xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 63705da3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18 
19 #include <asm/hpet.h>
20 #include <asm/timer.h>
21 #include <asm/vgtod.h>
22 #include <asm/time.h>
23 #include <asm/delay.h>
24 #include <asm/hypervisor.h>
25 #include <asm/nmi.h>
26 #include <asm/x86_init.h>
27 #include <asm/geode.h>
28 #include <asm/apic.h>
29 #include <asm/intel-family.h>
30 #include <asm/i8259.h>
31 #include <asm/uv/uv.h>
32 
33 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
34 EXPORT_SYMBOL(cpu_khz);
35 
36 unsigned int __read_mostly tsc_khz;
37 EXPORT_SYMBOL(tsc_khz);
38 
39 #define KHZ	1000
40 
41 /*
42  * TSC can be unstable due to cpufreq or due to unsynced TSCs
43  */
44 static int __read_mostly tsc_unstable;
45 static unsigned int __initdata tsc_early_khz;
46 
47 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
48 
49 int tsc_clocksource_reliable;
50 
51 static u32 art_to_tsc_numerator;
52 static u32 art_to_tsc_denominator;
53 static u64 art_to_tsc_offset;
54 struct clocksource *art_related_clocksource;
55 
56 struct cyc2ns {
57 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
58 	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
59 
60 }; /* fits one cacheline */
61 
62 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
63 
64 static int __init tsc_early_khz_setup(char *buf)
65 {
66 	return kstrtouint(buf, 0, &tsc_early_khz);
67 }
68 early_param("tsc_early_khz", tsc_early_khz_setup);
69 
70 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
71 {
72 	int seq, idx;
73 
74 	preempt_disable_notrace();
75 
76 	do {
77 		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
78 		idx = seq & 1;
79 
80 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
81 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
82 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
83 
84 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
85 }
86 
87 __always_inline void cyc2ns_read_end(void)
88 {
89 	preempt_enable_notrace();
90 }
91 
92 /*
93  * Accelerators for sched_clock()
94  * convert from cycles(64bits) => nanoseconds (64bits)
95  *  basic equation:
96  *              ns = cycles / (freq / ns_per_sec)
97  *              ns = cycles * (ns_per_sec / freq)
98  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
99  *              ns = cycles * (10^6 / cpu_khz)
100  *
101  *      Then we use scaling math (suggested by george@mvista.com) to get:
102  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
103  *              ns = cycles * cyc2ns_scale / SC
104  *
105  *      And since SC is a constant power of two, we can convert the div
106  *  into a shift. The larger SC is, the more accurate the conversion, but
107  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
108  *  (64-bit result) can be used.
109  *
110  *  We can use khz divisor instead of mhz to keep a better precision.
111  *  (mathieu.desnoyers@polymtl.ca)
112  *
113  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
114  */
115 
116 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
117 {
118 	struct cyc2ns_data data;
119 	unsigned long long ns;
120 
121 	cyc2ns_read_begin(&data);
122 
123 	ns = data.cyc2ns_offset;
124 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
125 
126 	cyc2ns_read_end();
127 
128 	return ns;
129 }
130 
131 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
132 {
133 	unsigned long long ns_now;
134 	struct cyc2ns_data data;
135 	struct cyc2ns *c2n;
136 
137 	ns_now = cycles_2_ns(tsc_now);
138 
139 	/*
140 	 * Compute a new multiplier as per the above comment and ensure our
141 	 * time function is continuous; see the comment near struct
142 	 * cyc2ns_data.
143 	 */
144 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
145 			       NSEC_PER_MSEC, 0);
146 
147 	/*
148 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
149 	 * not expected to be greater than 31 due to the original published
150 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
151 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
152 	 */
153 	if (data.cyc2ns_shift == 32) {
154 		data.cyc2ns_shift = 31;
155 		data.cyc2ns_mul >>= 1;
156 	}
157 
158 	data.cyc2ns_offset = ns_now -
159 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
160 
161 	c2n = per_cpu_ptr(&cyc2ns, cpu);
162 
163 	raw_write_seqcount_latch(&c2n->seq);
164 	c2n->data[0] = data;
165 	raw_write_seqcount_latch(&c2n->seq);
166 	c2n->data[1] = data;
167 }
168 
169 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
170 {
171 	unsigned long flags;
172 
173 	local_irq_save(flags);
174 	sched_clock_idle_sleep_event();
175 
176 	if (khz)
177 		__set_cyc2ns_scale(khz, cpu, tsc_now);
178 
179 	sched_clock_idle_wakeup_event();
180 	local_irq_restore(flags);
181 }
182 
183 /*
184  * Initialize cyc2ns for boot cpu
185  */
186 static void __init cyc2ns_init_boot_cpu(void)
187 {
188 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
189 
190 	seqcount_latch_init(&c2n->seq);
191 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
192 }
193 
194 /*
195  * Secondary CPUs do not run through tsc_init(), so set up
196  * all the scale factors for all CPUs, assuming the same
197  * speed as the bootup CPU.
198  */
199 static void __init cyc2ns_init_secondary_cpus(void)
200 {
201 	unsigned int cpu, this_cpu = smp_processor_id();
202 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
203 	struct cyc2ns_data *data = c2n->data;
204 
205 	for_each_possible_cpu(cpu) {
206 		if (cpu != this_cpu) {
207 			seqcount_latch_init(&c2n->seq);
208 			c2n = per_cpu_ptr(&cyc2ns, cpu);
209 			c2n->data[0] = data[0];
210 			c2n->data[1] = data[1];
211 		}
212 	}
213 }
214 
215 /*
216  * Scheduler clock - returns current time in nanosec units.
217  */
218 u64 native_sched_clock(void)
219 {
220 	if (static_branch_likely(&__use_tsc)) {
221 		u64 tsc_now = rdtsc();
222 
223 		/* return the value in ns */
224 		return cycles_2_ns(tsc_now);
225 	}
226 
227 	/*
228 	 * Fall back to jiffies if there's no TSC available:
229 	 * ( But note that we still use it if the TSC is marked
230 	 *   unstable. We do this because unlike Time Of Day,
231 	 *   the scheduler clock tolerates small errors and it's
232 	 *   very important for it to be as fast as the platform
233 	 *   can achieve it. )
234 	 */
235 
236 	/* No locking but a rare wrong value is not a big deal: */
237 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
238 }
239 
240 /*
241  * Generate a sched_clock if you already have a TSC value.
242  */
243 u64 native_sched_clock_from_tsc(u64 tsc)
244 {
245 	return cycles_2_ns(tsc);
246 }
247 
248 /* We need to define a real function for sched_clock, to override the
249    weak default version */
250 #ifdef CONFIG_PARAVIRT
251 unsigned long long sched_clock(void)
252 {
253 	return paravirt_sched_clock();
254 }
255 
256 bool using_native_sched_clock(void)
257 {
258 	return static_call_query(pv_sched_clock) == native_sched_clock;
259 }
260 #else
261 unsigned long long
262 sched_clock(void) __attribute__((alias("native_sched_clock")));
263 
264 bool using_native_sched_clock(void) { return true; }
265 #endif
266 
267 int check_tsc_unstable(void)
268 {
269 	return tsc_unstable;
270 }
271 EXPORT_SYMBOL_GPL(check_tsc_unstable);
272 
273 #ifdef CONFIG_X86_TSC
274 int __init notsc_setup(char *str)
275 {
276 	mark_tsc_unstable("boot parameter notsc");
277 	return 1;
278 }
279 #else
280 /*
281  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
282  * in cpu/common.c
283  */
284 int __init notsc_setup(char *str)
285 {
286 	setup_clear_cpu_cap(X86_FEATURE_TSC);
287 	return 1;
288 }
289 #endif
290 
291 __setup("notsc", notsc_setup);
292 
293 static int no_sched_irq_time;
294 static int no_tsc_watchdog;
295 
296 static int __init tsc_setup(char *str)
297 {
298 	if (!strcmp(str, "reliable"))
299 		tsc_clocksource_reliable = 1;
300 	if (!strncmp(str, "noirqtime", 9))
301 		no_sched_irq_time = 1;
302 	if (!strcmp(str, "unstable"))
303 		mark_tsc_unstable("boot parameter");
304 	if (!strcmp(str, "nowatchdog"))
305 		no_tsc_watchdog = 1;
306 	return 1;
307 }
308 
309 __setup("tsc=", tsc_setup);
310 
311 #define MAX_RETRIES		5
312 #define TSC_DEFAULT_THRESHOLD	0x20000
313 
314 /*
315  * Read TSC and the reference counters. Take care of any disturbances
316  */
317 static u64 tsc_read_refs(u64 *p, int hpet)
318 {
319 	u64 t1, t2;
320 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
321 	int i;
322 
323 	for (i = 0; i < MAX_RETRIES; i++) {
324 		t1 = get_cycles();
325 		if (hpet)
326 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
327 		else
328 			*p = acpi_pm_read_early();
329 		t2 = get_cycles();
330 		if ((t2 - t1) < thresh)
331 			return t2;
332 	}
333 	return ULLONG_MAX;
334 }
335 
336 /*
337  * Calculate the TSC frequency from HPET reference
338  */
339 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
340 {
341 	u64 tmp;
342 
343 	if (hpet2 < hpet1)
344 		hpet2 += 0x100000000ULL;
345 	hpet2 -= hpet1;
346 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
347 	do_div(tmp, 1000000);
348 	deltatsc = div64_u64(deltatsc, tmp);
349 
350 	return (unsigned long) deltatsc;
351 }
352 
353 /*
354  * Calculate the TSC frequency from PMTimer reference
355  */
356 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
357 {
358 	u64 tmp;
359 
360 	if (!pm1 && !pm2)
361 		return ULONG_MAX;
362 
363 	if (pm2 < pm1)
364 		pm2 += (u64)ACPI_PM_OVRRUN;
365 	pm2 -= pm1;
366 	tmp = pm2 * 1000000000LL;
367 	do_div(tmp, PMTMR_TICKS_PER_SEC);
368 	do_div(deltatsc, tmp);
369 
370 	return (unsigned long) deltatsc;
371 }
372 
373 #define CAL_MS		10
374 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
375 #define CAL_PIT_LOOPS	1000
376 
377 #define CAL2_MS		50
378 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
379 #define CAL2_PIT_LOOPS	5000
380 
381 
382 /*
383  * Try to calibrate the TSC against the Programmable
384  * Interrupt Timer and return the frequency of the TSC
385  * in kHz.
386  *
387  * Return ULONG_MAX on failure to calibrate.
388  */
389 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
390 {
391 	u64 tsc, t1, t2, delta;
392 	unsigned long tscmin, tscmax;
393 	int pitcnt;
394 
395 	if (!has_legacy_pic()) {
396 		/*
397 		 * Relies on tsc_early_delay_calibrate() to have given us semi
398 		 * usable udelay(), wait for the same 50ms we would have with
399 		 * the PIT loop below.
400 		 */
401 		udelay(10 * USEC_PER_MSEC);
402 		udelay(10 * USEC_PER_MSEC);
403 		udelay(10 * USEC_PER_MSEC);
404 		udelay(10 * USEC_PER_MSEC);
405 		udelay(10 * USEC_PER_MSEC);
406 		return ULONG_MAX;
407 	}
408 
409 	/* Set the Gate high, disable speaker */
410 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
411 
412 	/*
413 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
414 	 * count mode), binary count. Set the latch register to 50ms
415 	 * (LSB then MSB) to begin countdown.
416 	 */
417 	outb(0xb0, 0x43);
418 	outb(latch & 0xff, 0x42);
419 	outb(latch >> 8, 0x42);
420 
421 	tsc = t1 = t2 = get_cycles();
422 
423 	pitcnt = 0;
424 	tscmax = 0;
425 	tscmin = ULONG_MAX;
426 	while ((inb(0x61) & 0x20) == 0) {
427 		t2 = get_cycles();
428 		delta = t2 - tsc;
429 		tsc = t2;
430 		if ((unsigned long) delta < tscmin)
431 			tscmin = (unsigned int) delta;
432 		if ((unsigned long) delta > tscmax)
433 			tscmax = (unsigned int) delta;
434 		pitcnt++;
435 	}
436 
437 	/*
438 	 * Sanity checks:
439 	 *
440 	 * If we were not able to read the PIT more than loopmin
441 	 * times, then we have been hit by a massive SMI
442 	 *
443 	 * If the maximum is 10 times larger than the minimum,
444 	 * then we got hit by an SMI as well.
445 	 */
446 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
447 		return ULONG_MAX;
448 
449 	/* Calculate the PIT value */
450 	delta = t2 - t1;
451 	do_div(delta, ms);
452 	return delta;
453 }
454 
455 /*
456  * This reads the current MSB of the PIT counter, and
457  * checks if we are running on sufficiently fast and
458  * non-virtualized hardware.
459  *
460  * Our expectations are:
461  *
462  *  - the PIT is running at roughly 1.19MHz
463  *
464  *  - each IO is going to take about 1us on real hardware,
465  *    but we allow it to be much faster (by a factor of 10) or
466  *    _slightly_ slower (ie we allow up to a 2us read+counter
467  *    update - anything else implies a unacceptably slow CPU
468  *    or PIT for the fast calibration to work.
469  *
470  *  - with 256 PIT ticks to read the value, we have 214us to
471  *    see the same MSB (and overhead like doing a single TSC
472  *    read per MSB value etc).
473  *
474  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
475  *    them each to take about a microsecond on real hardware.
476  *    So we expect a count value of around 100. But we'll be
477  *    generous, and accept anything over 50.
478  *
479  *  - if the PIT is stuck, and we see *many* more reads, we
480  *    return early (and the next caller of pit_expect_msb()
481  *    then consider it a failure when they don't see the
482  *    next expected value).
483  *
484  * These expectations mean that we know that we have seen the
485  * transition from one expected value to another with a fairly
486  * high accuracy, and we didn't miss any events. We can thus
487  * use the TSC value at the transitions to calculate a pretty
488  * good value for the TSC frequency.
489  */
490 static inline int pit_verify_msb(unsigned char val)
491 {
492 	/* Ignore LSB */
493 	inb(0x42);
494 	return inb(0x42) == val;
495 }
496 
497 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
498 {
499 	int count;
500 	u64 tsc = 0, prev_tsc = 0;
501 
502 	for (count = 0; count < 50000; count++) {
503 		if (!pit_verify_msb(val))
504 			break;
505 		prev_tsc = tsc;
506 		tsc = get_cycles();
507 	}
508 	*deltap = get_cycles() - prev_tsc;
509 	*tscp = tsc;
510 
511 	/*
512 	 * We require _some_ success, but the quality control
513 	 * will be based on the error terms on the TSC values.
514 	 */
515 	return count > 5;
516 }
517 
518 /*
519  * How many MSB values do we want to see? We aim for
520  * a maximum error rate of 500ppm (in practice the
521  * real error is much smaller), but refuse to spend
522  * more than 50ms on it.
523  */
524 #define MAX_QUICK_PIT_MS 50
525 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
526 
527 static unsigned long quick_pit_calibrate(void)
528 {
529 	int i;
530 	u64 tsc, delta;
531 	unsigned long d1, d2;
532 
533 	if (!has_legacy_pic())
534 		return 0;
535 
536 	/* Set the Gate high, disable speaker */
537 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
538 
539 	/*
540 	 * Counter 2, mode 0 (one-shot), binary count
541 	 *
542 	 * NOTE! Mode 2 decrements by two (and then the
543 	 * output is flipped each time, giving the same
544 	 * final output frequency as a decrement-by-one),
545 	 * so mode 0 is much better when looking at the
546 	 * individual counts.
547 	 */
548 	outb(0xb0, 0x43);
549 
550 	/* Start at 0xffff */
551 	outb(0xff, 0x42);
552 	outb(0xff, 0x42);
553 
554 	/*
555 	 * The PIT starts counting at the next edge, so we
556 	 * need to delay for a microsecond. The easiest way
557 	 * to do that is to just read back the 16-bit counter
558 	 * once from the PIT.
559 	 */
560 	pit_verify_msb(0);
561 
562 	if (pit_expect_msb(0xff, &tsc, &d1)) {
563 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
564 			if (!pit_expect_msb(0xff-i, &delta, &d2))
565 				break;
566 
567 			delta -= tsc;
568 
569 			/*
570 			 * Extrapolate the error and fail fast if the error will
571 			 * never be below 500 ppm.
572 			 */
573 			if (i == 1 &&
574 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
575 				return 0;
576 
577 			/*
578 			 * Iterate until the error is less than 500 ppm
579 			 */
580 			if (d1+d2 >= delta >> 11)
581 				continue;
582 
583 			/*
584 			 * Check the PIT one more time to verify that
585 			 * all TSC reads were stable wrt the PIT.
586 			 *
587 			 * This also guarantees serialization of the
588 			 * last cycle read ('d2') in pit_expect_msb.
589 			 */
590 			if (!pit_verify_msb(0xfe - i))
591 				break;
592 			goto success;
593 		}
594 	}
595 	pr_info("Fast TSC calibration failed\n");
596 	return 0;
597 
598 success:
599 	/*
600 	 * Ok, if we get here, then we've seen the
601 	 * MSB of the PIT decrement 'i' times, and the
602 	 * error has shrunk to less than 500 ppm.
603 	 *
604 	 * As a result, we can depend on there not being
605 	 * any odd delays anywhere, and the TSC reads are
606 	 * reliable (within the error).
607 	 *
608 	 * kHz = ticks / time-in-seconds / 1000;
609 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
610 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
611 	 */
612 	delta *= PIT_TICK_RATE;
613 	do_div(delta, i*256*1000);
614 	pr_info("Fast TSC calibration using PIT\n");
615 	return delta;
616 }
617 
618 /**
619  * native_calibrate_tsc
620  * Determine TSC frequency via CPUID, else return 0.
621  */
622 unsigned long native_calibrate_tsc(void)
623 {
624 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
625 	unsigned int crystal_khz;
626 
627 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
628 		return 0;
629 
630 	if (boot_cpu_data.cpuid_level < 0x15)
631 		return 0;
632 
633 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
634 
635 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
636 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
637 
638 	if (ebx_numerator == 0 || eax_denominator == 0)
639 		return 0;
640 
641 	crystal_khz = ecx_hz / 1000;
642 
643 	/*
644 	 * Denverton SoCs don't report crystal clock, and also don't support
645 	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
646 	 * clock.
647 	 */
648 	if (crystal_khz == 0 &&
649 			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
650 		crystal_khz = 25000;
651 
652 	/*
653 	 * TSC frequency reported directly by CPUID is a "hardware reported"
654 	 * frequency and is the most accurate one so far we have. This
655 	 * is considered a known frequency.
656 	 */
657 	if (crystal_khz != 0)
658 		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
659 
660 	/*
661 	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
662 	 * clock, but we can easily calculate it to a high degree of accuracy
663 	 * by considering the crystal ratio and the CPU speed.
664 	 */
665 	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
666 		unsigned int eax_base_mhz, ebx, ecx, edx;
667 
668 		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
669 		crystal_khz = eax_base_mhz * 1000 *
670 			eax_denominator / ebx_numerator;
671 	}
672 
673 	if (crystal_khz == 0)
674 		return 0;
675 
676 	/*
677 	 * For Atom SoCs TSC is the only reliable clocksource.
678 	 * Mark TSC reliable so no watchdog on it.
679 	 */
680 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
681 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
682 
683 #ifdef CONFIG_X86_LOCAL_APIC
684 	/*
685 	 * The local APIC appears to be fed by the core crystal clock
686 	 * (which sounds entirely sensible). We can set the global
687 	 * lapic_timer_period here to avoid having to calibrate the APIC
688 	 * timer later.
689 	 */
690 	lapic_timer_period = crystal_khz * 1000 / HZ;
691 #endif
692 
693 	return crystal_khz * ebx_numerator / eax_denominator;
694 }
695 
696 static unsigned long cpu_khz_from_cpuid(void)
697 {
698 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
699 
700 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
701 		return 0;
702 
703 	if (boot_cpu_data.cpuid_level < 0x16)
704 		return 0;
705 
706 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
707 
708 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
709 
710 	return eax_base_mhz * 1000;
711 }
712 
713 /*
714  * calibrate cpu using pit, hpet, and ptimer methods. They are available
715  * later in boot after acpi is initialized.
716  */
717 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
718 {
719 	u64 tsc1, tsc2, delta, ref1, ref2;
720 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
721 	unsigned long flags, latch, ms;
722 	int hpet = is_hpet_enabled(), i, loopmin;
723 
724 	/*
725 	 * Run 5 calibration loops to get the lowest frequency value
726 	 * (the best estimate). We use two different calibration modes
727 	 * here:
728 	 *
729 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
730 	 * load a timeout of 50ms. We read the time right after we
731 	 * started the timer and wait until the PIT count down reaches
732 	 * zero. In each wait loop iteration we read the TSC and check
733 	 * the delta to the previous read. We keep track of the min
734 	 * and max values of that delta. The delta is mostly defined
735 	 * by the IO time of the PIT access, so we can detect when
736 	 * any disturbance happened between the two reads. If the
737 	 * maximum time is significantly larger than the minimum time,
738 	 * then we discard the result and have another try.
739 	 *
740 	 * 2) Reference counter. If available we use the HPET or the
741 	 * PMTIMER as a reference to check the sanity of that value.
742 	 * We use separate TSC readouts and check inside of the
743 	 * reference read for any possible disturbance. We discard
744 	 * disturbed values here as well. We do that around the PIT
745 	 * calibration delay loop as we have to wait for a certain
746 	 * amount of time anyway.
747 	 */
748 
749 	/* Preset PIT loop values */
750 	latch = CAL_LATCH;
751 	ms = CAL_MS;
752 	loopmin = CAL_PIT_LOOPS;
753 
754 	for (i = 0; i < 3; i++) {
755 		unsigned long tsc_pit_khz;
756 
757 		/*
758 		 * Read the start value and the reference count of
759 		 * hpet/pmtimer when available. Then do the PIT
760 		 * calibration, which will take at least 50ms, and
761 		 * read the end value.
762 		 */
763 		local_irq_save(flags);
764 		tsc1 = tsc_read_refs(&ref1, hpet);
765 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
766 		tsc2 = tsc_read_refs(&ref2, hpet);
767 		local_irq_restore(flags);
768 
769 		/* Pick the lowest PIT TSC calibration so far */
770 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
771 
772 		/* hpet or pmtimer available ? */
773 		if (ref1 == ref2)
774 			continue;
775 
776 		/* Check, whether the sampling was disturbed */
777 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
778 			continue;
779 
780 		tsc2 = (tsc2 - tsc1) * 1000000LL;
781 		if (hpet)
782 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
783 		else
784 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
785 
786 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
787 
788 		/* Check the reference deviation */
789 		delta = ((u64) tsc_pit_min) * 100;
790 		do_div(delta, tsc_ref_min);
791 
792 		/*
793 		 * If both calibration results are inside a 10% window
794 		 * then we can be sure, that the calibration
795 		 * succeeded. We break out of the loop right away. We
796 		 * use the reference value, as it is more precise.
797 		 */
798 		if (delta >= 90 && delta <= 110) {
799 			pr_info("PIT calibration matches %s. %d loops\n",
800 				hpet ? "HPET" : "PMTIMER", i + 1);
801 			return tsc_ref_min;
802 		}
803 
804 		/*
805 		 * Check whether PIT failed more than once. This
806 		 * happens in virtualized environments. We need to
807 		 * give the virtual PC a slightly longer timeframe for
808 		 * the HPET/PMTIMER to make the result precise.
809 		 */
810 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
811 			latch = CAL2_LATCH;
812 			ms = CAL2_MS;
813 			loopmin = CAL2_PIT_LOOPS;
814 		}
815 	}
816 
817 	/*
818 	 * Now check the results.
819 	 */
820 	if (tsc_pit_min == ULONG_MAX) {
821 		/* PIT gave no useful value */
822 		pr_warn("Unable to calibrate against PIT\n");
823 
824 		/* We don't have an alternative source, disable TSC */
825 		if (!hpet && !ref1 && !ref2) {
826 			pr_notice("No reference (HPET/PMTIMER) available\n");
827 			return 0;
828 		}
829 
830 		/* The alternative source failed as well, disable TSC */
831 		if (tsc_ref_min == ULONG_MAX) {
832 			pr_warn("HPET/PMTIMER calibration failed\n");
833 			return 0;
834 		}
835 
836 		/* Use the alternative source */
837 		pr_info("using %s reference calibration\n",
838 			hpet ? "HPET" : "PMTIMER");
839 
840 		return tsc_ref_min;
841 	}
842 
843 	/* We don't have an alternative source, use the PIT calibration value */
844 	if (!hpet && !ref1 && !ref2) {
845 		pr_info("Using PIT calibration value\n");
846 		return tsc_pit_min;
847 	}
848 
849 	/* The alternative source failed, use the PIT calibration value */
850 	if (tsc_ref_min == ULONG_MAX) {
851 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
852 		return tsc_pit_min;
853 	}
854 
855 	/*
856 	 * The calibration values differ too much. In doubt, we use
857 	 * the PIT value as we know that there are PMTIMERs around
858 	 * running at double speed. At least we let the user know:
859 	 */
860 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
861 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
862 	pr_info("Using PIT calibration value\n");
863 	return tsc_pit_min;
864 }
865 
866 /**
867  * native_calibrate_cpu_early - can calibrate the cpu early in boot
868  */
869 unsigned long native_calibrate_cpu_early(void)
870 {
871 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
872 
873 	if (!fast_calibrate)
874 		fast_calibrate = cpu_khz_from_msr();
875 	if (!fast_calibrate) {
876 		local_irq_save(flags);
877 		fast_calibrate = quick_pit_calibrate();
878 		local_irq_restore(flags);
879 	}
880 	return fast_calibrate;
881 }
882 
883 
884 /**
885  * native_calibrate_cpu - calibrate the cpu
886  */
887 static unsigned long native_calibrate_cpu(void)
888 {
889 	unsigned long tsc_freq = native_calibrate_cpu_early();
890 
891 	if (!tsc_freq)
892 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
893 
894 	return tsc_freq;
895 }
896 
897 void recalibrate_cpu_khz(void)
898 {
899 #ifndef CONFIG_SMP
900 	unsigned long cpu_khz_old = cpu_khz;
901 
902 	if (!boot_cpu_has(X86_FEATURE_TSC))
903 		return;
904 
905 	cpu_khz = x86_platform.calibrate_cpu();
906 	tsc_khz = x86_platform.calibrate_tsc();
907 	if (tsc_khz == 0)
908 		tsc_khz = cpu_khz;
909 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
910 		cpu_khz = tsc_khz;
911 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
912 						    cpu_khz_old, cpu_khz);
913 #endif
914 }
915 
916 EXPORT_SYMBOL(recalibrate_cpu_khz);
917 
918 
919 static unsigned long long cyc2ns_suspend;
920 
921 void tsc_save_sched_clock_state(void)
922 {
923 	if (!sched_clock_stable())
924 		return;
925 
926 	cyc2ns_suspend = sched_clock();
927 }
928 
929 /*
930  * Even on processors with invariant TSC, TSC gets reset in some the
931  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
932  * arbitrary value (still sync'd across cpu's) during resume from such sleep
933  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
934  * that sched_clock() continues from the point where it was left off during
935  * suspend.
936  */
937 void tsc_restore_sched_clock_state(void)
938 {
939 	unsigned long long offset;
940 	unsigned long flags;
941 	int cpu;
942 
943 	if (!sched_clock_stable())
944 		return;
945 
946 	local_irq_save(flags);
947 
948 	/*
949 	 * We're coming out of suspend, there's no concurrency yet; don't
950 	 * bother being nice about the RCU stuff, just write to both
951 	 * data fields.
952 	 */
953 
954 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
955 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
956 
957 	offset = cyc2ns_suspend - sched_clock();
958 
959 	for_each_possible_cpu(cpu) {
960 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
961 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
962 	}
963 
964 	local_irq_restore(flags);
965 }
966 
967 #ifdef CONFIG_CPU_FREQ
968 /*
969  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
970  * changes.
971  *
972  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
973  * as unstable and give up in those cases.
974  *
975  * Should fix up last_tsc too. Currently gettimeofday in the
976  * first tick after the change will be slightly wrong.
977  */
978 
979 static unsigned int  ref_freq;
980 static unsigned long loops_per_jiffy_ref;
981 static unsigned long tsc_khz_ref;
982 
983 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
984 				void *data)
985 {
986 	struct cpufreq_freqs *freq = data;
987 
988 	if (num_online_cpus() > 1) {
989 		mark_tsc_unstable("cpufreq changes on SMP");
990 		return 0;
991 	}
992 
993 	if (!ref_freq) {
994 		ref_freq = freq->old;
995 		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
996 		tsc_khz_ref = tsc_khz;
997 	}
998 
999 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1000 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1001 		boot_cpu_data.loops_per_jiffy =
1002 			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1003 
1004 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1005 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1006 			mark_tsc_unstable("cpufreq changes");
1007 
1008 		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static struct notifier_block time_cpufreq_notifier_block = {
1015 	.notifier_call  = time_cpufreq_notifier
1016 };
1017 
1018 static int __init cpufreq_register_tsc_scaling(void)
1019 {
1020 	if (!boot_cpu_has(X86_FEATURE_TSC))
1021 		return 0;
1022 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1023 		return 0;
1024 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1025 				CPUFREQ_TRANSITION_NOTIFIER);
1026 	return 0;
1027 }
1028 
1029 core_initcall(cpufreq_register_tsc_scaling);
1030 
1031 #endif /* CONFIG_CPU_FREQ */
1032 
1033 #define ART_CPUID_LEAF (0x15)
1034 #define ART_MIN_DENOMINATOR (1)
1035 
1036 
1037 /*
1038  * If ART is present detect the numerator:denominator to convert to TSC
1039  */
1040 static void __init detect_art(void)
1041 {
1042 	unsigned int unused[2];
1043 
1044 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1045 		return;
1046 
1047 	/*
1048 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1049 	 * and the TSC counter resets must not occur asynchronously.
1050 	 */
1051 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1052 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1053 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1054 	    tsc_async_resets)
1055 		return;
1056 
1057 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1058 	      &art_to_tsc_numerator, unused, unused+1);
1059 
1060 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1061 		return;
1062 
1063 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1064 
1065 	/* Make this sticky over multiple CPU init calls */
1066 	setup_force_cpu_cap(X86_FEATURE_ART);
1067 }
1068 
1069 
1070 /* clocksource code */
1071 
1072 static void tsc_resume(struct clocksource *cs)
1073 {
1074 	tsc_verify_tsc_adjust(true);
1075 }
1076 
1077 /*
1078  * We used to compare the TSC to the cycle_last value in the clocksource
1079  * structure to avoid a nasty time-warp. This can be observed in a
1080  * very small window right after one CPU updated cycle_last under
1081  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1082  * is smaller than the cycle_last reference value due to a TSC which
1083  * is slightly behind. This delta is nowhere else observable, but in
1084  * that case it results in a forward time jump in the range of hours
1085  * due to the unsigned delta calculation of the time keeping core
1086  * code, which is necessary to support wrapping clocksources like pm
1087  * timer.
1088  *
1089  * This sanity check is now done in the core timekeeping code.
1090  * checking the result of read_tsc() - cycle_last for being negative.
1091  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1092  */
1093 static u64 read_tsc(struct clocksource *cs)
1094 {
1095 	return (u64)rdtsc_ordered();
1096 }
1097 
1098 static void tsc_cs_mark_unstable(struct clocksource *cs)
1099 {
1100 	if (tsc_unstable)
1101 		return;
1102 
1103 	tsc_unstable = 1;
1104 	if (using_native_sched_clock())
1105 		clear_sched_clock_stable();
1106 	disable_sched_clock_irqtime();
1107 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1108 }
1109 
1110 static void tsc_cs_tick_stable(struct clocksource *cs)
1111 {
1112 	if (tsc_unstable)
1113 		return;
1114 
1115 	if (using_native_sched_clock())
1116 		sched_clock_tick_stable();
1117 }
1118 
1119 static int tsc_cs_enable(struct clocksource *cs)
1120 {
1121 	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1122 	return 0;
1123 }
1124 
1125 /*
1126  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1127  */
1128 static struct clocksource clocksource_tsc_early = {
1129 	.name			= "tsc-early",
1130 	.rating			= 299,
1131 	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1132 	.read			= read_tsc,
1133 	.mask			= CLOCKSOURCE_MASK(64),
1134 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1135 				  CLOCK_SOURCE_MUST_VERIFY,
1136 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1137 	.enable			= tsc_cs_enable,
1138 	.resume			= tsc_resume,
1139 	.mark_unstable		= tsc_cs_mark_unstable,
1140 	.tick_stable		= tsc_cs_tick_stable,
1141 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1142 };
1143 
1144 /*
1145  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1146  * this one will immediately take over. We will only register if TSC has
1147  * been found good.
1148  */
1149 static struct clocksource clocksource_tsc = {
1150 	.name			= "tsc",
1151 	.rating			= 300,
1152 	.read			= read_tsc,
1153 	.mask			= CLOCKSOURCE_MASK(64),
1154 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1155 				  CLOCK_SOURCE_VALID_FOR_HRES |
1156 				  CLOCK_SOURCE_MUST_VERIFY |
1157 				  CLOCK_SOURCE_VERIFY_PERCPU,
1158 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1159 	.enable			= tsc_cs_enable,
1160 	.resume			= tsc_resume,
1161 	.mark_unstable		= tsc_cs_mark_unstable,
1162 	.tick_stable		= tsc_cs_tick_stable,
1163 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1164 };
1165 
1166 void mark_tsc_unstable(char *reason)
1167 {
1168 	if (tsc_unstable)
1169 		return;
1170 
1171 	tsc_unstable = 1;
1172 	if (using_native_sched_clock())
1173 		clear_sched_clock_stable();
1174 	disable_sched_clock_irqtime();
1175 	pr_info("Marking TSC unstable due to %s\n", reason);
1176 
1177 	clocksource_mark_unstable(&clocksource_tsc_early);
1178 	clocksource_mark_unstable(&clocksource_tsc);
1179 }
1180 
1181 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1182 
1183 static void __init check_system_tsc_reliable(void)
1184 {
1185 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1186 	if (is_geode_lx()) {
1187 		/* RTSC counts during suspend */
1188 #define RTSC_SUSP 0x100
1189 		unsigned long res_low, res_high;
1190 
1191 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1192 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1193 		if (res_low & RTSC_SUSP)
1194 			tsc_clocksource_reliable = 1;
1195 	}
1196 #endif
1197 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1198 		tsc_clocksource_reliable = 1;
1199 }
1200 
1201 /*
1202  * Make an educated guess if the TSC is trustworthy and synchronized
1203  * over all CPUs.
1204  */
1205 int unsynchronized_tsc(void)
1206 {
1207 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1208 		return 1;
1209 
1210 #ifdef CONFIG_SMP
1211 	if (apic_is_clustered_box())
1212 		return 1;
1213 #endif
1214 
1215 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1216 		return 0;
1217 
1218 	if (tsc_clocksource_reliable)
1219 		return 0;
1220 	/*
1221 	 * Intel systems are normally all synchronized.
1222 	 * Exceptions must mark TSC as unstable:
1223 	 */
1224 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1225 		/* assume multi socket systems are not synchronized: */
1226 		if (num_possible_cpus() > 1)
1227 			return 1;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Convert ART to TSC given numerator/denominator found in detect_art()
1235  */
1236 struct system_counterval_t convert_art_to_tsc(u64 art)
1237 {
1238 	u64 tmp, res, rem;
1239 
1240 	rem = do_div(art, art_to_tsc_denominator);
1241 
1242 	res = art * art_to_tsc_numerator;
1243 	tmp = rem * art_to_tsc_numerator;
1244 
1245 	do_div(tmp, art_to_tsc_denominator);
1246 	res += tmp + art_to_tsc_offset;
1247 
1248 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1249 			.cycles = res};
1250 }
1251 EXPORT_SYMBOL(convert_art_to_tsc);
1252 
1253 /**
1254  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1255  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1256  *
1257  * PTM requires all timestamps to be in units of nanoseconds. When user
1258  * software requests a cross-timestamp, this function converts system timestamp
1259  * to TSC.
1260  *
1261  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1262  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1263  * that this flag is set before conversion to TSC is attempted.
1264  *
1265  * Return:
1266  * struct system_counterval_t - system counter value with the pointer to the
1267  *	corresponding clocksource
1268  *	@cycles:	System counter value
1269  *	@cs:		Clocksource corresponding to system counter value. Used
1270  *			by timekeeping code to verify comparability of two cycle
1271  *			values.
1272  */
1273 
1274 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1275 {
1276 	u64 tmp, res, rem;
1277 
1278 	rem = do_div(art_ns, USEC_PER_SEC);
1279 
1280 	res = art_ns * tsc_khz;
1281 	tmp = rem * tsc_khz;
1282 
1283 	do_div(tmp, USEC_PER_SEC);
1284 	res += tmp;
1285 
1286 	return (struct system_counterval_t) { .cs = art_related_clocksource,
1287 					      .cycles = res};
1288 }
1289 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1290 
1291 
1292 static void tsc_refine_calibration_work(struct work_struct *work);
1293 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1294 /**
1295  * tsc_refine_calibration_work - Further refine tsc freq calibration
1296  * @work - ignored.
1297  *
1298  * This functions uses delayed work over a period of a
1299  * second to further refine the TSC freq value. Since this is
1300  * timer based, instead of loop based, we don't block the boot
1301  * process while this longer calibration is done.
1302  *
1303  * If there are any calibration anomalies (too many SMIs, etc),
1304  * or the refined calibration is off by 1% of the fast early
1305  * calibration, we throw out the new calibration and use the
1306  * early calibration.
1307  */
1308 static void tsc_refine_calibration_work(struct work_struct *work)
1309 {
1310 	static u64 tsc_start = ULLONG_MAX, ref_start;
1311 	static int hpet;
1312 	u64 tsc_stop, ref_stop, delta;
1313 	unsigned long freq;
1314 	int cpu;
1315 
1316 	/* Don't bother refining TSC on unstable systems */
1317 	if (tsc_unstable)
1318 		goto unreg;
1319 
1320 	/*
1321 	 * Since the work is started early in boot, we may be
1322 	 * delayed the first time we expire. So set the workqueue
1323 	 * again once we know timers are working.
1324 	 */
1325 	if (tsc_start == ULLONG_MAX) {
1326 restart:
1327 		/*
1328 		 * Only set hpet once, to avoid mixing hardware
1329 		 * if the hpet becomes enabled later.
1330 		 */
1331 		hpet = is_hpet_enabled();
1332 		tsc_start = tsc_read_refs(&ref_start, hpet);
1333 		schedule_delayed_work(&tsc_irqwork, HZ);
1334 		return;
1335 	}
1336 
1337 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1338 
1339 	/* hpet or pmtimer available ? */
1340 	if (ref_start == ref_stop)
1341 		goto out;
1342 
1343 	/* Check, whether the sampling was disturbed */
1344 	if (tsc_stop == ULLONG_MAX)
1345 		goto restart;
1346 
1347 	delta = tsc_stop - tsc_start;
1348 	delta *= 1000000LL;
1349 	if (hpet)
1350 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1351 	else
1352 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1353 
1354 	/* Make sure we're within 1% */
1355 	if (abs(tsc_khz - freq) > tsc_khz/100)
1356 		goto out;
1357 
1358 	tsc_khz = freq;
1359 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1360 		(unsigned long)tsc_khz / 1000,
1361 		(unsigned long)tsc_khz % 1000);
1362 
1363 	/* Inform the TSC deadline clockevent devices about the recalibration */
1364 	lapic_update_tsc_freq();
1365 
1366 	/* Update the sched_clock() rate to match the clocksource one */
1367 	for_each_possible_cpu(cpu)
1368 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1369 
1370 out:
1371 	if (tsc_unstable)
1372 		goto unreg;
1373 
1374 	if (boot_cpu_has(X86_FEATURE_ART))
1375 		art_related_clocksource = &clocksource_tsc;
1376 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1377 unreg:
1378 	clocksource_unregister(&clocksource_tsc_early);
1379 }
1380 
1381 
1382 static int __init init_tsc_clocksource(void)
1383 {
1384 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1385 		return 0;
1386 
1387 	if (tsc_unstable)
1388 		goto unreg;
1389 
1390 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1391 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1392 
1393 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1394 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1395 
1396 	/*
1397 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1398 	 * the refined calibration and directly register it as a clocksource.
1399 	 */
1400 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1401 		if (boot_cpu_has(X86_FEATURE_ART))
1402 			art_related_clocksource = &clocksource_tsc;
1403 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1404 unreg:
1405 		clocksource_unregister(&clocksource_tsc_early);
1406 		return 0;
1407 	}
1408 
1409 	schedule_delayed_work(&tsc_irqwork, 0);
1410 	return 0;
1411 }
1412 /*
1413  * We use device_initcall here, to ensure we run after the hpet
1414  * is fully initialized, which may occur at fs_initcall time.
1415  */
1416 device_initcall(init_tsc_clocksource);
1417 
1418 static bool __init determine_cpu_tsc_frequencies(bool early)
1419 {
1420 	/* Make sure that cpu and tsc are not already calibrated */
1421 	WARN_ON(cpu_khz || tsc_khz);
1422 
1423 	if (early) {
1424 		cpu_khz = x86_platform.calibrate_cpu();
1425 		if (tsc_early_khz)
1426 			tsc_khz = tsc_early_khz;
1427 		else
1428 			tsc_khz = x86_platform.calibrate_tsc();
1429 	} else {
1430 		/* We should not be here with non-native cpu calibration */
1431 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1432 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1433 	}
1434 
1435 	/*
1436 	 * Trust non-zero tsc_khz as authoritative,
1437 	 * and use it to sanity check cpu_khz,
1438 	 * which will be off if system timer is off.
1439 	 */
1440 	if (tsc_khz == 0)
1441 		tsc_khz = cpu_khz;
1442 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1443 		cpu_khz = tsc_khz;
1444 
1445 	if (tsc_khz == 0)
1446 		return false;
1447 
1448 	pr_info("Detected %lu.%03lu MHz processor\n",
1449 		(unsigned long)cpu_khz / KHZ,
1450 		(unsigned long)cpu_khz % KHZ);
1451 
1452 	if (cpu_khz != tsc_khz) {
1453 		pr_info("Detected %lu.%03lu MHz TSC",
1454 			(unsigned long)tsc_khz / KHZ,
1455 			(unsigned long)tsc_khz % KHZ);
1456 	}
1457 	return true;
1458 }
1459 
1460 static unsigned long __init get_loops_per_jiffy(void)
1461 {
1462 	u64 lpj = (u64)tsc_khz * KHZ;
1463 
1464 	do_div(lpj, HZ);
1465 	return lpj;
1466 }
1467 
1468 static void __init tsc_enable_sched_clock(void)
1469 {
1470 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1471 	tsc_store_and_check_tsc_adjust(true);
1472 	cyc2ns_init_boot_cpu();
1473 	static_branch_enable(&__use_tsc);
1474 }
1475 
1476 void __init tsc_early_init(void)
1477 {
1478 	if (!boot_cpu_has(X86_FEATURE_TSC))
1479 		return;
1480 	/* Don't change UV TSC multi-chassis synchronization */
1481 	if (is_early_uv_system())
1482 		return;
1483 	if (!determine_cpu_tsc_frequencies(true))
1484 		return;
1485 	loops_per_jiffy = get_loops_per_jiffy();
1486 
1487 	tsc_enable_sched_clock();
1488 }
1489 
1490 void __init tsc_init(void)
1491 {
1492 	/*
1493 	 * native_calibrate_cpu_early can only calibrate using methods that are
1494 	 * available early in boot.
1495 	 */
1496 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1497 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1498 
1499 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1500 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1501 		return;
1502 	}
1503 
1504 	if (!tsc_khz) {
1505 		/* We failed to determine frequencies earlier, try again */
1506 		if (!determine_cpu_tsc_frequencies(false)) {
1507 			mark_tsc_unstable("could not calculate TSC khz");
1508 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1509 			return;
1510 		}
1511 		tsc_enable_sched_clock();
1512 	}
1513 
1514 	cyc2ns_init_secondary_cpus();
1515 
1516 	if (!no_sched_irq_time)
1517 		enable_sched_clock_irqtime();
1518 
1519 	lpj_fine = get_loops_per_jiffy();
1520 	use_tsc_delay();
1521 
1522 	check_system_tsc_reliable();
1523 
1524 	if (unsynchronized_tsc()) {
1525 		mark_tsc_unstable("TSCs unsynchronized");
1526 		return;
1527 	}
1528 
1529 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1530 		clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1531 
1532 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1533 	detect_art();
1534 }
1535 
1536 #ifdef CONFIG_SMP
1537 /*
1538  * If we have a constant TSC and are using the TSC for the delay loop,
1539  * we can skip clock calibration if another cpu in the same socket has already
1540  * been calibrated. This assumes that CONSTANT_TSC applies to all
1541  * cpus in the socket - this should be a safe assumption.
1542  */
1543 unsigned long calibrate_delay_is_known(void)
1544 {
1545 	int sibling, cpu = smp_processor_id();
1546 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1547 	const struct cpumask *mask = topology_core_cpumask(cpu);
1548 
1549 	if (!constant_tsc || !mask)
1550 		return 0;
1551 
1552 	sibling = cpumask_any_but(mask, cpu);
1553 	if (sibling < nr_cpu_ids)
1554 		return cpu_data(sibling).loops_per_jiffy;
1555 	return 0;
1556 }
1557 #endif
1558