wrt the PIT. 631 * 632 * This also guarantees serialization of the 633 * last cycle read ('d2') in pit_expect_msb. 634 */ 635 if (!pit_verify_msb(0xfe - i)) 636 break; 637 goto success; 638 } 639 } 640 pr_info("Fast TSC calibration failed\n"); 641 return 0; 642 643 success: 644 /* 645 * Ok, if we get here, then we've seen the 646 * MSB of the PIT decrement 'i' times, and the 647 * error has shrunk to less than 500 ppm. 648 * 649 * As a result, we can depend on there not being 650 * any odd delays anywhere, and the TSC reads are 651 * reliable (within the error). 652 * 653 * kHz = ticks / time-in-seconds / 1000; 654 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 655 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 656 */ 657 delta *= PIT_TICK_RATE; 658 do_div(delta, i*256*1000); 659 pr_info("Fast TSC calibration using PIT\n"); 660 return delta; 661 } 662 663 /** 664 * native_calibrate_tsc 665 * Determine TSC frequency via CPUID, else return 0. 666 */ 667 unsigned long native_calibrate_tsc(void) 668 { 669 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 670 unsigned int crystal_khz; 671 672 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 673 return 0; 674 675 if (boot_cpu_data.cpuid_level < 0x15) 676 return 0; 677 678 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 679 680 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 681 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 682 683 if (ebx_numerator == 0 || eax_denominator == 0) 684 return 0; 685 686 crystal_khz = ecx_hz / 1000; 687 688 if (crystal_khz == 0) { 689 switch (boot_cpu_data.x86_model) { 690 case INTEL_FAM6_SKYLAKE_MOBILE: 691 case INTEL_FAM6_SKYLAKE_DESKTOP: 692 case INTEL_FAM6_KABYLAKE_MOBILE: 693 case INTEL_FAM6_KABYLAKE_DESKTOP: 694 crystal_khz = 24000; /* 24.0 MHz */ 695 break; 696 case INTEL_FAM6_SKYLAKE_X: 697 crystal_khz = 25000; /* 25.0 MHz */ 698 break; 699 case INTEL_FAM6_ATOM_GOLDMONT: 700 crystal_khz = 19200; /* 19.2 MHz */ 701 break; 702 } 703 } 704 705 return crystal_khz * ebx_numerator / eax_denominator; 706 } 707 708 static unsigned long cpu_khz_from_cpuid(void) 709 { 710 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 711 712 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 713 return 0; 714 715 if (boot_cpu_data.cpuid_level < 0x16) 716 return 0; 717 718 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 719 720 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 721 722 return eax_base_mhz * 1000; 723 } 724 725 /** 726 * native_calibrate_cpu - calibrate the cpu on boot 727 */ 728 unsigned long native_calibrate_cpu(void) 729 { 730 u64 tsc1, tsc2, delta, ref1, ref2; 731 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 732 unsigned long flags, latch, ms, fast_calibrate; 733 int hpet = is_hpet_enabled(), i, loopmin; 734 735 fast_calibrate = cpu_khz_from_cpuid(); 736 if (fast_calibrate) 737 return fast_calibrate; 738 739 fast_calibrate = cpu_khz_from_msr(); 740 if (fast_calibrate) 741 return fast_calibrate; 742 743 local_irq_save(flags); 744 fast_calibrate = quick_pit_calibrate(); 745 local_irq_restore(flags); 746 if (fast_calibrate) 747 return fast_calibrate; 748 749 /* 750 * Run 5 calibration loops to get the lowest frequency value 751 * (the best estimate). We use two different calibration modes 752 * here: 753 * 754 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 755 * load a timeout of 50ms. We read the time right after we 756 * started the timer and wait until the PIT count down reaches 757 * zero. In each wait loop iteration we read the TSC and check 758 * the delta to the previous read. We keep track of the min 759 * and max values of that delta. The delta is mostly defined 760 * by the IO time of the PIT access, so we can detect when a 761 * SMI/SMM disturbance happened between the two reads. If the 762 * maximum time is significantly larger than the minimum time, 763 * then we discard the result and have another try. 764 * 765 * 2) Reference counter. If available we use the HPET or the 766 * PMTIMER as a reference to check the sanity of that value. 767 * We use separate TSC readouts and check inside of the 768 * reference read for a SMI/SMM disturbance. We dicard 769 * disturbed values here as well. We do that around the PIT 770 * calibration delay loop as we have to wait for a certain 771 * amount of time anyway. 772 */ 773 774 /* Preset PIT loop values */ 775 latch = CAL_LATCH; 776 ms = CAL_MS; 777 loopmin = CAL_PIT_LOOPS; 778 779 for (i = 0; i < 3; i++) { 780 unsigned long tsc_pit_khz; 781 782 /* 783 * Read the start value and the reference count of 784 * hpet/pmtimer when available. Then do the PIT 785 * calibration, which will take at least 50ms, and 786 * read the end value. 787 */ 788 local_irq_save(flags); 789 tsc1 = tsc_read_refs(&ref1, hpet); 790 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 791 tsc2 = tsc_read_refs(&ref2, hpet); 792 local_irq_restore(flags); 793 794 /* Pick the lowest PIT TSC calibration so far */ 795 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 796 797 /* hpet or pmtimer available ? */ 798 if (ref1 == ref2) 799 continue; 800 801 /* Check, whether the sampling was disturbed by an SMI */ 802 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 803 continue; 804 805 tsc2 = (tsc2 - tsc1) * 1000000LL; 806 if (hpet) 807 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 808 else 809 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 810 811 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 812 813 /* Check the reference deviation */ 814 delta = ((u64) tsc_pit_min) * 100; 815 do_div(delta, tsc_ref_min); 816 817 /* 818 * If both calibration results are inside a 10% window 819 * then we can be sure, that the calibration 820 * succeeded. We break out of the loop right away. We 821 * use the reference value, as it is more precise. 822 */ 823 if (delta >= 90 && delta <= 110) { 824 pr_info("PIT calibration matches %s. %d loops\n", 825 hpet ? "HPET" : "PMTIMER", i + 1); 826 return tsc_ref_min; 827 } 828 829 /* 830 * Check whether PIT failed more than once. This 831 * happens in virtualized environments. We need to 832 * give the virtual PC a slightly longer timeframe for 833 * the HPET/PMTIMER to make the result precise. 834 */ 835 if (i == 1 && tsc_pit_min == ULONG_MAX) { 836 latch = CAL2_LATCH; 837 ms = CAL2_MS; 838 loopmin = CAL2_PIT_LOOPS; 839 } 840 } 841 842 /* 843 * Now check the results. 844 */ 845 if (tsc_pit_min == ULONG_MAX) { 846 /* PIT gave no useful value */ 847 pr_warn("Unable to calibrate against PIT\n"); 848 849 /* We don't have an alternative source, disable TSC */ 850 if (!hpet && !ref1 && !ref2) { 851 pr_notice("No reference (HPET/PMTIMER) available\n"); 852 return 0; 853 } 854 855 /* The alternative source failed as well, disable TSC */ 856 if (tsc_ref_min == ULONG_MAX) { 857 pr_warn("HPET/PMTIMER calibration failed\n"); 858 return 0; 859 } 860 861 /* Use the alternative source */ 862 pr_info("using %s reference calibration\n", 863 hpet ? "HPET" : "PMTIMER"); 864 865 return tsc_ref_min; 866 } 867 868 /* We don't have an alternative source, use the PIT calibration value */ 869 if (!hpet && !ref1 && !ref2) { 870 pr_info("Using PIT calibration value\n"); 871 return tsc_pit_min; 872 } 873 874 /* The alternative source failed, use the PIT calibration value */ 875 if (tsc_ref_min == ULONG_MAX) { 876 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 877 return tsc_pit_min; 878 } 879 880 /* 881 * The calibration values differ too much. In doubt, we use 882 * the PIT value as we know that there are PMTIMERs around 883 * running at double speed. At least we let the user know: 884 */ 885 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 886 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 887 pr_info("Using PIT calibration value\n"); 888 return tsc_pit_min; 889 } 890 891 int recalibrate_cpu_khz(void) 892 { 893 #ifndef CONFIG_SMP 894 unsigned long cpu_khz_old = cpu_khz; 895 896 if (!boot_cpu_has(X86_FEATURE_TSC)) 897 return -ENODEV; 898 899 cpu_khz = x86_platform.calibrate_cpu(); 900 tsc_khz = x86_platform.calibrate_tsc(); 901 if (tsc_khz == 0) 902 tsc_khz = cpu_khz; 903 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 904 cpu_khz = tsc_khz; 905 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 906 cpu_khz_old, cpu_khz); 907 908 return 0; 909 #else 910 return -ENODEV; 911 #endif 912 } 913 914 EXPORT_SYMBOL(recalibrate_cpu_khz); 915 916 917 static unsigned long long cyc2ns_suspend; 918 919 void tsc_save_sched_clock_state(void) 920 { 921 if (!sched_clock_stable()) 922 return; 923 924 cyc2ns_suspend = sched_clock(); 925 } 926 927 /* 928 * Even on processors with invariant TSC, TSC gets reset in some the 929 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 930 * arbitrary value (still sync'd across cpu's) during resume from such sleep 931 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 932 * that sched_clock() continues from the point where it was left off during 933 * suspend. 934 */ 935 void tsc_restore_sched_clock_state(void) 936 { 937 unsigned long long offset; 938 unsigned long flags; 939 int cpu; 940 941 if (!sched_clock_stable()) 942 return; 943 944 local_irq_save(flags); 945 946 /* 947 * We're coming out of suspend, there's no concurrency yet; don't 948 * bother being nice about the RCU stuff, just write to both 949 * data fields. 950 */ 951 952 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 953 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 954 955 offset = cyc2ns_suspend - sched_clock(); 956 957 for_each_possible_cpu(cpu) { 958 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 959 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 960 } 961 962 local_irq_restore(flags); 963 } 964 965 #ifdef CONFIG_CPU_FREQ 966 967 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 968 * changes. 969 * 970 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 971 * not that important because current Opteron setups do not support 972 * scaling on SMP anyroads. 973 * 974 * Should fix up last_tsc too. Currently gettimeofday in the 975 * first tick after the change will be slightly wrong. 976 */ 977 978 static unsigned int ref_freq; 979 static unsigned long loops_per_jiffy_ref; 980 static unsigned long tsc_khz_ref; 981 982 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 983 void *data) 984 { 985 struct cpufreq_freqs *freq = data; 986 unsigned long *lpj; 987 988 lpj = &boot_cpu_data.loops_per_jiffy; 989 #ifdef CONFIG_SMP 990 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 991 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 992 #endif 993 994 if (!ref_freq) { 995 ref_freq = freq->old; 996 loops_per_jiffy_ref = *lpj; 997 tsc_khz_ref = tsc_khz; 998 } 999 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 1000 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 1001 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 1002 1003 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 1004 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 1005 mark_tsc_unstable("cpufreq changes"); 1006 1007 set_cyc2ns_scale(tsc_khz, freq->cpu); 1008 } 1009 1010 return 0; 1011 } 1012 1013 static struct notifier_block time_cpufreq_notifier_block = { 1014 .notifier_call = time_cpufreq_notifier 1015 }; 1016 1017 static int __init cpufreq_register_tsc_scaling(void) 1018 { 1019 if (!boot_cpu_has(X86_FEATURE_TSC)) 1020 return 0; 1021 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1022 return 0; 1023 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1024 CPUFREQ_TRANSITION_NOTIFIER); 1025 return 0; 1026 } 1027 1028 core_initcall(cpufreq_register_tsc_scaling); 1029 1030 #endif /* CONFIG_CPU_FREQ */ 1031 1032 #define ART_CPUID_LEAF (0x15) 1033 #define ART_MIN_DENOMINATOR (1) 1034 1035 1036 /* 1037 * If ART is present detect the numerator:denominator to convert to TSC 1038 */ 1039 static void detect_art(void) 1040 { 1041 unsigned int unused[2]; 1042 1043 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1044 return; 1045 1046 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1047 &art_to_tsc_numerator, unused, unused+1); 1048 1049 /* Don't enable ART in a VM, non-stop TSC required */ 1050 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1051 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1052 art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1053 return; 1054 1055 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset)) 1056 return; 1057 1058 /* Make this sticky over multiple CPU init calls */ 1059 setup_force_cpu_cap(X86_FEATURE_ART); 1060 } 1061 1062 1063 /* clocksource code */ 1064 1065 static struct clocksource clocksource_tsc; 1066 1067 /* 1068 * We used to compare the TSC to the cycle_last value in the clocksource 1069 * structure to avoid a nasty time-warp. This can be observed in a 1070 * very small window right after one CPU updated cycle_last under 1071 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1072 * is smaller than the cycle_last reference value due to a TSC which 1073 * is slighty behind. This delta is nowhere else observable, but in 1074 * that case it results in a forward time jump in the range of hours 1075 * due to the unsigned delta calculation of the time keeping core 1076 * code, which is necessary to support wrapping clocksources like pm 1077 * timer. 1078 * 1079 * This sanity check is now done in the core timekeeping code. 1080 * checking the result of read_tsc() - cycle_last for being negative. 1081 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1082 */ 1083 static cycle_t read_tsc(struct clocksource *cs) 1084 { 1085 return (cycle_t)rdtsc_ordered(); 1086 } 1087 1088 /* 1089 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1090 */ 1091 static struct clocksource clocksource_tsc = { 1092 .name = "tsc", 1093 .rating = 300, 1094 .read = read_tsc, 1095 .mask = CLOCKSOURCE_MASK(64), 1096 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1097 CLOCK_SOURCE_MUST_VERIFY, 1098 .archdata = { .vclock_mode = VCLOCK_TSC }, 1099 }; 1100 1101 void mark_tsc_unstable(char *reason) 1102 { 1103 if (!tsc_unstable) { 1104 tsc_unstable = 1; 1105 clear_sched_clock_stable(); 1106 disable_sched_clock_irqtime(); 1107 pr_info("Marking TSC unstable due to %s\n", reason); 1108 /* Change only the rating, when not registered */ 1109 if (clocksource_tsc.mult) 1110 clocksource_mark_unstable(&clocksource_tsc); 1111 else { 1112 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1113 clocksource_tsc.rating = 0; 1114 } 1115 } 1116 } 1117 1118 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1119 1120 static void __init check_system_tsc_reliable(void) 1121 { 1122 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1123 if (is_geode_lx()) { 1124 /* RTSC counts during suspend */ 1125 #define RTSC_SUSP 0x100 1126 unsigned long res_low, res_high; 1127 1128 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1129 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1130 if (res_low & RTSC_SUSP) 1131 tsc_clocksource_reliable = 1; 1132 } 1133 #endif 1134 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1135 tsc_clocksource_reliable = 1; 1136 } 1137 1138 /* 1139 * Make an educated guess if the TSC is trustworthy and synchronized 1140 * over all CPUs. 1141 */ 1142 int unsynchronized_tsc(void) 1143 { 1144 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1145 return 1; 1146 1147 #ifdef CONFIG_SMP 1148 if (apic_is_clustered_box()) 1149 return 1; 1150 #endif 1151 1152 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1153 return 0; 1154 1155 if (tsc_clocksource_reliable) 1156 return 0; 1157 /* 1158 * Intel systems are normally all synchronized. 1159 * Exceptions must mark TSC as unstable: 1160 */ 1161 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1162 /* assume multi socket systems are not synchronized: */ 1163 if (num_possible_cpus() > 1) 1164 return 1; 1165 } 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * Convert ART to TSC given numerator/denominator found in detect_art() 1172 */ 1173 struct system_counterval_t convert_art_to_tsc(cycle_t art) 1174 { 1175 u64 tmp, res, rem; 1176 1177 rem = do_div(art, art_to_tsc_denominator); 1178 1179 res = art * art_to_tsc_numerator; 1180 tmp = rem * art_to_tsc_numerator; 1181 1182 do_div(tmp, art_to_tsc_denominator); 1183 res += tmp + art_to_tsc_offset; 1184 1185 return (struct system_counterval_t) {.cs = art_related_clocksource, 1186 .cycles = res}; 1187 } 1188 EXPORT_SYMBOL(convert_art_to_tsc); 1189 1190 static void tsc_refine_calibration_work(struct work_struct *work); 1191 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1192 /** 1193 * tsc_refine_calibration_work - Further refine tsc freq calibration 1194 * @work - ignored. 1195 * 1196 * This functions uses delayed work over a period of a 1197 * second to further refine the TSC freq value. Since this is 1198 * timer based, instead of loop based, we don't block the boot 1199 * process while this longer calibration is done. 1200 * 1201 * If there are any calibration anomalies (too many SMIs, etc), 1202 * or the refined calibration is off by 1% of the fast early 1203 * calibration, we throw out the new calibration and use the 1204 * early calibration. 1205 */ 1206 static void tsc_refine_calibration_work(struct work_struct *work) 1207 { 1208 static u64 tsc_start = -1, ref_start; 1209 static int hpet; 1210 u64 tsc_stop, ref_stop, delta; 1211 unsigned long freq; 1212 1213 /* Don't bother refining TSC on unstable systems */ 1214 if (check_tsc_unstable()) 1215 goto out; 1216 1217 /* 1218 * Since the work is started early in boot, we may be 1219 * delayed the first time we expire. So set the workqueue 1220 * again once we know timers are working. 1221 */ 1222 if (tsc_start == -1) { 1223 /* 1224 * Only set hpet once, to avoid mixing hardware 1225 * if the hpet becomes enabled later. 1226 */ 1227 hpet = is_hpet_enabled(); 1228 schedule_delayed_work(&tsc_irqwork, HZ); 1229 tsc_start = tsc_read_refs(&ref_start, hpet); 1230 return; 1231 } 1232 1233 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1234 1235 /* hpet or pmtimer available ? */ 1236 if (ref_start == ref_stop) 1237 goto out; 1238 1239 /* Check, whether the sampling was disturbed by an SMI */ 1240 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1241 goto out; 1242 1243 delta = tsc_stop - tsc_start; 1244 delta *= 1000000LL; 1245 if (hpet) 1246 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1247 else 1248 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1249 1250 /* Make sure we're within 1% */ 1251 if (abs(tsc_khz - freq) > tsc_khz/100) 1252 goto out; 1253 1254 tsc_khz = freq; 1255 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1256 (unsigned long)tsc_khz / 1000, 1257 (unsigned long)tsc_khz % 1000); 1258 1259 /* Inform the TSC deadline clockevent devices about the recalibration */ 1260 lapic_update_tsc_freq(); 1261 1262 out: 1263 if (boot_cpu_has(X86_FEATURE_ART)) 1264 art_related_clocksource = &clocksource_tsc; 1265 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1266 } 1267 1268 1269 static int __init init_tsc_clocksource(void) 1270 { 1271 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz) 1272 return 0; 1273 1274 if (tsc_clocksource_reliable) 1275 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1276 /* lower the rating if we already know its unstable: */ 1277 if (check_tsc_unstable()) { 1278 clocksource_tsc.rating = 0; 1279 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1280 } 1281 1282 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1283 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1284 1285 /* 1286 * Trust the results of the earlier calibration on systems 1287 * exporting a reliable TSC. 1288 */ 1289 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1290 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1291 return 0; 1292 } 1293 1294 schedule_delayed_work(&tsc_irqwork, 0); 1295 return 0; 1296 } 1297 /* 1298 * We use device_initcall here, to ensure we run after the hpet 1299 * is fully initialized, which may occur at fs_initcall time. 1300 */ 1301 device_initcall(init_tsc_clocksource); 1302 1303 void __init tsc_init(void) 1304 { 1305 u64 lpj; 1306 int cpu; 1307 1308 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1309 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1310 return; 1311 } 1312 1313 cpu_khz = x86_platform.calibrate_cpu(); 1314 tsc_khz = x86_platform.calibrate_tsc(); 1315 1316 /* 1317 * Trust non-zero tsc_khz as authorative, 1318 * and use it to sanity check cpu_khz, 1319 * which will be off if system timer is off. 1320 */ 1321 if (tsc_khz == 0) 1322 tsc_khz = cpu_khz; 1323 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1324 cpu_khz = tsc_khz; 1325 1326 if (!tsc_khz) { 1327 mark_tsc_unstable("could not calculate TSC khz"); 1328 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1329 return; 1330 } 1331 1332 pr_info("Detected %lu.%03lu MHz processor\n", 1333 (unsigned long)cpu_khz / 1000, 1334 (unsigned long)cpu_khz % 1000); 1335 1336 /* 1337 * Secondary CPUs do not run through tsc_init(), so set up 1338 * all the scale factors for all CPUs, assuming the same 1339 * speed as the bootup CPU. (cpufreq notifiers will fix this 1340 * up if their speed diverges) 1341 */ 1342 for_each_possible_cpu(cpu) { 1343 cyc2ns_init(cpu); 1344 set_cyc2ns_scale(tsc_khz, cpu); 1345 } 1346 1347 if (tsc_disabled > 0) 1348 return; 1349 1350 /* now allow native_sched_clock() to use rdtsc */ 1351 1352 tsc_disabled = 0; 1353 static_branch_enable(&__use_tsc); 1354 1355 if (!no_sched_irq_time) 1356 enable_sched_clock_irqtime(); 1357 1358 lpj = ((u64)tsc_khz * 1000); 1359 do_div(lpj, HZ); 1360 lpj_fine = lpj; 1361 1362 use_tsc_delay(); 1363 1364 if (unsynchronized_tsc()) 1365 mark_tsc_unstable("TSCs unsynchronized"); 1366 1367 check_system_tsc_reliable(); 1368 1369 detect_art(); 1370 } 1371 1372 #ifdef CONFIG_SMP 1373 /* 1374 * If we have a constant TSC and are using the TSC for the delay loop, 1375 * we can skip clock calibration if another cpu in the same socket has already 1376 * been calibrated. This assumes that CONSTANT_TSC applies to all 1377 * cpus in the socket - this should be a safe assumption. 1378 */ 1379 unsigned long calibrate_delay_is_known(void) 1380 { 1381 int sibling, cpu = smp_processor_id(); 1382 struct cpumask *mask = topology_core_cpumask(cpu); 1383 1384 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1385 return 0; 1386 1387 if (!mask) 1388 return 0; 1389 1390 sibling = cpumask_any_but(mask, cpu); 1391 if (sibling < nr_cpu_ids) 1392 return cpu_data(sibling).loops_per_jiffy; 1393 return 0; 1394 } 1395 #endif 1396