xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 6b5fc336)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16 
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 
29 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
31 
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
34 
35 /*
36  * TSC can be unstable due to cpufreq or due to unsynced TSCs
37  */
38 static int __read_mostly tsc_unstable;
39 
40 /* native_sched_clock() is called before tsc_init(), so
41    we must start with the TSC soft disabled to prevent
42    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
44 
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46 
47 int tsc_clocksource_reliable;
48 
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53 
54 struct cyc2ns {
55 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
56 	seqcount_t	   seq;		/* 32 + 4    = 36 */
57 
58 }; /* fits one cacheline */
59 
60 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
61 
62 void cyc2ns_read_begin(struct cyc2ns_data *data)
63 {
64 	int seq, idx;
65 
66 	preempt_disable_notrace();
67 
68 	do {
69 		seq = this_cpu_read(cyc2ns.seq.sequence);
70 		idx = seq & 1;
71 
72 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
73 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
74 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
75 
76 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 }
78 
79 void cyc2ns_read_end(void)
80 {
81 	preempt_enable_notrace();
82 }
83 
84 /*
85  * Accelerators for sched_clock()
86  * convert from cycles(64bits) => nanoseconds (64bits)
87  *  basic equation:
88  *              ns = cycles / (freq / ns_per_sec)
89  *              ns = cycles * (ns_per_sec / freq)
90  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
91  *              ns = cycles * (10^6 / cpu_khz)
92  *
93  *      Then we use scaling math (suggested by george@mvista.com) to get:
94  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
95  *              ns = cycles * cyc2ns_scale / SC
96  *
97  *      And since SC is a constant power of two, we can convert the div
98  *  into a shift. The larger SC is, the more accurate the conversion, but
99  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
100  *  (64-bit result) can be used.
101  *
102  *  We can use khz divisor instead of mhz to keep a better precision.
103  *  (mathieu.desnoyers@polymtl.ca)
104  *
105  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
106  */
107 
108 static void cyc2ns_data_init(struct cyc2ns_data *data)
109 {
110 	data->cyc2ns_mul = 0;
111 	data->cyc2ns_shift = 0;
112 	data->cyc2ns_offset = 0;
113 }
114 
115 static void cyc2ns_init(int cpu)
116 {
117 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
118 
119 	cyc2ns_data_init(&c2n->data[0]);
120 	cyc2ns_data_init(&c2n->data[1]);
121 
122 	seqcount_init(&c2n->seq);
123 }
124 
125 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
126 {
127 	struct cyc2ns_data data;
128 	unsigned long long ns;
129 
130 	cyc2ns_read_begin(&data);
131 
132 	ns = data.cyc2ns_offset;
133 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
134 
135 	cyc2ns_read_end();
136 
137 	return ns;
138 }
139 
140 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
141 {
142 	unsigned long long ns_now;
143 	struct cyc2ns_data data;
144 	struct cyc2ns *c2n;
145 	unsigned long flags;
146 
147 	local_irq_save(flags);
148 	sched_clock_idle_sleep_event();
149 
150 	if (!khz)
151 		goto done;
152 
153 	ns_now = cycles_2_ns(tsc_now);
154 
155 	/*
156 	 * Compute a new multiplier as per the above comment and ensure our
157 	 * time function is continuous; see the comment near struct
158 	 * cyc2ns_data.
159 	 */
160 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
161 			       NSEC_PER_MSEC, 0);
162 
163 	/*
164 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
165 	 * not expected to be greater than 31 due to the original published
166 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
167 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
168 	 */
169 	if (data.cyc2ns_shift == 32) {
170 		data.cyc2ns_shift = 31;
171 		data.cyc2ns_mul >>= 1;
172 	}
173 
174 	data.cyc2ns_offset = ns_now -
175 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
176 
177 	c2n = per_cpu_ptr(&cyc2ns, cpu);
178 
179 	raw_write_seqcount_latch(&c2n->seq);
180 	c2n->data[0] = data;
181 	raw_write_seqcount_latch(&c2n->seq);
182 	c2n->data[1] = data;
183 
184 done:
185 	sched_clock_idle_wakeup_event();
186 	local_irq_restore(flags);
187 }
188 
189 /*
190  * Scheduler clock - returns current time in nanosec units.
191  */
192 u64 native_sched_clock(void)
193 {
194 	if (static_branch_likely(&__use_tsc)) {
195 		u64 tsc_now = rdtsc();
196 
197 		/* return the value in ns */
198 		return cycles_2_ns(tsc_now);
199 	}
200 
201 	/*
202 	 * Fall back to jiffies if there's no TSC available:
203 	 * ( But note that we still use it if the TSC is marked
204 	 *   unstable. We do this because unlike Time Of Day,
205 	 *   the scheduler clock tolerates small errors and it's
206 	 *   very important for it to be as fast as the platform
207 	 *   can achieve it. )
208 	 */
209 
210 	/* No locking but a rare wrong value is not a big deal: */
211 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
212 }
213 
214 /*
215  * Generate a sched_clock if you already have a TSC value.
216  */
217 u64 native_sched_clock_from_tsc(u64 tsc)
218 {
219 	return cycles_2_ns(tsc);
220 }
221 
222 /* We need to define a real function for sched_clock, to override the
223    weak default version */
224 #ifdef CONFIG_PARAVIRT
225 unsigned long long sched_clock(void)
226 {
227 	return paravirt_sched_clock();
228 }
229 
230 bool using_native_sched_clock(void)
231 {
232 	return pv_time_ops.sched_clock == native_sched_clock;
233 }
234 #else
235 unsigned long long
236 sched_clock(void) __attribute__((alias("native_sched_clock")));
237 
238 bool using_native_sched_clock(void) { return true; }
239 #endif
240 
241 int check_tsc_unstable(void)
242 {
243 	return tsc_unstable;
244 }
245 EXPORT_SYMBOL_GPL(check_tsc_unstable);
246 
247 #ifdef CONFIG_X86_TSC
248 int __init notsc_setup(char *str)
249 {
250 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
251 	tsc_disabled = 1;
252 	return 1;
253 }
254 #else
255 /*
256  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
257  * in cpu/common.c
258  */
259 int __init notsc_setup(char *str)
260 {
261 	setup_clear_cpu_cap(X86_FEATURE_TSC);
262 	return 1;
263 }
264 #endif
265 
266 __setup("notsc", notsc_setup);
267 
268 static int no_sched_irq_time;
269 
270 static int __init tsc_setup(char *str)
271 {
272 	if (!strcmp(str, "reliable"))
273 		tsc_clocksource_reliable = 1;
274 	if (!strncmp(str, "noirqtime", 9))
275 		no_sched_irq_time = 1;
276 	if (!strcmp(str, "unstable"))
277 		mark_tsc_unstable("boot parameter");
278 	return 1;
279 }
280 
281 __setup("tsc=", tsc_setup);
282 
283 #define MAX_RETRIES     5
284 #define SMI_TRESHOLD    50000
285 
286 /*
287  * Read TSC and the reference counters. Take care of SMI disturbance
288  */
289 static u64 tsc_read_refs(u64 *p, int hpet)
290 {
291 	u64 t1, t2;
292 	int i;
293 
294 	for (i = 0; i < MAX_RETRIES; i++) {
295 		t1 = get_cycles();
296 		if (hpet)
297 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
298 		else
299 			*p = acpi_pm_read_early();
300 		t2 = get_cycles();
301 		if ((t2 - t1) < SMI_TRESHOLD)
302 			return t2;
303 	}
304 	return ULLONG_MAX;
305 }
306 
307 /*
308  * Calculate the TSC frequency from HPET reference
309  */
310 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
311 {
312 	u64 tmp;
313 
314 	if (hpet2 < hpet1)
315 		hpet2 += 0x100000000ULL;
316 	hpet2 -= hpet1;
317 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
318 	do_div(tmp, 1000000);
319 	do_div(deltatsc, tmp);
320 
321 	return (unsigned long) deltatsc;
322 }
323 
324 /*
325  * Calculate the TSC frequency from PMTimer reference
326  */
327 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
328 {
329 	u64 tmp;
330 
331 	if (!pm1 && !pm2)
332 		return ULONG_MAX;
333 
334 	if (pm2 < pm1)
335 		pm2 += (u64)ACPI_PM_OVRRUN;
336 	pm2 -= pm1;
337 	tmp = pm2 * 1000000000LL;
338 	do_div(tmp, PMTMR_TICKS_PER_SEC);
339 	do_div(deltatsc, tmp);
340 
341 	return (unsigned long) deltatsc;
342 }
343 
344 #define CAL_MS		10
345 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
346 #define CAL_PIT_LOOPS	1000
347 
348 #define CAL2_MS		50
349 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
350 #define CAL2_PIT_LOOPS	5000
351 
352 
353 /*
354  * Try to calibrate the TSC against the Programmable
355  * Interrupt Timer and return the frequency of the TSC
356  * in kHz.
357  *
358  * Return ULONG_MAX on failure to calibrate.
359  */
360 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
361 {
362 	u64 tsc, t1, t2, delta;
363 	unsigned long tscmin, tscmax;
364 	int pitcnt;
365 
366 	/* Set the Gate high, disable speaker */
367 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
368 
369 	/*
370 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
371 	 * count mode), binary count. Set the latch register to 50ms
372 	 * (LSB then MSB) to begin countdown.
373 	 */
374 	outb(0xb0, 0x43);
375 	outb(latch & 0xff, 0x42);
376 	outb(latch >> 8, 0x42);
377 
378 	tsc = t1 = t2 = get_cycles();
379 
380 	pitcnt = 0;
381 	tscmax = 0;
382 	tscmin = ULONG_MAX;
383 	while ((inb(0x61) & 0x20) == 0) {
384 		t2 = get_cycles();
385 		delta = t2 - tsc;
386 		tsc = t2;
387 		if ((unsigned long) delta < tscmin)
388 			tscmin = (unsigned int) delta;
389 		if ((unsigned long) delta > tscmax)
390 			tscmax = (unsigned int) delta;
391 		pitcnt++;
392 	}
393 
394 	/*
395 	 * Sanity checks:
396 	 *
397 	 * If we were not able to read the PIT more than loopmin
398 	 * times, then we have been hit by a massive SMI
399 	 *
400 	 * If the maximum is 10 times larger than the minimum,
401 	 * then we got hit by an SMI as well.
402 	 */
403 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
404 		return ULONG_MAX;
405 
406 	/* Calculate the PIT value */
407 	delta = t2 - t1;
408 	do_div(delta, ms);
409 	return delta;
410 }
411 
412 /*
413  * This reads the current MSB of the PIT counter, and
414  * checks if we are running on sufficiently fast and
415  * non-virtualized hardware.
416  *
417  * Our expectations are:
418  *
419  *  - the PIT is running at roughly 1.19MHz
420  *
421  *  - each IO is going to take about 1us on real hardware,
422  *    but we allow it to be much faster (by a factor of 10) or
423  *    _slightly_ slower (ie we allow up to a 2us read+counter
424  *    update - anything else implies a unacceptably slow CPU
425  *    or PIT for the fast calibration to work.
426  *
427  *  - with 256 PIT ticks to read the value, we have 214us to
428  *    see the same MSB (and overhead like doing a single TSC
429  *    read per MSB value etc).
430  *
431  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
432  *    them each to take about a microsecond on real hardware.
433  *    So we expect a count value of around 100. But we'll be
434  *    generous, and accept anything over 50.
435  *
436  *  - if the PIT is stuck, and we see *many* more reads, we
437  *    return early (and the next caller of pit_expect_msb()
438  *    then consider it a failure when they don't see the
439  *    next expected value).
440  *
441  * These expectations mean that we know that we have seen the
442  * transition from one expected value to another with a fairly
443  * high accuracy, and we didn't miss any events. We can thus
444  * use the TSC value at the transitions to calculate a pretty
445  * good value for the TSC frequencty.
446  */
447 static inline int pit_verify_msb(unsigned char val)
448 {
449 	/* Ignore LSB */
450 	inb(0x42);
451 	return inb(0x42) == val;
452 }
453 
454 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
455 {
456 	int count;
457 	u64 tsc = 0, prev_tsc = 0;
458 
459 	for (count = 0; count < 50000; count++) {
460 		if (!pit_verify_msb(val))
461 			break;
462 		prev_tsc = tsc;
463 		tsc = get_cycles();
464 	}
465 	*deltap = get_cycles() - prev_tsc;
466 	*tscp = tsc;
467 
468 	/*
469 	 * We require _some_ success, but the quality control
470 	 * will be based on the error terms on the TSC values.
471 	 */
472 	return count > 5;
473 }
474 
475 /*
476  * How many MSB values do we want to see? We aim for
477  * a maximum error rate of 500ppm (in practice the
478  * real error is much smaller), but refuse to spend
479  * more than 50ms on it.
480  */
481 #define MAX_QUICK_PIT_MS 50
482 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
483 
484 static unsigned long quick_pit_calibrate(void)
485 {
486 	int i;
487 	u64 tsc, delta;
488 	unsigned long d1, d2;
489 
490 	/* Set the Gate high, disable speaker */
491 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
492 
493 	/*
494 	 * Counter 2, mode 0 (one-shot), binary count
495 	 *
496 	 * NOTE! Mode 2 decrements by two (and then the
497 	 * output is flipped each time, giving the same
498 	 * final output frequency as a decrement-by-one),
499 	 * so mode 0 is much better when looking at the
500 	 * individual counts.
501 	 */
502 	outb(0xb0, 0x43);
503 
504 	/* Start at 0xffff */
505 	outb(0xff, 0x42);
506 	outb(0xff, 0x42);
507 
508 	/*
509 	 * The PIT starts counting at the next edge, so we
510 	 * need to delay for a microsecond. The easiest way
511 	 * to do that is to just read back the 16-bit counter
512 	 * once from the PIT.
513 	 */
514 	pit_verify_msb(0);
515 
516 	if (pit_expect_msb(0xff, &tsc, &d1)) {
517 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
518 			if (!pit_expect_msb(0xff-i, &delta, &d2))
519 				break;
520 
521 			delta -= tsc;
522 
523 			/*
524 			 * Extrapolate the error and fail fast if the error will
525 			 * never be below 500 ppm.
526 			 */
527 			if (i == 1 &&
528 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
529 				return 0;
530 
531 			/*
532 			 * Iterate until the error is less than 500 ppm
533 			 */
534 			if (d1+d2 >= delta >> 11)
535 				continue;
536 
537 			/*
538 			 * Check the PIT one more time to verify that
539 			 * all TSC reads were stable wrt the PIT.
540 			 *
541 			 * This also guarantees serialization of the
542 			 * last cycle read ('d2') in pit_expect_msb.
543 			 */
544 			if (!pit_verify_msb(0xfe - i))
545 				break;
546 			goto success;
547 		}
548 	}
549 	pr_info("Fast TSC calibration failed\n");
550 	return 0;
551 
552 success:
553 	/*
554 	 * Ok, if we get here, then we've seen the
555 	 * MSB of the PIT decrement 'i' times, and the
556 	 * error has shrunk to less than 500 ppm.
557 	 *
558 	 * As a result, we can depend on there not being
559 	 * any odd delays anywhere, and the TSC reads are
560 	 * reliable (within the error).
561 	 *
562 	 * kHz = ticks / time-in-seconds / 1000;
563 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
564 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
565 	 */
566 	delta *= PIT_TICK_RATE;
567 	do_div(delta, i*256*1000);
568 	pr_info("Fast TSC calibration using PIT\n");
569 	return delta;
570 }
571 
572 /**
573  * native_calibrate_tsc
574  * Determine TSC frequency via CPUID, else return 0.
575  */
576 unsigned long native_calibrate_tsc(void)
577 {
578 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
579 	unsigned int crystal_khz;
580 
581 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
582 		return 0;
583 
584 	if (boot_cpu_data.cpuid_level < 0x15)
585 		return 0;
586 
587 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
588 
589 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
590 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
591 
592 	if (ebx_numerator == 0 || eax_denominator == 0)
593 		return 0;
594 
595 	crystal_khz = ecx_hz / 1000;
596 
597 	if (crystal_khz == 0) {
598 		switch (boot_cpu_data.x86_model) {
599 		case INTEL_FAM6_SKYLAKE_MOBILE:
600 		case INTEL_FAM6_SKYLAKE_DESKTOP:
601 		case INTEL_FAM6_KABYLAKE_MOBILE:
602 		case INTEL_FAM6_KABYLAKE_DESKTOP:
603 			crystal_khz = 24000;	/* 24.0 MHz */
604 			break;
605 		case INTEL_FAM6_SKYLAKE_X:
606 		case INTEL_FAM6_ATOM_DENVERTON:
607 			crystal_khz = 25000;	/* 25.0 MHz */
608 			break;
609 		case INTEL_FAM6_ATOM_GOLDMONT:
610 			crystal_khz = 19200;	/* 19.2 MHz */
611 			break;
612 		}
613 	}
614 
615 	/*
616 	 * TSC frequency determined by CPUID is a "hardware reported"
617 	 * frequency and is the most accurate one so far we have. This
618 	 * is considered a known frequency.
619 	 */
620 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
621 
622 	/*
623 	 * For Atom SoCs TSC is the only reliable clocksource.
624 	 * Mark TSC reliable so no watchdog on it.
625 	 */
626 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
627 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
628 
629 	return crystal_khz * ebx_numerator / eax_denominator;
630 }
631 
632 static unsigned long cpu_khz_from_cpuid(void)
633 {
634 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
635 
636 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
637 		return 0;
638 
639 	if (boot_cpu_data.cpuid_level < 0x16)
640 		return 0;
641 
642 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
643 
644 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
645 
646 	return eax_base_mhz * 1000;
647 }
648 
649 /**
650  * native_calibrate_cpu - calibrate the cpu on boot
651  */
652 unsigned long native_calibrate_cpu(void)
653 {
654 	u64 tsc1, tsc2, delta, ref1, ref2;
655 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
656 	unsigned long flags, latch, ms, fast_calibrate;
657 	int hpet = is_hpet_enabled(), i, loopmin;
658 
659 	fast_calibrate = cpu_khz_from_cpuid();
660 	if (fast_calibrate)
661 		return fast_calibrate;
662 
663 	fast_calibrate = cpu_khz_from_msr();
664 	if (fast_calibrate)
665 		return fast_calibrate;
666 
667 	local_irq_save(flags);
668 	fast_calibrate = quick_pit_calibrate();
669 	local_irq_restore(flags);
670 	if (fast_calibrate)
671 		return fast_calibrate;
672 
673 	/*
674 	 * Run 5 calibration loops to get the lowest frequency value
675 	 * (the best estimate). We use two different calibration modes
676 	 * here:
677 	 *
678 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
679 	 * load a timeout of 50ms. We read the time right after we
680 	 * started the timer and wait until the PIT count down reaches
681 	 * zero. In each wait loop iteration we read the TSC and check
682 	 * the delta to the previous read. We keep track of the min
683 	 * and max values of that delta. The delta is mostly defined
684 	 * by the IO time of the PIT access, so we can detect when a
685 	 * SMI/SMM disturbance happened between the two reads. If the
686 	 * maximum time is significantly larger than the minimum time,
687 	 * then we discard the result and have another try.
688 	 *
689 	 * 2) Reference counter. If available we use the HPET or the
690 	 * PMTIMER as a reference to check the sanity of that value.
691 	 * We use separate TSC readouts and check inside of the
692 	 * reference read for a SMI/SMM disturbance. We dicard
693 	 * disturbed values here as well. We do that around the PIT
694 	 * calibration delay loop as we have to wait for a certain
695 	 * amount of time anyway.
696 	 */
697 
698 	/* Preset PIT loop values */
699 	latch = CAL_LATCH;
700 	ms = CAL_MS;
701 	loopmin = CAL_PIT_LOOPS;
702 
703 	for (i = 0; i < 3; i++) {
704 		unsigned long tsc_pit_khz;
705 
706 		/*
707 		 * Read the start value and the reference count of
708 		 * hpet/pmtimer when available. Then do the PIT
709 		 * calibration, which will take at least 50ms, and
710 		 * read the end value.
711 		 */
712 		local_irq_save(flags);
713 		tsc1 = tsc_read_refs(&ref1, hpet);
714 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
715 		tsc2 = tsc_read_refs(&ref2, hpet);
716 		local_irq_restore(flags);
717 
718 		/* Pick the lowest PIT TSC calibration so far */
719 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
720 
721 		/* hpet or pmtimer available ? */
722 		if (ref1 == ref2)
723 			continue;
724 
725 		/* Check, whether the sampling was disturbed by an SMI */
726 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
727 			continue;
728 
729 		tsc2 = (tsc2 - tsc1) * 1000000LL;
730 		if (hpet)
731 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
732 		else
733 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
734 
735 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
736 
737 		/* Check the reference deviation */
738 		delta = ((u64) tsc_pit_min) * 100;
739 		do_div(delta, tsc_ref_min);
740 
741 		/*
742 		 * If both calibration results are inside a 10% window
743 		 * then we can be sure, that the calibration
744 		 * succeeded. We break out of the loop right away. We
745 		 * use the reference value, as it is more precise.
746 		 */
747 		if (delta >= 90 && delta <= 110) {
748 			pr_info("PIT calibration matches %s. %d loops\n",
749 				hpet ? "HPET" : "PMTIMER", i + 1);
750 			return tsc_ref_min;
751 		}
752 
753 		/*
754 		 * Check whether PIT failed more than once. This
755 		 * happens in virtualized environments. We need to
756 		 * give the virtual PC a slightly longer timeframe for
757 		 * the HPET/PMTIMER to make the result precise.
758 		 */
759 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
760 			latch = CAL2_LATCH;
761 			ms = CAL2_MS;
762 			loopmin = CAL2_PIT_LOOPS;
763 		}
764 	}
765 
766 	/*
767 	 * Now check the results.
768 	 */
769 	if (tsc_pit_min == ULONG_MAX) {
770 		/* PIT gave no useful value */
771 		pr_warn("Unable to calibrate against PIT\n");
772 
773 		/* We don't have an alternative source, disable TSC */
774 		if (!hpet && !ref1 && !ref2) {
775 			pr_notice("No reference (HPET/PMTIMER) available\n");
776 			return 0;
777 		}
778 
779 		/* The alternative source failed as well, disable TSC */
780 		if (tsc_ref_min == ULONG_MAX) {
781 			pr_warn("HPET/PMTIMER calibration failed\n");
782 			return 0;
783 		}
784 
785 		/* Use the alternative source */
786 		pr_info("using %s reference calibration\n",
787 			hpet ? "HPET" : "PMTIMER");
788 
789 		return tsc_ref_min;
790 	}
791 
792 	/* We don't have an alternative source, use the PIT calibration value */
793 	if (!hpet && !ref1 && !ref2) {
794 		pr_info("Using PIT calibration value\n");
795 		return tsc_pit_min;
796 	}
797 
798 	/* The alternative source failed, use the PIT calibration value */
799 	if (tsc_ref_min == ULONG_MAX) {
800 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
801 		return tsc_pit_min;
802 	}
803 
804 	/*
805 	 * The calibration values differ too much. In doubt, we use
806 	 * the PIT value as we know that there are PMTIMERs around
807 	 * running at double speed. At least we let the user know:
808 	 */
809 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
810 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
811 	pr_info("Using PIT calibration value\n");
812 	return tsc_pit_min;
813 }
814 
815 int recalibrate_cpu_khz(void)
816 {
817 #ifndef CONFIG_SMP
818 	unsigned long cpu_khz_old = cpu_khz;
819 
820 	if (!boot_cpu_has(X86_FEATURE_TSC))
821 		return -ENODEV;
822 
823 	cpu_khz = x86_platform.calibrate_cpu();
824 	tsc_khz = x86_platform.calibrate_tsc();
825 	if (tsc_khz == 0)
826 		tsc_khz = cpu_khz;
827 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
828 		cpu_khz = tsc_khz;
829 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
830 						    cpu_khz_old, cpu_khz);
831 
832 	return 0;
833 #else
834 	return -ENODEV;
835 #endif
836 }
837 
838 EXPORT_SYMBOL(recalibrate_cpu_khz);
839 
840 
841 static unsigned long long cyc2ns_suspend;
842 
843 void tsc_save_sched_clock_state(void)
844 {
845 	if (!sched_clock_stable())
846 		return;
847 
848 	cyc2ns_suspend = sched_clock();
849 }
850 
851 /*
852  * Even on processors with invariant TSC, TSC gets reset in some the
853  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
854  * arbitrary value (still sync'd across cpu's) during resume from such sleep
855  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
856  * that sched_clock() continues from the point where it was left off during
857  * suspend.
858  */
859 void tsc_restore_sched_clock_state(void)
860 {
861 	unsigned long long offset;
862 	unsigned long flags;
863 	int cpu;
864 
865 	if (!sched_clock_stable())
866 		return;
867 
868 	local_irq_save(flags);
869 
870 	/*
871 	 * We're coming out of suspend, there's no concurrency yet; don't
872 	 * bother being nice about the RCU stuff, just write to both
873 	 * data fields.
874 	 */
875 
876 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
877 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
878 
879 	offset = cyc2ns_suspend - sched_clock();
880 
881 	for_each_possible_cpu(cpu) {
882 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
883 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
884 	}
885 
886 	local_irq_restore(flags);
887 }
888 
889 #ifdef CONFIG_CPU_FREQ
890 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
891  * changes.
892  *
893  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
894  * not that important because current Opteron setups do not support
895  * scaling on SMP anyroads.
896  *
897  * Should fix up last_tsc too. Currently gettimeofday in the
898  * first tick after the change will be slightly wrong.
899  */
900 
901 static unsigned int  ref_freq;
902 static unsigned long loops_per_jiffy_ref;
903 static unsigned long tsc_khz_ref;
904 
905 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
906 				void *data)
907 {
908 	struct cpufreq_freqs *freq = data;
909 	unsigned long *lpj;
910 
911 	lpj = &boot_cpu_data.loops_per_jiffy;
912 #ifdef CONFIG_SMP
913 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
914 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
915 #endif
916 
917 	if (!ref_freq) {
918 		ref_freq = freq->old;
919 		loops_per_jiffy_ref = *lpj;
920 		tsc_khz_ref = tsc_khz;
921 	}
922 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
923 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
924 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
925 
926 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
927 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
928 			mark_tsc_unstable("cpufreq changes");
929 
930 		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
931 	}
932 
933 	return 0;
934 }
935 
936 static struct notifier_block time_cpufreq_notifier_block = {
937 	.notifier_call  = time_cpufreq_notifier
938 };
939 
940 static int __init cpufreq_register_tsc_scaling(void)
941 {
942 	if (!boot_cpu_has(X86_FEATURE_TSC))
943 		return 0;
944 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
945 		return 0;
946 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
947 				CPUFREQ_TRANSITION_NOTIFIER);
948 	return 0;
949 }
950 
951 core_initcall(cpufreq_register_tsc_scaling);
952 
953 #endif /* CONFIG_CPU_FREQ */
954 
955 #define ART_CPUID_LEAF (0x15)
956 #define ART_MIN_DENOMINATOR (1)
957 
958 
959 /*
960  * If ART is present detect the numerator:denominator to convert to TSC
961  */
962 static void detect_art(void)
963 {
964 	unsigned int unused[2];
965 
966 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
967 		return;
968 
969 	/* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
970 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
971 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
972 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
973 		return;
974 
975 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
976 	      &art_to_tsc_numerator, unused, unused+1);
977 
978 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
979 		return;
980 
981 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
982 
983 	/* Make this sticky over multiple CPU init calls */
984 	setup_force_cpu_cap(X86_FEATURE_ART);
985 }
986 
987 
988 /* clocksource code */
989 
990 static struct clocksource clocksource_tsc;
991 
992 static void tsc_resume(struct clocksource *cs)
993 {
994 	tsc_verify_tsc_adjust(true);
995 }
996 
997 /*
998  * We used to compare the TSC to the cycle_last value in the clocksource
999  * structure to avoid a nasty time-warp. This can be observed in a
1000  * very small window right after one CPU updated cycle_last under
1001  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1002  * is smaller than the cycle_last reference value due to a TSC which
1003  * is slighty behind. This delta is nowhere else observable, but in
1004  * that case it results in a forward time jump in the range of hours
1005  * due to the unsigned delta calculation of the time keeping core
1006  * code, which is necessary to support wrapping clocksources like pm
1007  * timer.
1008  *
1009  * This sanity check is now done in the core timekeeping code.
1010  * checking the result of read_tsc() - cycle_last for being negative.
1011  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1012  */
1013 static u64 read_tsc(struct clocksource *cs)
1014 {
1015 	return (u64)rdtsc_ordered();
1016 }
1017 
1018 static void tsc_cs_mark_unstable(struct clocksource *cs)
1019 {
1020 	if (tsc_unstable)
1021 		return;
1022 
1023 	tsc_unstable = 1;
1024 	if (using_native_sched_clock())
1025 		clear_sched_clock_stable();
1026 	disable_sched_clock_irqtime();
1027 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1028 }
1029 
1030 static void tsc_cs_tick_stable(struct clocksource *cs)
1031 {
1032 	if (tsc_unstable)
1033 		return;
1034 
1035 	if (using_native_sched_clock())
1036 		sched_clock_tick_stable();
1037 }
1038 
1039 /*
1040  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1041  */
1042 static struct clocksource clocksource_tsc = {
1043 	.name                   = "tsc",
1044 	.rating                 = 300,
1045 	.read                   = read_tsc,
1046 	.mask                   = CLOCKSOURCE_MASK(64),
1047 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1048 				  CLOCK_SOURCE_MUST_VERIFY,
1049 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1050 	.resume			= tsc_resume,
1051 	.mark_unstable		= tsc_cs_mark_unstable,
1052 	.tick_stable		= tsc_cs_tick_stable,
1053 };
1054 
1055 void mark_tsc_unstable(char *reason)
1056 {
1057 	if (tsc_unstable)
1058 		return;
1059 
1060 	tsc_unstable = 1;
1061 	if (using_native_sched_clock())
1062 		clear_sched_clock_stable();
1063 	disable_sched_clock_irqtime();
1064 	pr_info("Marking TSC unstable due to %s\n", reason);
1065 	/* Change only the rating, when not registered */
1066 	if (clocksource_tsc.mult) {
1067 		clocksource_mark_unstable(&clocksource_tsc);
1068 	} else {
1069 		clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1070 		clocksource_tsc.rating = 0;
1071 	}
1072 }
1073 
1074 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1075 
1076 static void __init check_system_tsc_reliable(void)
1077 {
1078 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1079 	if (is_geode_lx()) {
1080 		/* RTSC counts during suspend */
1081 #define RTSC_SUSP 0x100
1082 		unsigned long res_low, res_high;
1083 
1084 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1085 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1086 		if (res_low & RTSC_SUSP)
1087 			tsc_clocksource_reliable = 1;
1088 	}
1089 #endif
1090 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1091 		tsc_clocksource_reliable = 1;
1092 }
1093 
1094 /*
1095  * Make an educated guess if the TSC is trustworthy and synchronized
1096  * over all CPUs.
1097  */
1098 int unsynchronized_tsc(void)
1099 {
1100 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1101 		return 1;
1102 
1103 #ifdef CONFIG_SMP
1104 	if (apic_is_clustered_box())
1105 		return 1;
1106 #endif
1107 
1108 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1109 		return 0;
1110 
1111 	if (tsc_clocksource_reliable)
1112 		return 0;
1113 	/*
1114 	 * Intel systems are normally all synchronized.
1115 	 * Exceptions must mark TSC as unstable:
1116 	 */
1117 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1118 		/* assume multi socket systems are not synchronized: */
1119 		if (num_possible_cpus() > 1)
1120 			return 1;
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Convert ART to TSC given numerator/denominator found in detect_art()
1128  */
1129 struct system_counterval_t convert_art_to_tsc(u64 art)
1130 {
1131 	u64 tmp, res, rem;
1132 
1133 	rem = do_div(art, art_to_tsc_denominator);
1134 
1135 	res = art * art_to_tsc_numerator;
1136 	tmp = rem * art_to_tsc_numerator;
1137 
1138 	do_div(tmp, art_to_tsc_denominator);
1139 	res += tmp + art_to_tsc_offset;
1140 
1141 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1142 			.cycles = res};
1143 }
1144 EXPORT_SYMBOL(convert_art_to_tsc);
1145 
1146 static void tsc_refine_calibration_work(struct work_struct *work);
1147 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1148 /**
1149  * tsc_refine_calibration_work - Further refine tsc freq calibration
1150  * @work - ignored.
1151  *
1152  * This functions uses delayed work over a period of a
1153  * second to further refine the TSC freq value. Since this is
1154  * timer based, instead of loop based, we don't block the boot
1155  * process while this longer calibration is done.
1156  *
1157  * If there are any calibration anomalies (too many SMIs, etc),
1158  * or the refined calibration is off by 1% of the fast early
1159  * calibration, we throw out the new calibration and use the
1160  * early calibration.
1161  */
1162 static void tsc_refine_calibration_work(struct work_struct *work)
1163 {
1164 	static u64 tsc_start = -1, ref_start;
1165 	static int hpet;
1166 	u64 tsc_stop, ref_stop, delta;
1167 	unsigned long freq;
1168 	int cpu;
1169 
1170 	/* Don't bother refining TSC on unstable systems */
1171 	if (check_tsc_unstable())
1172 		goto out;
1173 
1174 	/*
1175 	 * Since the work is started early in boot, we may be
1176 	 * delayed the first time we expire. So set the workqueue
1177 	 * again once we know timers are working.
1178 	 */
1179 	if (tsc_start == -1) {
1180 		/*
1181 		 * Only set hpet once, to avoid mixing hardware
1182 		 * if the hpet becomes enabled later.
1183 		 */
1184 		hpet = is_hpet_enabled();
1185 		schedule_delayed_work(&tsc_irqwork, HZ);
1186 		tsc_start = tsc_read_refs(&ref_start, hpet);
1187 		return;
1188 	}
1189 
1190 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1191 
1192 	/* hpet or pmtimer available ? */
1193 	if (ref_start == ref_stop)
1194 		goto out;
1195 
1196 	/* Check, whether the sampling was disturbed by an SMI */
1197 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1198 		goto out;
1199 
1200 	delta = tsc_stop - tsc_start;
1201 	delta *= 1000000LL;
1202 	if (hpet)
1203 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1204 	else
1205 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1206 
1207 	/* Make sure we're within 1% */
1208 	if (abs(tsc_khz - freq) > tsc_khz/100)
1209 		goto out;
1210 
1211 	tsc_khz = freq;
1212 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1213 		(unsigned long)tsc_khz / 1000,
1214 		(unsigned long)tsc_khz % 1000);
1215 
1216 	/* Inform the TSC deadline clockevent devices about the recalibration */
1217 	lapic_update_tsc_freq();
1218 
1219 	/* Update the sched_clock() rate to match the clocksource one */
1220 	for_each_possible_cpu(cpu)
1221 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1222 
1223 out:
1224 	if (boot_cpu_has(X86_FEATURE_ART))
1225 		art_related_clocksource = &clocksource_tsc;
1226 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1227 }
1228 
1229 
1230 static int __init init_tsc_clocksource(void)
1231 {
1232 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1233 		return 0;
1234 
1235 	if (tsc_clocksource_reliable)
1236 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1237 	/* lower the rating if we already know its unstable: */
1238 	if (check_tsc_unstable()) {
1239 		clocksource_tsc.rating = 0;
1240 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1241 	}
1242 
1243 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1244 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1245 
1246 	/*
1247 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1248 	 * the refined calibration and directly register it as a clocksource.
1249 	 */
1250 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1251 		if (boot_cpu_has(X86_FEATURE_ART))
1252 			art_related_clocksource = &clocksource_tsc;
1253 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1254 		return 0;
1255 	}
1256 
1257 	schedule_delayed_work(&tsc_irqwork, 0);
1258 	return 0;
1259 }
1260 /*
1261  * We use device_initcall here, to ensure we run after the hpet
1262  * is fully initialized, which may occur at fs_initcall time.
1263  */
1264 device_initcall(init_tsc_clocksource);
1265 
1266 void __init tsc_init(void)
1267 {
1268 	u64 lpj, cyc;
1269 	int cpu;
1270 
1271 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1272 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1273 		return;
1274 	}
1275 
1276 	cpu_khz = x86_platform.calibrate_cpu();
1277 	tsc_khz = x86_platform.calibrate_tsc();
1278 
1279 	/*
1280 	 * Trust non-zero tsc_khz as authorative,
1281 	 * and use it to sanity check cpu_khz,
1282 	 * which will be off if system timer is off.
1283 	 */
1284 	if (tsc_khz == 0)
1285 		tsc_khz = cpu_khz;
1286 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1287 		cpu_khz = tsc_khz;
1288 
1289 	if (!tsc_khz) {
1290 		mark_tsc_unstable("could not calculate TSC khz");
1291 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1292 		return;
1293 	}
1294 
1295 	pr_info("Detected %lu.%03lu MHz processor\n",
1296 		(unsigned long)cpu_khz / 1000,
1297 		(unsigned long)cpu_khz % 1000);
1298 
1299 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1300 	tsc_store_and_check_tsc_adjust(true);
1301 
1302 	/*
1303 	 * Secondary CPUs do not run through tsc_init(), so set up
1304 	 * all the scale factors for all CPUs, assuming the same
1305 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1306 	 * up if their speed diverges)
1307 	 */
1308 	cyc = rdtsc();
1309 	for_each_possible_cpu(cpu) {
1310 		cyc2ns_init(cpu);
1311 		set_cyc2ns_scale(tsc_khz, cpu, cyc);
1312 	}
1313 
1314 	if (tsc_disabled > 0)
1315 		return;
1316 
1317 	/* now allow native_sched_clock() to use rdtsc */
1318 
1319 	tsc_disabled = 0;
1320 	static_branch_enable(&__use_tsc);
1321 
1322 	if (!no_sched_irq_time)
1323 		enable_sched_clock_irqtime();
1324 
1325 	lpj = ((u64)tsc_khz * 1000);
1326 	do_div(lpj, HZ);
1327 	lpj_fine = lpj;
1328 
1329 	use_tsc_delay();
1330 
1331 	check_system_tsc_reliable();
1332 
1333 	if (unsynchronized_tsc())
1334 		mark_tsc_unstable("TSCs unsynchronized");
1335 
1336 	detect_art();
1337 }
1338 
1339 #ifdef CONFIG_SMP
1340 /*
1341  * If we have a constant TSC and are using the TSC for the delay loop,
1342  * we can skip clock calibration if another cpu in the same socket has already
1343  * been calibrated. This assumes that CONSTANT_TSC applies to all
1344  * cpus in the socket - this should be a safe assumption.
1345  */
1346 unsigned long calibrate_delay_is_known(void)
1347 {
1348 	int sibling, cpu = smp_processor_id();
1349 	struct cpumask *mask = topology_core_cpumask(cpu);
1350 
1351 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1352 		return 0;
1353 
1354 	if (!mask)
1355 		return 0;
1356 
1357 	sibling = cpumask_any_but(mask, cpu);
1358 	if (sibling < nr_cpu_ids)
1359 		return cpu_data(sibling).loops_per_jiffy;
1360 	return 0;
1361 }
1362 #endif
1363