xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 565d76cb)
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 #include <linux/timex.h>
13 
14 #include <asm/hpet.h>
15 #include <asm/timer.h>
16 #include <asm/vgtod.h>
17 #include <asm/time.h>
18 #include <asm/delay.h>
19 #include <asm/hypervisor.h>
20 #include <asm/nmi.h>
21 #include <asm/x86_init.h>
22 
23 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
24 EXPORT_SYMBOL(cpu_khz);
25 
26 unsigned int __read_mostly tsc_khz;
27 EXPORT_SYMBOL(tsc_khz);
28 
29 /*
30  * TSC can be unstable due to cpufreq or due to unsynced TSCs
31  */
32 static int __read_mostly tsc_unstable;
33 
34 /* native_sched_clock() is called before tsc_init(), so
35    we must start with the TSC soft disabled to prevent
36    erroneous rdtsc usage on !cpu_has_tsc processors */
37 static int __read_mostly tsc_disabled = -1;
38 
39 static int tsc_clocksource_reliable;
40 /*
41  * Scheduler clock - returns current time in nanosec units.
42  */
43 u64 native_sched_clock(void)
44 {
45 	u64 this_offset;
46 
47 	/*
48 	 * Fall back to jiffies if there's no TSC available:
49 	 * ( But note that we still use it if the TSC is marked
50 	 *   unstable. We do this because unlike Time Of Day,
51 	 *   the scheduler clock tolerates small errors and it's
52 	 *   very important for it to be as fast as the platform
53 	 *   can achieve it. )
54 	 */
55 	if (unlikely(tsc_disabled)) {
56 		/* No locking but a rare wrong value is not a big deal: */
57 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
58 	}
59 
60 	/* read the Time Stamp Counter: */
61 	rdtscll(this_offset);
62 
63 	/* return the value in ns */
64 	return __cycles_2_ns(this_offset);
65 }
66 
67 /* We need to define a real function for sched_clock, to override the
68    weak default version */
69 #ifdef CONFIG_PARAVIRT
70 unsigned long long sched_clock(void)
71 {
72 	return paravirt_sched_clock();
73 }
74 #else
75 unsigned long long
76 sched_clock(void) __attribute__((alias("native_sched_clock")));
77 #endif
78 
79 int check_tsc_unstable(void)
80 {
81 	return tsc_unstable;
82 }
83 EXPORT_SYMBOL_GPL(check_tsc_unstable);
84 
85 #ifdef CONFIG_X86_TSC
86 int __init notsc_setup(char *str)
87 {
88 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
89 			"cannot disable TSC completely.\n");
90 	tsc_disabled = 1;
91 	return 1;
92 }
93 #else
94 /*
95  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
96  * in cpu/common.c
97  */
98 int __init notsc_setup(char *str)
99 {
100 	setup_clear_cpu_cap(X86_FEATURE_TSC);
101 	return 1;
102 }
103 #endif
104 
105 __setup("notsc", notsc_setup);
106 
107 static int no_sched_irq_time;
108 
109 static int __init tsc_setup(char *str)
110 {
111 	if (!strcmp(str, "reliable"))
112 		tsc_clocksource_reliable = 1;
113 	if (!strncmp(str, "noirqtime", 9))
114 		no_sched_irq_time = 1;
115 	return 1;
116 }
117 
118 __setup("tsc=", tsc_setup);
119 
120 #define MAX_RETRIES     5
121 #define SMI_TRESHOLD    50000
122 
123 /*
124  * Read TSC and the reference counters. Take care of SMI disturbance
125  */
126 static u64 tsc_read_refs(u64 *p, int hpet)
127 {
128 	u64 t1, t2;
129 	int i;
130 
131 	for (i = 0; i < MAX_RETRIES; i++) {
132 		t1 = get_cycles();
133 		if (hpet)
134 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
135 		else
136 			*p = acpi_pm_read_early();
137 		t2 = get_cycles();
138 		if ((t2 - t1) < SMI_TRESHOLD)
139 			return t2;
140 	}
141 	return ULLONG_MAX;
142 }
143 
144 /*
145  * Calculate the TSC frequency from HPET reference
146  */
147 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
148 {
149 	u64 tmp;
150 
151 	if (hpet2 < hpet1)
152 		hpet2 += 0x100000000ULL;
153 	hpet2 -= hpet1;
154 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
155 	do_div(tmp, 1000000);
156 	do_div(deltatsc, tmp);
157 
158 	return (unsigned long) deltatsc;
159 }
160 
161 /*
162  * Calculate the TSC frequency from PMTimer reference
163  */
164 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
165 {
166 	u64 tmp;
167 
168 	if (!pm1 && !pm2)
169 		return ULONG_MAX;
170 
171 	if (pm2 < pm1)
172 		pm2 += (u64)ACPI_PM_OVRRUN;
173 	pm2 -= pm1;
174 	tmp = pm2 * 1000000000LL;
175 	do_div(tmp, PMTMR_TICKS_PER_SEC);
176 	do_div(deltatsc, tmp);
177 
178 	return (unsigned long) deltatsc;
179 }
180 
181 #define CAL_MS		10
182 #define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
183 #define CAL_PIT_LOOPS	1000
184 
185 #define CAL2_MS		50
186 #define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
187 #define CAL2_PIT_LOOPS	5000
188 
189 
190 /*
191  * Try to calibrate the TSC against the Programmable
192  * Interrupt Timer and return the frequency of the TSC
193  * in kHz.
194  *
195  * Return ULONG_MAX on failure to calibrate.
196  */
197 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
198 {
199 	u64 tsc, t1, t2, delta;
200 	unsigned long tscmin, tscmax;
201 	int pitcnt;
202 
203 	/* Set the Gate high, disable speaker */
204 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
205 
206 	/*
207 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
208 	 * count mode), binary count. Set the latch register to 50ms
209 	 * (LSB then MSB) to begin countdown.
210 	 */
211 	outb(0xb0, 0x43);
212 	outb(latch & 0xff, 0x42);
213 	outb(latch >> 8, 0x42);
214 
215 	tsc = t1 = t2 = get_cycles();
216 
217 	pitcnt = 0;
218 	tscmax = 0;
219 	tscmin = ULONG_MAX;
220 	while ((inb(0x61) & 0x20) == 0) {
221 		t2 = get_cycles();
222 		delta = t2 - tsc;
223 		tsc = t2;
224 		if ((unsigned long) delta < tscmin)
225 			tscmin = (unsigned int) delta;
226 		if ((unsigned long) delta > tscmax)
227 			tscmax = (unsigned int) delta;
228 		pitcnt++;
229 	}
230 
231 	/*
232 	 * Sanity checks:
233 	 *
234 	 * If we were not able to read the PIT more than loopmin
235 	 * times, then we have been hit by a massive SMI
236 	 *
237 	 * If the maximum is 10 times larger than the minimum,
238 	 * then we got hit by an SMI as well.
239 	 */
240 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
241 		return ULONG_MAX;
242 
243 	/* Calculate the PIT value */
244 	delta = t2 - t1;
245 	do_div(delta, ms);
246 	return delta;
247 }
248 
249 /*
250  * This reads the current MSB of the PIT counter, and
251  * checks if we are running on sufficiently fast and
252  * non-virtualized hardware.
253  *
254  * Our expectations are:
255  *
256  *  - the PIT is running at roughly 1.19MHz
257  *
258  *  - each IO is going to take about 1us on real hardware,
259  *    but we allow it to be much faster (by a factor of 10) or
260  *    _slightly_ slower (ie we allow up to a 2us read+counter
261  *    update - anything else implies a unacceptably slow CPU
262  *    or PIT for the fast calibration to work.
263  *
264  *  - with 256 PIT ticks to read the value, we have 214us to
265  *    see the same MSB (and overhead like doing a single TSC
266  *    read per MSB value etc).
267  *
268  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
269  *    them each to take about a microsecond on real hardware.
270  *    So we expect a count value of around 100. But we'll be
271  *    generous, and accept anything over 50.
272  *
273  *  - if the PIT is stuck, and we see *many* more reads, we
274  *    return early (and the next caller of pit_expect_msb()
275  *    then consider it a failure when they don't see the
276  *    next expected value).
277  *
278  * These expectations mean that we know that we have seen the
279  * transition from one expected value to another with a fairly
280  * high accuracy, and we didn't miss any events. We can thus
281  * use the TSC value at the transitions to calculate a pretty
282  * good value for the TSC frequencty.
283  */
284 static inline int pit_verify_msb(unsigned char val)
285 {
286 	/* Ignore LSB */
287 	inb(0x42);
288 	return inb(0x42) == val;
289 }
290 
291 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
292 {
293 	int count;
294 	u64 tsc = 0;
295 
296 	for (count = 0; count < 50000; count++) {
297 		if (!pit_verify_msb(val))
298 			break;
299 		tsc = get_cycles();
300 	}
301 	*deltap = get_cycles() - tsc;
302 	*tscp = tsc;
303 
304 	/*
305 	 * We require _some_ success, but the quality control
306 	 * will be based on the error terms on the TSC values.
307 	 */
308 	return count > 5;
309 }
310 
311 /*
312  * How many MSB values do we want to see? We aim for
313  * a maximum error rate of 500ppm (in practice the
314  * real error is much smaller), but refuse to spend
315  * more than 25ms on it.
316  */
317 #define MAX_QUICK_PIT_MS 25
318 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
319 
320 static unsigned long quick_pit_calibrate(void)
321 {
322 	int i;
323 	u64 tsc, delta;
324 	unsigned long d1, d2;
325 
326 	/* Set the Gate high, disable speaker */
327 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
328 
329 	/*
330 	 * Counter 2, mode 0 (one-shot), binary count
331 	 *
332 	 * NOTE! Mode 2 decrements by two (and then the
333 	 * output is flipped each time, giving the same
334 	 * final output frequency as a decrement-by-one),
335 	 * so mode 0 is much better when looking at the
336 	 * individual counts.
337 	 */
338 	outb(0xb0, 0x43);
339 
340 	/* Start at 0xffff */
341 	outb(0xff, 0x42);
342 	outb(0xff, 0x42);
343 
344 	/*
345 	 * The PIT starts counting at the next edge, so we
346 	 * need to delay for a microsecond. The easiest way
347 	 * to do that is to just read back the 16-bit counter
348 	 * once from the PIT.
349 	 */
350 	pit_verify_msb(0);
351 
352 	if (pit_expect_msb(0xff, &tsc, &d1)) {
353 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
354 			if (!pit_expect_msb(0xff-i, &delta, &d2))
355 				break;
356 
357 			/*
358 			 * Iterate until the error is less than 500 ppm
359 			 */
360 			delta -= tsc;
361 			if (d1+d2 >= delta >> 11)
362 				continue;
363 
364 			/*
365 			 * Check the PIT one more time to verify that
366 			 * all TSC reads were stable wrt the PIT.
367 			 *
368 			 * This also guarantees serialization of the
369 			 * last cycle read ('d2') in pit_expect_msb.
370 			 */
371 			if (!pit_verify_msb(0xfe - i))
372 				break;
373 			goto success;
374 		}
375 	}
376 	printk("Fast TSC calibration failed\n");
377 	return 0;
378 
379 success:
380 	/*
381 	 * Ok, if we get here, then we've seen the
382 	 * MSB of the PIT decrement 'i' times, and the
383 	 * error has shrunk to less than 500 ppm.
384 	 *
385 	 * As a result, we can depend on there not being
386 	 * any odd delays anywhere, and the TSC reads are
387 	 * reliable (within the error). We also adjust the
388 	 * delta to the middle of the error bars, just
389 	 * because it looks nicer.
390 	 *
391 	 * kHz = ticks / time-in-seconds / 1000;
392 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
393 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
394 	 */
395 	delta += (long)(d2 - d1)/2;
396 	delta *= PIT_TICK_RATE;
397 	do_div(delta, i*256*1000);
398 	printk("Fast TSC calibration using PIT\n");
399 	return delta;
400 }
401 
402 /**
403  * native_calibrate_tsc - calibrate the tsc on boot
404  */
405 unsigned long native_calibrate_tsc(void)
406 {
407 	u64 tsc1, tsc2, delta, ref1, ref2;
408 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
409 	unsigned long flags, latch, ms, fast_calibrate;
410 	int hpet = is_hpet_enabled(), i, loopmin;
411 
412 	local_irq_save(flags);
413 	fast_calibrate = quick_pit_calibrate();
414 	local_irq_restore(flags);
415 	if (fast_calibrate)
416 		return fast_calibrate;
417 
418 	/*
419 	 * Run 5 calibration loops to get the lowest frequency value
420 	 * (the best estimate). We use two different calibration modes
421 	 * here:
422 	 *
423 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
424 	 * load a timeout of 50ms. We read the time right after we
425 	 * started the timer and wait until the PIT count down reaches
426 	 * zero. In each wait loop iteration we read the TSC and check
427 	 * the delta to the previous read. We keep track of the min
428 	 * and max values of that delta. The delta is mostly defined
429 	 * by the IO time of the PIT access, so we can detect when a
430 	 * SMI/SMM disturbance happened between the two reads. If the
431 	 * maximum time is significantly larger than the minimum time,
432 	 * then we discard the result and have another try.
433 	 *
434 	 * 2) Reference counter. If available we use the HPET or the
435 	 * PMTIMER as a reference to check the sanity of that value.
436 	 * We use separate TSC readouts and check inside of the
437 	 * reference read for a SMI/SMM disturbance. We dicard
438 	 * disturbed values here as well. We do that around the PIT
439 	 * calibration delay loop as we have to wait for a certain
440 	 * amount of time anyway.
441 	 */
442 
443 	/* Preset PIT loop values */
444 	latch = CAL_LATCH;
445 	ms = CAL_MS;
446 	loopmin = CAL_PIT_LOOPS;
447 
448 	for (i = 0; i < 3; i++) {
449 		unsigned long tsc_pit_khz;
450 
451 		/*
452 		 * Read the start value and the reference count of
453 		 * hpet/pmtimer when available. Then do the PIT
454 		 * calibration, which will take at least 50ms, and
455 		 * read the end value.
456 		 */
457 		local_irq_save(flags);
458 		tsc1 = tsc_read_refs(&ref1, hpet);
459 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
460 		tsc2 = tsc_read_refs(&ref2, hpet);
461 		local_irq_restore(flags);
462 
463 		/* Pick the lowest PIT TSC calibration so far */
464 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
465 
466 		/* hpet or pmtimer available ? */
467 		if (ref1 == ref2)
468 			continue;
469 
470 		/* Check, whether the sampling was disturbed by an SMI */
471 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
472 			continue;
473 
474 		tsc2 = (tsc2 - tsc1) * 1000000LL;
475 		if (hpet)
476 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
477 		else
478 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
479 
480 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
481 
482 		/* Check the reference deviation */
483 		delta = ((u64) tsc_pit_min) * 100;
484 		do_div(delta, tsc_ref_min);
485 
486 		/*
487 		 * If both calibration results are inside a 10% window
488 		 * then we can be sure, that the calibration
489 		 * succeeded. We break out of the loop right away. We
490 		 * use the reference value, as it is more precise.
491 		 */
492 		if (delta >= 90 && delta <= 110) {
493 			printk(KERN_INFO
494 			       "TSC: PIT calibration matches %s. %d loops\n",
495 			       hpet ? "HPET" : "PMTIMER", i + 1);
496 			return tsc_ref_min;
497 		}
498 
499 		/*
500 		 * Check whether PIT failed more than once. This
501 		 * happens in virtualized environments. We need to
502 		 * give the virtual PC a slightly longer timeframe for
503 		 * the HPET/PMTIMER to make the result precise.
504 		 */
505 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
506 			latch = CAL2_LATCH;
507 			ms = CAL2_MS;
508 			loopmin = CAL2_PIT_LOOPS;
509 		}
510 	}
511 
512 	/*
513 	 * Now check the results.
514 	 */
515 	if (tsc_pit_min == ULONG_MAX) {
516 		/* PIT gave no useful value */
517 		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
518 
519 		/* We don't have an alternative source, disable TSC */
520 		if (!hpet && !ref1 && !ref2) {
521 			printk("TSC: No reference (HPET/PMTIMER) available\n");
522 			return 0;
523 		}
524 
525 		/* The alternative source failed as well, disable TSC */
526 		if (tsc_ref_min == ULONG_MAX) {
527 			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
528 			       "failed.\n");
529 			return 0;
530 		}
531 
532 		/* Use the alternative source */
533 		printk(KERN_INFO "TSC: using %s reference calibration\n",
534 		       hpet ? "HPET" : "PMTIMER");
535 
536 		return tsc_ref_min;
537 	}
538 
539 	/* We don't have an alternative source, use the PIT calibration value */
540 	if (!hpet && !ref1 && !ref2) {
541 		printk(KERN_INFO "TSC: Using PIT calibration value\n");
542 		return tsc_pit_min;
543 	}
544 
545 	/* The alternative source failed, use the PIT calibration value */
546 	if (tsc_ref_min == ULONG_MAX) {
547 		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
548 		       "Using PIT calibration\n");
549 		return tsc_pit_min;
550 	}
551 
552 	/*
553 	 * The calibration values differ too much. In doubt, we use
554 	 * the PIT value as we know that there are PMTIMERs around
555 	 * running at double speed. At least we let the user know:
556 	 */
557 	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
558 	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
559 	printk(KERN_INFO "TSC: Using PIT calibration value\n");
560 	return tsc_pit_min;
561 }
562 
563 int recalibrate_cpu_khz(void)
564 {
565 #ifndef CONFIG_SMP
566 	unsigned long cpu_khz_old = cpu_khz;
567 
568 	if (cpu_has_tsc) {
569 		tsc_khz = x86_platform.calibrate_tsc();
570 		cpu_khz = tsc_khz;
571 		cpu_data(0).loops_per_jiffy =
572 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
573 					cpu_khz_old, cpu_khz);
574 		return 0;
575 	} else
576 		return -ENODEV;
577 #else
578 	return -ENODEV;
579 #endif
580 }
581 
582 EXPORT_SYMBOL(recalibrate_cpu_khz);
583 
584 
585 /* Accelerators for sched_clock()
586  * convert from cycles(64bits) => nanoseconds (64bits)
587  *  basic equation:
588  *              ns = cycles / (freq / ns_per_sec)
589  *              ns = cycles * (ns_per_sec / freq)
590  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
591  *              ns = cycles * (10^6 / cpu_khz)
592  *
593  *      Then we use scaling math (suggested by george@mvista.com) to get:
594  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
595  *              ns = cycles * cyc2ns_scale / SC
596  *
597  *      And since SC is a constant power of two, we can convert the div
598  *  into a shift.
599  *
600  *  We can use khz divisor instead of mhz to keep a better precision, since
601  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
602  *  (mathieu.desnoyers@polymtl.ca)
603  *
604  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
605  */
606 
607 DEFINE_PER_CPU(unsigned long, cyc2ns);
608 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
609 
610 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
611 {
612 	unsigned long long tsc_now, ns_now, *offset;
613 	unsigned long flags, *scale;
614 
615 	local_irq_save(flags);
616 	sched_clock_idle_sleep_event();
617 
618 	scale = &per_cpu(cyc2ns, cpu);
619 	offset = &per_cpu(cyc2ns_offset, cpu);
620 
621 	rdtscll(tsc_now);
622 	ns_now = __cycles_2_ns(tsc_now);
623 
624 	if (cpu_khz) {
625 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
626 		*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
627 	}
628 
629 	sched_clock_idle_wakeup_event(0);
630 	local_irq_restore(flags);
631 }
632 
633 static unsigned long long cyc2ns_suspend;
634 
635 void save_sched_clock_state(void)
636 {
637 	if (!sched_clock_stable)
638 		return;
639 
640 	cyc2ns_suspend = sched_clock();
641 }
642 
643 /*
644  * Even on processors with invariant TSC, TSC gets reset in some the
645  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
646  * arbitrary value (still sync'd across cpu's) during resume from such sleep
647  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
648  * that sched_clock() continues from the point where it was left off during
649  * suspend.
650  */
651 void restore_sched_clock_state(void)
652 {
653 	unsigned long long offset;
654 	unsigned long flags;
655 	int cpu;
656 
657 	if (!sched_clock_stable)
658 		return;
659 
660 	local_irq_save(flags);
661 
662 	__this_cpu_write(cyc2ns_offset, 0);
663 	offset = cyc2ns_suspend - sched_clock();
664 
665 	for_each_possible_cpu(cpu)
666 		per_cpu(cyc2ns_offset, cpu) = offset;
667 
668 	local_irq_restore(flags);
669 }
670 
671 #ifdef CONFIG_CPU_FREQ
672 
673 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
674  * changes.
675  *
676  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
677  * not that important because current Opteron setups do not support
678  * scaling on SMP anyroads.
679  *
680  * Should fix up last_tsc too. Currently gettimeofday in the
681  * first tick after the change will be slightly wrong.
682  */
683 
684 static unsigned int  ref_freq;
685 static unsigned long loops_per_jiffy_ref;
686 static unsigned long tsc_khz_ref;
687 
688 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
689 				void *data)
690 {
691 	struct cpufreq_freqs *freq = data;
692 	unsigned long *lpj;
693 
694 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
695 		return 0;
696 
697 	lpj = &boot_cpu_data.loops_per_jiffy;
698 #ifdef CONFIG_SMP
699 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
700 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
701 #endif
702 
703 	if (!ref_freq) {
704 		ref_freq = freq->old;
705 		loops_per_jiffy_ref = *lpj;
706 		tsc_khz_ref = tsc_khz;
707 	}
708 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
709 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
710 			(val == CPUFREQ_RESUMECHANGE)) {
711 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
712 
713 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
714 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
715 			mark_tsc_unstable("cpufreq changes");
716 	}
717 
718 	set_cyc2ns_scale(tsc_khz, freq->cpu);
719 
720 	return 0;
721 }
722 
723 static struct notifier_block time_cpufreq_notifier_block = {
724 	.notifier_call  = time_cpufreq_notifier
725 };
726 
727 static int __init cpufreq_tsc(void)
728 {
729 	if (!cpu_has_tsc)
730 		return 0;
731 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
732 		return 0;
733 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
734 				CPUFREQ_TRANSITION_NOTIFIER);
735 	return 0;
736 }
737 
738 core_initcall(cpufreq_tsc);
739 
740 #endif /* CONFIG_CPU_FREQ */
741 
742 /* clocksource code */
743 
744 static struct clocksource clocksource_tsc;
745 
746 /*
747  * We compare the TSC to the cycle_last value in the clocksource
748  * structure to avoid a nasty time-warp. This can be observed in a
749  * very small window right after one CPU updated cycle_last under
750  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
751  * is smaller than the cycle_last reference value due to a TSC which
752  * is slighty behind. This delta is nowhere else observable, but in
753  * that case it results in a forward time jump in the range of hours
754  * due to the unsigned delta calculation of the time keeping core
755  * code, which is necessary to support wrapping clocksources like pm
756  * timer.
757  */
758 static cycle_t read_tsc(struct clocksource *cs)
759 {
760 	cycle_t ret = (cycle_t)get_cycles();
761 
762 	return ret >= clocksource_tsc.cycle_last ?
763 		ret : clocksource_tsc.cycle_last;
764 }
765 
766 #ifdef CONFIG_X86_64
767 static cycle_t __vsyscall_fn vread_tsc(void)
768 {
769 	cycle_t ret;
770 
771 	/*
772 	 * Surround the RDTSC by barriers, to make sure it's not
773 	 * speculated to outside the seqlock critical section and
774 	 * does not cause time warps:
775 	 */
776 	rdtsc_barrier();
777 	ret = (cycle_t)vget_cycles();
778 	rdtsc_barrier();
779 
780 	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
781 		ret : __vsyscall_gtod_data.clock.cycle_last;
782 }
783 #endif
784 
785 static void resume_tsc(struct clocksource *cs)
786 {
787 	clocksource_tsc.cycle_last = 0;
788 }
789 
790 static struct clocksource clocksource_tsc = {
791 	.name                   = "tsc",
792 	.rating                 = 300,
793 	.read                   = read_tsc,
794 	.resume			= resume_tsc,
795 	.mask                   = CLOCKSOURCE_MASK(64),
796 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
797 				  CLOCK_SOURCE_MUST_VERIFY,
798 #ifdef CONFIG_X86_64
799 	.vread                  = vread_tsc,
800 #endif
801 };
802 
803 void mark_tsc_unstable(char *reason)
804 {
805 	if (!tsc_unstable) {
806 		tsc_unstable = 1;
807 		sched_clock_stable = 0;
808 		disable_sched_clock_irqtime();
809 		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
810 		/* Change only the rating, when not registered */
811 		if (clocksource_tsc.mult)
812 			clocksource_mark_unstable(&clocksource_tsc);
813 		else {
814 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
815 			clocksource_tsc.rating = 0;
816 		}
817 	}
818 }
819 
820 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
821 
822 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
823 {
824 	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
825 			d->ident);
826 	tsc_unstable = 1;
827 	return 0;
828 }
829 
830 /* List of systems that have known TSC problems */
831 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
832 	{
833 		.callback = dmi_mark_tsc_unstable,
834 		.ident = "IBM Thinkpad 380XD",
835 		.matches = {
836 			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
837 			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
838 		},
839 	},
840 	{}
841 };
842 
843 static void __init check_system_tsc_reliable(void)
844 {
845 #ifdef CONFIG_MGEODE_LX
846 	/* RTSC counts during suspend */
847 #define RTSC_SUSP 0x100
848 	unsigned long res_low, res_high;
849 
850 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
851 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
852 	if (res_low & RTSC_SUSP)
853 		tsc_clocksource_reliable = 1;
854 #endif
855 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
856 		tsc_clocksource_reliable = 1;
857 }
858 
859 /*
860  * Make an educated guess if the TSC is trustworthy and synchronized
861  * over all CPUs.
862  */
863 __cpuinit int unsynchronized_tsc(void)
864 {
865 	if (!cpu_has_tsc || tsc_unstable)
866 		return 1;
867 
868 #ifdef CONFIG_SMP
869 	if (apic_is_clustered_box())
870 		return 1;
871 #endif
872 
873 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
874 		return 0;
875 
876 	if (tsc_clocksource_reliable)
877 		return 0;
878 	/*
879 	 * Intel systems are normally all synchronized.
880 	 * Exceptions must mark TSC as unstable:
881 	 */
882 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
883 		/* assume multi socket systems are not synchronized: */
884 		if (num_possible_cpus() > 1)
885 			return 1;
886 	}
887 
888 	return 0;
889 }
890 
891 
892 static void tsc_refine_calibration_work(struct work_struct *work);
893 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
894 /**
895  * tsc_refine_calibration_work - Further refine tsc freq calibration
896  * @work - ignored.
897  *
898  * This functions uses delayed work over a period of a
899  * second to further refine the TSC freq value. Since this is
900  * timer based, instead of loop based, we don't block the boot
901  * process while this longer calibration is done.
902  *
903  * If there are any calibration anomalies (too many SMIs, etc),
904  * or the refined calibration is off by 1% of the fast early
905  * calibration, we throw out the new calibration and use the
906  * early calibration.
907  */
908 static void tsc_refine_calibration_work(struct work_struct *work)
909 {
910 	static u64 tsc_start = -1, ref_start;
911 	static int hpet;
912 	u64 tsc_stop, ref_stop, delta;
913 	unsigned long freq;
914 
915 	/* Don't bother refining TSC on unstable systems */
916 	if (check_tsc_unstable())
917 		goto out;
918 
919 	/*
920 	 * Since the work is started early in boot, we may be
921 	 * delayed the first time we expire. So set the workqueue
922 	 * again once we know timers are working.
923 	 */
924 	if (tsc_start == -1) {
925 		/*
926 		 * Only set hpet once, to avoid mixing hardware
927 		 * if the hpet becomes enabled later.
928 		 */
929 		hpet = is_hpet_enabled();
930 		schedule_delayed_work(&tsc_irqwork, HZ);
931 		tsc_start = tsc_read_refs(&ref_start, hpet);
932 		return;
933 	}
934 
935 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
936 
937 	/* hpet or pmtimer available ? */
938 	if (ref_start == ref_stop)
939 		goto out;
940 
941 	/* Check, whether the sampling was disturbed by an SMI */
942 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
943 		goto out;
944 
945 	delta = tsc_stop - tsc_start;
946 	delta *= 1000000LL;
947 	if (hpet)
948 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
949 	else
950 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
951 
952 	/* Make sure we're within 1% */
953 	if (abs(tsc_khz - freq) > tsc_khz/100)
954 		goto out;
955 
956 	tsc_khz = freq;
957 	printk(KERN_INFO "Refined TSC clocksource calibration: "
958 		"%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
959 					(unsigned long)tsc_khz % 1000);
960 
961 out:
962 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
963 }
964 
965 
966 static int __init init_tsc_clocksource(void)
967 {
968 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
969 		return 0;
970 
971 	if (tsc_clocksource_reliable)
972 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
973 	/* lower the rating if we already know its unstable: */
974 	if (check_tsc_unstable()) {
975 		clocksource_tsc.rating = 0;
976 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
977 	}
978 	schedule_delayed_work(&tsc_irqwork, 0);
979 	return 0;
980 }
981 /*
982  * We use device_initcall here, to ensure we run after the hpet
983  * is fully initialized, which may occur at fs_initcall time.
984  */
985 device_initcall(init_tsc_clocksource);
986 
987 void __init tsc_init(void)
988 {
989 	u64 lpj;
990 	int cpu;
991 
992 	x86_init.timers.tsc_pre_init();
993 
994 	if (!cpu_has_tsc)
995 		return;
996 
997 	tsc_khz = x86_platform.calibrate_tsc();
998 	cpu_khz = tsc_khz;
999 
1000 	if (!tsc_khz) {
1001 		mark_tsc_unstable("could not calculate TSC khz");
1002 		return;
1003 	}
1004 
1005 	printk("Detected %lu.%03lu MHz processor.\n",
1006 			(unsigned long)cpu_khz / 1000,
1007 			(unsigned long)cpu_khz % 1000);
1008 
1009 	/*
1010 	 * Secondary CPUs do not run through tsc_init(), so set up
1011 	 * all the scale factors for all CPUs, assuming the same
1012 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1013 	 * up if their speed diverges)
1014 	 */
1015 	for_each_possible_cpu(cpu)
1016 		set_cyc2ns_scale(cpu_khz, cpu);
1017 
1018 	if (tsc_disabled > 0)
1019 		return;
1020 
1021 	/* now allow native_sched_clock() to use rdtsc */
1022 	tsc_disabled = 0;
1023 
1024 	if (!no_sched_irq_time)
1025 		enable_sched_clock_irqtime();
1026 
1027 	lpj = ((u64)tsc_khz * 1000);
1028 	do_div(lpj, HZ);
1029 	lpj_fine = lpj;
1030 
1031 	use_tsc_delay();
1032 	/* Check and install the TSC clocksource */
1033 	dmi_check_system(bad_tsc_dmi_table);
1034 
1035 	if (unsynchronized_tsc())
1036 		mark_tsc_unstable("TSCs unsynchronized");
1037 
1038 	check_system_tsc_reliable();
1039 }
1040 
1041