xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 75f25bd3)
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/clocksource.h>
10 #include <linux/percpu.h>
11 #include <linux/timex.h>
12 
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
19 #include <asm/nmi.h>
20 #include <asm/x86_init.h>
21 
22 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
23 EXPORT_SYMBOL(cpu_khz);
24 
25 unsigned int __read_mostly tsc_khz;
26 EXPORT_SYMBOL(tsc_khz);
27 
28 /*
29  * TSC can be unstable due to cpufreq or due to unsynced TSCs
30  */
31 static int __read_mostly tsc_unstable;
32 
33 /* native_sched_clock() is called before tsc_init(), so
34    we must start with the TSC soft disabled to prevent
35    erroneous rdtsc usage on !cpu_has_tsc processors */
36 static int __read_mostly tsc_disabled = -1;
37 
38 static int tsc_clocksource_reliable;
39 /*
40  * Scheduler clock - returns current time in nanosec units.
41  */
42 u64 native_sched_clock(void)
43 {
44 	u64 this_offset;
45 
46 	/*
47 	 * Fall back to jiffies if there's no TSC available:
48 	 * ( But note that we still use it if the TSC is marked
49 	 *   unstable. We do this because unlike Time Of Day,
50 	 *   the scheduler clock tolerates small errors and it's
51 	 *   very important for it to be as fast as the platform
52 	 *   can achieve it. )
53 	 */
54 	if (unlikely(tsc_disabled)) {
55 		/* No locking but a rare wrong value is not a big deal: */
56 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
57 	}
58 
59 	/* read the Time Stamp Counter: */
60 	rdtscll(this_offset);
61 
62 	/* return the value in ns */
63 	return __cycles_2_ns(this_offset);
64 }
65 
66 /* We need to define a real function for sched_clock, to override the
67    weak default version */
68 #ifdef CONFIG_PARAVIRT
69 unsigned long long sched_clock(void)
70 {
71 	return paravirt_sched_clock();
72 }
73 #else
74 unsigned long long
75 sched_clock(void) __attribute__((alias("native_sched_clock")));
76 #endif
77 
78 int check_tsc_unstable(void)
79 {
80 	return tsc_unstable;
81 }
82 EXPORT_SYMBOL_GPL(check_tsc_unstable);
83 
84 #ifdef CONFIG_X86_TSC
85 int __init notsc_setup(char *str)
86 {
87 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
88 			"cannot disable TSC completely.\n");
89 	tsc_disabled = 1;
90 	return 1;
91 }
92 #else
93 /*
94  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
95  * in cpu/common.c
96  */
97 int __init notsc_setup(char *str)
98 {
99 	setup_clear_cpu_cap(X86_FEATURE_TSC);
100 	return 1;
101 }
102 #endif
103 
104 __setup("notsc", notsc_setup);
105 
106 static int no_sched_irq_time;
107 
108 static int __init tsc_setup(char *str)
109 {
110 	if (!strcmp(str, "reliable"))
111 		tsc_clocksource_reliable = 1;
112 	if (!strncmp(str, "noirqtime", 9))
113 		no_sched_irq_time = 1;
114 	return 1;
115 }
116 
117 __setup("tsc=", tsc_setup);
118 
119 #define MAX_RETRIES     5
120 #define SMI_TRESHOLD    50000
121 
122 /*
123  * Read TSC and the reference counters. Take care of SMI disturbance
124  */
125 static u64 tsc_read_refs(u64 *p, int hpet)
126 {
127 	u64 t1, t2;
128 	int i;
129 
130 	for (i = 0; i < MAX_RETRIES; i++) {
131 		t1 = get_cycles();
132 		if (hpet)
133 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
134 		else
135 			*p = acpi_pm_read_early();
136 		t2 = get_cycles();
137 		if ((t2 - t1) < SMI_TRESHOLD)
138 			return t2;
139 	}
140 	return ULLONG_MAX;
141 }
142 
143 /*
144  * Calculate the TSC frequency from HPET reference
145  */
146 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
147 {
148 	u64 tmp;
149 
150 	if (hpet2 < hpet1)
151 		hpet2 += 0x100000000ULL;
152 	hpet2 -= hpet1;
153 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
154 	do_div(tmp, 1000000);
155 	do_div(deltatsc, tmp);
156 
157 	return (unsigned long) deltatsc;
158 }
159 
160 /*
161  * Calculate the TSC frequency from PMTimer reference
162  */
163 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
164 {
165 	u64 tmp;
166 
167 	if (!pm1 && !pm2)
168 		return ULONG_MAX;
169 
170 	if (pm2 < pm1)
171 		pm2 += (u64)ACPI_PM_OVRRUN;
172 	pm2 -= pm1;
173 	tmp = pm2 * 1000000000LL;
174 	do_div(tmp, PMTMR_TICKS_PER_SEC);
175 	do_div(deltatsc, tmp);
176 
177 	return (unsigned long) deltatsc;
178 }
179 
180 #define CAL_MS		10
181 #define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
182 #define CAL_PIT_LOOPS	1000
183 
184 #define CAL2_MS		50
185 #define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
186 #define CAL2_PIT_LOOPS	5000
187 
188 
189 /*
190  * Try to calibrate the TSC against the Programmable
191  * Interrupt Timer and return the frequency of the TSC
192  * in kHz.
193  *
194  * Return ULONG_MAX on failure to calibrate.
195  */
196 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
197 {
198 	u64 tsc, t1, t2, delta;
199 	unsigned long tscmin, tscmax;
200 	int pitcnt;
201 
202 	/* Set the Gate high, disable speaker */
203 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
204 
205 	/*
206 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
207 	 * count mode), binary count. Set the latch register to 50ms
208 	 * (LSB then MSB) to begin countdown.
209 	 */
210 	outb(0xb0, 0x43);
211 	outb(latch & 0xff, 0x42);
212 	outb(latch >> 8, 0x42);
213 
214 	tsc = t1 = t2 = get_cycles();
215 
216 	pitcnt = 0;
217 	tscmax = 0;
218 	tscmin = ULONG_MAX;
219 	while ((inb(0x61) & 0x20) == 0) {
220 		t2 = get_cycles();
221 		delta = t2 - tsc;
222 		tsc = t2;
223 		if ((unsigned long) delta < tscmin)
224 			tscmin = (unsigned int) delta;
225 		if ((unsigned long) delta > tscmax)
226 			tscmax = (unsigned int) delta;
227 		pitcnt++;
228 	}
229 
230 	/*
231 	 * Sanity checks:
232 	 *
233 	 * If we were not able to read the PIT more than loopmin
234 	 * times, then we have been hit by a massive SMI
235 	 *
236 	 * If the maximum is 10 times larger than the minimum,
237 	 * then we got hit by an SMI as well.
238 	 */
239 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
240 		return ULONG_MAX;
241 
242 	/* Calculate the PIT value */
243 	delta = t2 - t1;
244 	do_div(delta, ms);
245 	return delta;
246 }
247 
248 /*
249  * This reads the current MSB of the PIT counter, and
250  * checks if we are running on sufficiently fast and
251  * non-virtualized hardware.
252  *
253  * Our expectations are:
254  *
255  *  - the PIT is running at roughly 1.19MHz
256  *
257  *  - each IO is going to take about 1us on real hardware,
258  *    but we allow it to be much faster (by a factor of 10) or
259  *    _slightly_ slower (ie we allow up to a 2us read+counter
260  *    update - anything else implies a unacceptably slow CPU
261  *    or PIT for the fast calibration to work.
262  *
263  *  - with 256 PIT ticks to read the value, we have 214us to
264  *    see the same MSB (and overhead like doing a single TSC
265  *    read per MSB value etc).
266  *
267  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
268  *    them each to take about a microsecond on real hardware.
269  *    So we expect a count value of around 100. But we'll be
270  *    generous, and accept anything over 50.
271  *
272  *  - if the PIT is stuck, and we see *many* more reads, we
273  *    return early (and the next caller of pit_expect_msb()
274  *    then consider it a failure when they don't see the
275  *    next expected value).
276  *
277  * These expectations mean that we know that we have seen the
278  * transition from one expected value to another with a fairly
279  * high accuracy, and we didn't miss any events. We can thus
280  * use the TSC value at the transitions to calculate a pretty
281  * good value for the TSC frequencty.
282  */
283 static inline int pit_verify_msb(unsigned char val)
284 {
285 	/* Ignore LSB */
286 	inb(0x42);
287 	return inb(0x42) == val;
288 }
289 
290 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
291 {
292 	int count;
293 	u64 tsc = 0;
294 
295 	for (count = 0; count < 50000; count++) {
296 		if (!pit_verify_msb(val))
297 			break;
298 		tsc = get_cycles();
299 	}
300 	*deltap = get_cycles() - tsc;
301 	*tscp = tsc;
302 
303 	/*
304 	 * We require _some_ success, but the quality control
305 	 * will be based on the error terms on the TSC values.
306 	 */
307 	return count > 5;
308 }
309 
310 /*
311  * How many MSB values do we want to see? We aim for
312  * a maximum error rate of 500ppm (in practice the
313  * real error is much smaller), but refuse to spend
314  * more than 25ms on it.
315  */
316 #define MAX_QUICK_PIT_MS 25
317 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
318 
319 static unsigned long quick_pit_calibrate(void)
320 {
321 	int i;
322 	u64 tsc, delta;
323 	unsigned long d1, d2;
324 
325 	/* Set the Gate high, disable speaker */
326 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
327 
328 	/*
329 	 * Counter 2, mode 0 (one-shot), binary count
330 	 *
331 	 * NOTE! Mode 2 decrements by two (and then the
332 	 * output is flipped each time, giving the same
333 	 * final output frequency as a decrement-by-one),
334 	 * so mode 0 is much better when looking at the
335 	 * individual counts.
336 	 */
337 	outb(0xb0, 0x43);
338 
339 	/* Start at 0xffff */
340 	outb(0xff, 0x42);
341 	outb(0xff, 0x42);
342 
343 	/*
344 	 * The PIT starts counting at the next edge, so we
345 	 * need to delay for a microsecond. The easiest way
346 	 * to do that is to just read back the 16-bit counter
347 	 * once from the PIT.
348 	 */
349 	pit_verify_msb(0);
350 
351 	if (pit_expect_msb(0xff, &tsc, &d1)) {
352 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
353 			if (!pit_expect_msb(0xff-i, &delta, &d2))
354 				break;
355 
356 			/*
357 			 * Iterate until the error is less than 500 ppm
358 			 */
359 			delta -= tsc;
360 			if (d1+d2 >= delta >> 11)
361 				continue;
362 
363 			/*
364 			 * Check the PIT one more time to verify that
365 			 * all TSC reads were stable wrt the PIT.
366 			 *
367 			 * This also guarantees serialization of the
368 			 * last cycle read ('d2') in pit_expect_msb.
369 			 */
370 			if (!pit_verify_msb(0xfe - i))
371 				break;
372 			goto success;
373 		}
374 	}
375 	printk("Fast TSC calibration failed\n");
376 	return 0;
377 
378 success:
379 	/*
380 	 * Ok, if we get here, then we've seen the
381 	 * MSB of the PIT decrement 'i' times, and the
382 	 * error has shrunk to less than 500 ppm.
383 	 *
384 	 * As a result, we can depend on there not being
385 	 * any odd delays anywhere, and the TSC reads are
386 	 * reliable (within the error). We also adjust the
387 	 * delta to the middle of the error bars, just
388 	 * because it looks nicer.
389 	 *
390 	 * kHz = ticks / time-in-seconds / 1000;
391 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
392 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
393 	 */
394 	delta += (long)(d2 - d1)/2;
395 	delta *= PIT_TICK_RATE;
396 	do_div(delta, i*256*1000);
397 	printk("Fast TSC calibration using PIT\n");
398 	return delta;
399 }
400 
401 /**
402  * native_calibrate_tsc - calibrate the tsc on boot
403  */
404 unsigned long native_calibrate_tsc(void)
405 {
406 	u64 tsc1, tsc2, delta, ref1, ref2;
407 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
408 	unsigned long flags, latch, ms, fast_calibrate;
409 	int hpet = is_hpet_enabled(), i, loopmin;
410 
411 	local_irq_save(flags);
412 	fast_calibrate = quick_pit_calibrate();
413 	local_irq_restore(flags);
414 	if (fast_calibrate)
415 		return fast_calibrate;
416 
417 	/*
418 	 * Run 5 calibration loops to get the lowest frequency value
419 	 * (the best estimate). We use two different calibration modes
420 	 * here:
421 	 *
422 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
423 	 * load a timeout of 50ms. We read the time right after we
424 	 * started the timer and wait until the PIT count down reaches
425 	 * zero. In each wait loop iteration we read the TSC and check
426 	 * the delta to the previous read. We keep track of the min
427 	 * and max values of that delta. The delta is mostly defined
428 	 * by the IO time of the PIT access, so we can detect when a
429 	 * SMI/SMM disturbance happened between the two reads. If the
430 	 * maximum time is significantly larger than the minimum time,
431 	 * then we discard the result and have another try.
432 	 *
433 	 * 2) Reference counter. If available we use the HPET or the
434 	 * PMTIMER as a reference to check the sanity of that value.
435 	 * We use separate TSC readouts and check inside of the
436 	 * reference read for a SMI/SMM disturbance. We dicard
437 	 * disturbed values here as well. We do that around the PIT
438 	 * calibration delay loop as we have to wait for a certain
439 	 * amount of time anyway.
440 	 */
441 
442 	/* Preset PIT loop values */
443 	latch = CAL_LATCH;
444 	ms = CAL_MS;
445 	loopmin = CAL_PIT_LOOPS;
446 
447 	for (i = 0; i < 3; i++) {
448 		unsigned long tsc_pit_khz;
449 
450 		/*
451 		 * Read the start value and the reference count of
452 		 * hpet/pmtimer when available. Then do the PIT
453 		 * calibration, which will take at least 50ms, and
454 		 * read the end value.
455 		 */
456 		local_irq_save(flags);
457 		tsc1 = tsc_read_refs(&ref1, hpet);
458 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
459 		tsc2 = tsc_read_refs(&ref2, hpet);
460 		local_irq_restore(flags);
461 
462 		/* Pick the lowest PIT TSC calibration so far */
463 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
464 
465 		/* hpet or pmtimer available ? */
466 		if (ref1 == ref2)
467 			continue;
468 
469 		/* Check, whether the sampling was disturbed by an SMI */
470 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
471 			continue;
472 
473 		tsc2 = (tsc2 - tsc1) * 1000000LL;
474 		if (hpet)
475 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
476 		else
477 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
478 
479 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
480 
481 		/* Check the reference deviation */
482 		delta = ((u64) tsc_pit_min) * 100;
483 		do_div(delta, tsc_ref_min);
484 
485 		/*
486 		 * If both calibration results are inside a 10% window
487 		 * then we can be sure, that the calibration
488 		 * succeeded. We break out of the loop right away. We
489 		 * use the reference value, as it is more precise.
490 		 */
491 		if (delta >= 90 && delta <= 110) {
492 			printk(KERN_INFO
493 			       "TSC: PIT calibration matches %s. %d loops\n",
494 			       hpet ? "HPET" : "PMTIMER", i + 1);
495 			return tsc_ref_min;
496 		}
497 
498 		/*
499 		 * Check whether PIT failed more than once. This
500 		 * happens in virtualized environments. We need to
501 		 * give the virtual PC a slightly longer timeframe for
502 		 * the HPET/PMTIMER to make the result precise.
503 		 */
504 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
505 			latch = CAL2_LATCH;
506 			ms = CAL2_MS;
507 			loopmin = CAL2_PIT_LOOPS;
508 		}
509 	}
510 
511 	/*
512 	 * Now check the results.
513 	 */
514 	if (tsc_pit_min == ULONG_MAX) {
515 		/* PIT gave no useful value */
516 		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
517 
518 		/* We don't have an alternative source, disable TSC */
519 		if (!hpet && !ref1 && !ref2) {
520 			printk("TSC: No reference (HPET/PMTIMER) available\n");
521 			return 0;
522 		}
523 
524 		/* The alternative source failed as well, disable TSC */
525 		if (tsc_ref_min == ULONG_MAX) {
526 			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
527 			       "failed.\n");
528 			return 0;
529 		}
530 
531 		/* Use the alternative source */
532 		printk(KERN_INFO "TSC: using %s reference calibration\n",
533 		       hpet ? "HPET" : "PMTIMER");
534 
535 		return tsc_ref_min;
536 	}
537 
538 	/* We don't have an alternative source, use the PIT calibration value */
539 	if (!hpet && !ref1 && !ref2) {
540 		printk(KERN_INFO "TSC: Using PIT calibration value\n");
541 		return tsc_pit_min;
542 	}
543 
544 	/* The alternative source failed, use the PIT calibration value */
545 	if (tsc_ref_min == ULONG_MAX) {
546 		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
547 		       "Using PIT calibration\n");
548 		return tsc_pit_min;
549 	}
550 
551 	/*
552 	 * The calibration values differ too much. In doubt, we use
553 	 * the PIT value as we know that there are PMTIMERs around
554 	 * running at double speed. At least we let the user know:
555 	 */
556 	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
557 	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
558 	printk(KERN_INFO "TSC: Using PIT calibration value\n");
559 	return tsc_pit_min;
560 }
561 
562 int recalibrate_cpu_khz(void)
563 {
564 #ifndef CONFIG_SMP
565 	unsigned long cpu_khz_old = cpu_khz;
566 
567 	if (cpu_has_tsc) {
568 		tsc_khz = x86_platform.calibrate_tsc();
569 		cpu_khz = tsc_khz;
570 		cpu_data(0).loops_per_jiffy =
571 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
572 					cpu_khz_old, cpu_khz);
573 		return 0;
574 	} else
575 		return -ENODEV;
576 #else
577 	return -ENODEV;
578 #endif
579 }
580 
581 EXPORT_SYMBOL(recalibrate_cpu_khz);
582 
583 
584 /* Accelerators for sched_clock()
585  * convert from cycles(64bits) => nanoseconds (64bits)
586  *  basic equation:
587  *              ns = cycles / (freq / ns_per_sec)
588  *              ns = cycles * (ns_per_sec / freq)
589  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
590  *              ns = cycles * (10^6 / cpu_khz)
591  *
592  *      Then we use scaling math (suggested by george@mvista.com) to get:
593  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
594  *              ns = cycles * cyc2ns_scale / SC
595  *
596  *      And since SC is a constant power of two, we can convert the div
597  *  into a shift.
598  *
599  *  We can use khz divisor instead of mhz to keep a better precision, since
600  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
601  *  (mathieu.desnoyers@polymtl.ca)
602  *
603  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
604  */
605 
606 DEFINE_PER_CPU(unsigned long, cyc2ns);
607 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
608 
609 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
610 {
611 	unsigned long long tsc_now, ns_now, *offset;
612 	unsigned long flags, *scale;
613 
614 	local_irq_save(flags);
615 	sched_clock_idle_sleep_event();
616 
617 	scale = &per_cpu(cyc2ns, cpu);
618 	offset = &per_cpu(cyc2ns_offset, cpu);
619 
620 	rdtscll(tsc_now);
621 	ns_now = __cycles_2_ns(tsc_now);
622 
623 	if (cpu_khz) {
624 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
625 		*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
626 	}
627 
628 	sched_clock_idle_wakeup_event(0);
629 	local_irq_restore(flags);
630 }
631 
632 static unsigned long long cyc2ns_suspend;
633 
634 void save_sched_clock_state(void)
635 {
636 	if (!sched_clock_stable)
637 		return;
638 
639 	cyc2ns_suspend = sched_clock();
640 }
641 
642 /*
643  * Even on processors with invariant TSC, TSC gets reset in some the
644  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
645  * arbitrary value (still sync'd across cpu's) during resume from such sleep
646  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
647  * that sched_clock() continues from the point where it was left off during
648  * suspend.
649  */
650 void restore_sched_clock_state(void)
651 {
652 	unsigned long long offset;
653 	unsigned long flags;
654 	int cpu;
655 
656 	if (!sched_clock_stable)
657 		return;
658 
659 	local_irq_save(flags);
660 
661 	__this_cpu_write(cyc2ns_offset, 0);
662 	offset = cyc2ns_suspend - sched_clock();
663 
664 	for_each_possible_cpu(cpu)
665 		per_cpu(cyc2ns_offset, cpu) = offset;
666 
667 	local_irq_restore(flags);
668 }
669 
670 #ifdef CONFIG_CPU_FREQ
671 
672 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
673  * changes.
674  *
675  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
676  * not that important because current Opteron setups do not support
677  * scaling on SMP anyroads.
678  *
679  * Should fix up last_tsc too. Currently gettimeofday in the
680  * first tick after the change will be slightly wrong.
681  */
682 
683 static unsigned int  ref_freq;
684 static unsigned long loops_per_jiffy_ref;
685 static unsigned long tsc_khz_ref;
686 
687 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
688 				void *data)
689 {
690 	struct cpufreq_freqs *freq = data;
691 	unsigned long *lpj;
692 
693 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
694 		return 0;
695 
696 	lpj = &boot_cpu_data.loops_per_jiffy;
697 #ifdef CONFIG_SMP
698 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
699 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
700 #endif
701 
702 	if (!ref_freq) {
703 		ref_freq = freq->old;
704 		loops_per_jiffy_ref = *lpj;
705 		tsc_khz_ref = tsc_khz;
706 	}
707 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
708 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
709 			(val == CPUFREQ_RESUMECHANGE)) {
710 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
711 
712 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
713 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
714 			mark_tsc_unstable("cpufreq changes");
715 	}
716 
717 	set_cyc2ns_scale(tsc_khz, freq->cpu);
718 
719 	return 0;
720 }
721 
722 static struct notifier_block time_cpufreq_notifier_block = {
723 	.notifier_call  = time_cpufreq_notifier
724 };
725 
726 static int __init cpufreq_tsc(void)
727 {
728 	if (!cpu_has_tsc)
729 		return 0;
730 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
731 		return 0;
732 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
733 				CPUFREQ_TRANSITION_NOTIFIER);
734 	return 0;
735 }
736 
737 core_initcall(cpufreq_tsc);
738 
739 #endif /* CONFIG_CPU_FREQ */
740 
741 /* clocksource code */
742 
743 static struct clocksource clocksource_tsc;
744 
745 /*
746  * We compare the TSC to the cycle_last value in the clocksource
747  * structure to avoid a nasty time-warp. This can be observed in a
748  * very small window right after one CPU updated cycle_last under
749  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
750  * is smaller than the cycle_last reference value due to a TSC which
751  * is slighty behind. This delta is nowhere else observable, but in
752  * that case it results in a forward time jump in the range of hours
753  * due to the unsigned delta calculation of the time keeping core
754  * code, which is necessary to support wrapping clocksources like pm
755  * timer.
756  */
757 static cycle_t read_tsc(struct clocksource *cs)
758 {
759 	cycle_t ret = (cycle_t)get_cycles();
760 
761 	return ret >= clocksource_tsc.cycle_last ?
762 		ret : clocksource_tsc.cycle_last;
763 }
764 
765 static void resume_tsc(struct clocksource *cs)
766 {
767 	clocksource_tsc.cycle_last = 0;
768 }
769 
770 static struct clocksource clocksource_tsc = {
771 	.name                   = "tsc",
772 	.rating                 = 300,
773 	.read                   = read_tsc,
774 	.resume			= resume_tsc,
775 	.mask                   = CLOCKSOURCE_MASK(64),
776 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
777 				  CLOCK_SOURCE_MUST_VERIFY,
778 #ifdef CONFIG_X86_64
779 	.archdata               = { .vclock_mode = VCLOCK_TSC },
780 #endif
781 };
782 
783 void mark_tsc_unstable(char *reason)
784 {
785 	if (!tsc_unstable) {
786 		tsc_unstable = 1;
787 		sched_clock_stable = 0;
788 		disable_sched_clock_irqtime();
789 		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
790 		/* Change only the rating, when not registered */
791 		if (clocksource_tsc.mult)
792 			clocksource_mark_unstable(&clocksource_tsc);
793 		else {
794 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
795 			clocksource_tsc.rating = 0;
796 		}
797 	}
798 }
799 
800 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
801 
802 static void __init check_system_tsc_reliable(void)
803 {
804 #ifdef CONFIG_MGEODE_LX
805 	/* RTSC counts during suspend */
806 #define RTSC_SUSP 0x100
807 	unsigned long res_low, res_high;
808 
809 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
810 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
811 	if (res_low & RTSC_SUSP)
812 		tsc_clocksource_reliable = 1;
813 #endif
814 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
815 		tsc_clocksource_reliable = 1;
816 }
817 
818 /*
819  * Make an educated guess if the TSC is trustworthy and synchronized
820  * over all CPUs.
821  */
822 __cpuinit int unsynchronized_tsc(void)
823 {
824 	if (!cpu_has_tsc || tsc_unstable)
825 		return 1;
826 
827 #ifdef CONFIG_SMP
828 	if (apic_is_clustered_box())
829 		return 1;
830 #endif
831 
832 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
833 		return 0;
834 
835 	if (tsc_clocksource_reliable)
836 		return 0;
837 	/*
838 	 * Intel systems are normally all synchronized.
839 	 * Exceptions must mark TSC as unstable:
840 	 */
841 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
842 		/* assume multi socket systems are not synchronized: */
843 		if (num_possible_cpus() > 1)
844 			return 1;
845 	}
846 
847 	return 0;
848 }
849 
850 
851 static void tsc_refine_calibration_work(struct work_struct *work);
852 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
853 /**
854  * tsc_refine_calibration_work - Further refine tsc freq calibration
855  * @work - ignored.
856  *
857  * This functions uses delayed work over a period of a
858  * second to further refine the TSC freq value. Since this is
859  * timer based, instead of loop based, we don't block the boot
860  * process while this longer calibration is done.
861  *
862  * If there are any calibration anomalies (too many SMIs, etc),
863  * or the refined calibration is off by 1% of the fast early
864  * calibration, we throw out the new calibration and use the
865  * early calibration.
866  */
867 static void tsc_refine_calibration_work(struct work_struct *work)
868 {
869 	static u64 tsc_start = -1, ref_start;
870 	static int hpet;
871 	u64 tsc_stop, ref_stop, delta;
872 	unsigned long freq;
873 
874 	/* Don't bother refining TSC on unstable systems */
875 	if (check_tsc_unstable())
876 		goto out;
877 
878 	/*
879 	 * Since the work is started early in boot, we may be
880 	 * delayed the first time we expire. So set the workqueue
881 	 * again once we know timers are working.
882 	 */
883 	if (tsc_start == -1) {
884 		/*
885 		 * Only set hpet once, to avoid mixing hardware
886 		 * if the hpet becomes enabled later.
887 		 */
888 		hpet = is_hpet_enabled();
889 		schedule_delayed_work(&tsc_irqwork, HZ);
890 		tsc_start = tsc_read_refs(&ref_start, hpet);
891 		return;
892 	}
893 
894 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
895 
896 	/* hpet or pmtimer available ? */
897 	if (ref_start == ref_stop)
898 		goto out;
899 
900 	/* Check, whether the sampling was disturbed by an SMI */
901 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
902 		goto out;
903 
904 	delta = tsc_stop - tsc_start;
905 	delta *= 1000000LL;
906 	if (hpet)
907 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
908 	else
909 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
910 
911 	/* Make sure we're within 1% */
912 	if (abs(tsc_khz - freq) > tsc_khz/100)
913 		goto out;
914 
915 	tsc_khz = freq;
916 	printk(KERN_INFO "Refined TSC clocksource calibration: "
917 		"%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
918 					(unsigned long)tsc_khz % 1000);
919 
920 out:
921 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
922 }
923 
924 
925 static int __init init_tsc_clocksource(void)
926 {
927 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
928 		return 0;
929 
930 	if (tsc_clocksource_reliable)
931 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
932 	/* lower the rating if we already know its unstable: */
933 	if (check_tsc_unstable()) {
934 		clocksource_tsc.rating = 0;
935 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
936 	}
937 	schedule_delayed_work(&tsc_irqwork, 0);
938 	return 0;
939 }
940 /*
941  * We use device_initcall here, to ensure we run after the hpet
942  * is fully initialized, which may occur at fs_initcall time.
943  */
944 device_initcall(init_tsc_clocksource);
945 
946 void __init tsc_init(void)
947 {
948 	u64 lpj;
949 	int cpu;
950 
951 	x86_init.timers.tsc_pre_init();
952 
953 	if (!cpu_has_tsc)
954 		return;
955 
956 	tsc_khz = x86_platform.calibrate_tsc();
957 	cpu_khz = tsc_khz;
958 
959 	if (!tsc_khz) {
960 		mark_tsc_unstable("could not calculate TSC khz");
961 		return;
962 	}
963 
964 	printk("Detected %lu.%03lu MHz processor.\n",
965 			(unsigned long)cpu_khz / 1000,
966 			(unsigned long)cpu_khz % 1000);
967 
968 	/*
969 	 * Secondary CPUs do not run through tsc_init(), so set up
970 	 * all the scale factors for all CPUs, assuming the same
971 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
972 	 * up if their speed diverges)
973 	 */
974 	for_each_possible_cpu(cpu)
975 		set_cyc2ns_scale(cpu_khz, cpu);
976 
977 	if (tsc_disabled > 0)
978 		return;
979 
980 	/* now allow native_sched_clock() to use rdtsc */
981 	tsc_disabled = 0;
982 
983 	if (!no_sched_irq_time)
984 		enable_sched_clock_irqtime();
985 
986 	lpj = ((u64)tsc_khz * 1000);
987 	do_div(lpj, HZ);
988 	lpj_fine = lpj;
989 
990 	use_tsc_delay();
991 
992 	if (unsynchronized_tsc())
993 		mark_tsc_unstable("TSCs unsynchronized");
994 
995 	check_system_tsc_reliable();
996 }
997 
998