1 #include <linux/kernel.h> 2 #include <linux/sched.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/timer.h> 6 #include <linux/acpi_pmtmr.h> 7 #include <linux/cpufreq.h> 8 #include <linux/dmi.h> 9 #include <linux/delay.h> 10 #include <linux/clocksource.h> 11 #include <linux/percpu.h> 12 #include <linux/timex.h> 13 14 #include <asm/hpet.h> 15 #include <asm/timer.h> 16 #include <asm/vgtod.h> 17 #include <asm/time.h> 18 #include <asm/delay.h> 19 #include <asm/hypervisor.h> 20 #include <asm/nmi.h> 21 #include <asm/x86_init.h> 22 23 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 24 EXPORT_SYMBOL(cpu_khz); 25 26 unsigned int __read_mostly tsc_khz; 27 EXPORT_SYMBOL(tsc_khz); 28 29 /* 30 * TSC can be unstable due to cpufreq or due to unsynced TSCs 31 */ 32 static int __read_mostly tsc_unstable; 33 34 /* native_sched_clock() is called before tsc_init(), so 35 we must start with the TSC soft disabled to prevent 36 erroneous rdtsc usage on !cpu_has_tsc processors */ 37 static int __read_mostly tsc_disabled = -1; 38 39 static int tsc_clocksource_reliable; 40 /* 41 * Scheduler clock - returns current time in nanosec units. 42 */ 43 u64 native_sched_clock(void) 44 { 45 u64 this_offset; 46 47 /* 48 * Fall back to jiffies if there's no TSC available: 49 * ( But note that we still use it if the TSC is marked 50 * unstable. We do this because unlike Time Of Day, 51 * the scheduler clock tolerates small errors and it's 52 * very important for it to be as fast as the platform 53 * can achieve it. ) 54 */ 55 if (unlikely(tsc_disabled)) { 56 /* No locking but a rare wrong value is not a big deal: */ 57 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 58 } 59 60 /* read the Time Stamp Counter: */ 61 rdtscll(this_offset); 62 63 /* return the value in ns */ 64 return __cycles_2_ns(this_offset); 65 } 66 67 /* We need to define a real function for sched_clock, to override the 68 weak default version */ 69 #ifdef CONFIG_PARAVIRT 70 unsigned long long sched_clock(void) 71 { 72 return paravirt_sched_clock(); 73 } 74 #else 75 unsigned long long 76 sched_clock(void) __attribute__((alias("native_sched_clock"))); 77 #endif 78 79 int check_tsc_unstable(void) 80 { 81 return tsc_unstable; 82 } 83 EXPORT_SYMBOL_GPL(check_tsc_unstable); 84 85 #ifdef CONFIG_X86_TSC 86 int __init notsc_setup(char *str) 87 { 88 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " 89 "cannot disable TSC completely.\n"); 90 tsc_disabled = 1; 91 return 1; 92 } 93 #else 94 /* 95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 96 * in cpu/common.c 97 */ 98 int __init notsc_setup(char *str) 99 { 100 setup_clear_cpu_cap(X86_FEATURE_TSC); 101 return 1; 102 } 103 #endif 104 105 __setup("notsc", notsc_setup); 106 107 static int no_sched_irq_time; 108 109 static int __init tsc_setup(char *str) 110 { 111 if (!strcmp(str, "reliable")) 112 tsc_clocksource_reliable = 1; 113 if (!strncmp(str, "noirqtime", 9)) 114 no_sched_irq_time = 1; 115 return 1; 116 } 117 118 __setup("tsc=", tsc_setup); 119 120 #define MAX_RETRIES 5 121 #define SMI_TRESHOLD 50000 122 123 /* 124 * Read TSC and the reference counters. Take care of SMI disturbance 125 */ 126 static u64 tsc_read_refs(u64 *p, int hpet) 127 { 128 u64 t1, t2; 129 int i; 130 131 for (i = 0; i < MAX_RETRIES; i++) { 132 t1 = get_cycles(); 133 if (hpet) 134 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 135 else 136 *p = acpi_pm_read_early(); 137 t2 = get_cycles(); 138 if ((t2 - t1) < SMI_TRESHOLD) 139 return t2; 140 } 141 return ULLONG_MAX; 142 } 143 144 /* 145 * Calculate the TSC frequency from HPET reference 146 */ 147 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 148 { 149 u64 tmp; 150 151 if (hpet2 < hpet1) 152 hpet2 += 0x100000000ULL; 153 hpet2 -= hpet1; 154 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 155 do_div(tmp, 1000000); 156 do_div(deltatsc, tmp); 157 158 return (unsigned long) deltatsc; 159 } 160 161 /* 162 * Calculate the TSC frequency from PMTimer reference 163 */ 164 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 165 { 166 u64 tmp; 167 168 if (!pm1 && !pm2) 169 return ULONG_MAX; 170 171 if (pm2 < pm1) 172 pm2 += (u64)ACPI_PM_OVRRUN; 173 pm2 -= pm1; 174 tmp = pm2 * 1000000000LL; 175 do_div(tmp, PMTMR_TICKS_PER_SEC); 176 do_div(deltatsc, tmp); 177 178 return (unsigned long) deltatsc; 179 } 180 181 #define CAL_MS 10 182 #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS)) 183 #define CAL_PIT_LOOPS 1000 184 185 #define CAL2_MS 50 186 #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS)) 187 #define CAL2_PIT_LOOPS 5000 188 189 190 /* 191 * Try to calibrate the TSC against the Programmable 192 * Interrupt Timer and return the frequency of the TSC 193 * in kHz. 194 * 195 * Return ULONG_MAX on failure to calibrate. 196 */ 197 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 198 { 199 u64 tsc, t1, t2, delta; 200 unsigned long tscmin, tscmax; 201 int pitcnt; 202 203 /* Set the Gate high, disable speaker */ 204 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 205 206 /* 207 * Setup CTC channel 2* for mode 0, (interrupt on terminal 208 * count mode), binary count. Set the latch register to 50ms 209 * (LSB then MSB) to begin countdown. 210 */ 211 outb(0xb0, 0x43); 212 outb(latch & 0xff, 0x42); 213 outb(latch >> 8, 0x42); 214 215 tsc = t1 = t2 = get_cycles(); 216 217 pitcnt = 0; 218 tscmax = 0; 219 tscmin = ULONG_MAX; 220 while ((inb(0x61) & 0x20) == 0) { 221 t2 = get_cycles(); 222 delta = t2 - tsc; 223 tsc = t2; 224 if ((unsigned long) delta < tscmin) 225 tscmin = (unsigned int) delta; 226 if ((unsigned long) delta > tscmax) 227 tscmax = (unsigned int) delta; 228 pitcnt++; 229 } 230 231 /* 232 * Sanity checks: 233 * 234 * If we were not able to read the PIT more than loopmin 235 * times, then we have been hit by a massive SMI 236 * 237 * If the maximum is 10 times larger than the minimum, 238 * then we got hit by an SMI as well. 239 */ 240 if (pitcnt < loopmin || tscmax > 10 * tscmin) 241 return ULONG_MAX; 242 243 /* Calculate the PIT value */ 244 delta = t2 - t1; 245 do_div(delta, ms); 246 return delta; 247 } 248 249 /* 250 * This reads the current MSB of the PIT counter, and 251 * checks if we are running on sufficiently fast and 252 * non-virtualized hardware. 253 * 254 * Our expectations are: 255 * 256 * - the PIT is running at roughly 1.19MHz 257 * 258 * - each IO is going to take about 1us on real hardware, 259 * but we allow it to be much faster (by a factor of 10) or 260 * _slightly_ slower (ie we allow up to a 2us read+counter 261 * update - anything else implies a unacceptably slow CPU 262 * or PIT for the fast calibration to work. 263 * 264 * - with 256 PIT ticks to read the value, we have 214us to 265 * see the same MSB (and overhead like doing a single TSC 266 * read per MSB value etc). 267 * 268 * - We're doing 2 reads per loop (LSB, MSB), and we expect 269 * them each to take about a microsecond on real hardware. 270 * So we expect a count value of around 100. But we'll be 271 * generous, and accept anything over 50. 272 * 273 * - if the PIT is stuck, and we see *many* more reads, we 274 * return early (and the next caller of pit_expect_msb() 275 * then consider it a failure when they don't see the 276 * next expected value). 277 * 278 * These expectations mean that we know that we have seen the 279 * transition from one expected value to another with a fairly 280 * high accuracy, and we didn't miss any events. We can thus 281 * use the TSC value at the transitions to calculate a pretty 282 * good value for the TSC frequencty. 283 */ 284 static inline int pit_verify_msb(unsigned char val) 285 { 286 /* Ignore LSB */ 287 inb(0x42); 288 return inb(0x42) == val; 289 } 290 291 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 292 { 293 int count; 294 u64 tsc = 0; 295 296 for (count = 0; count < 50000; count++) { 297 if (!pit_verify_msb(val)) 298 break; 299 tsc = get_cycles(); 300 } 301 *deltap = get_cycles() - tsc; 302 *tscp = tsc; 303 304 /* 305 * We require _some_ success, but the quality control 306 * will be based on the error terms on the TSC values. 307 */ 308 return count > 5; 309 } 310 311 /* 312 * How many MSB values do we want to see? We aim for 313 * a maximum error rate of 500ppm (in practice the 314 * real error is much smaller), but refuse to spend 315 * more than 25ms on it. 316 */ 317 #define MAX_QUICK_PIT_MS 25 318 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 319 320 static unsigned long quick_pit_calibrate(void) 321 { 322 int i; 323 u64 tsc, delta; 324 unsigned long d1, d2; 325 326 /* Set the Gate high, disable speaker */ 327 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 328 329 /* 330 * Counter 2, mode 0 (one-shot), binary count 331 * 332 * NOTE! Mode 2 decrements by two (and then the 333 * output is flipped each time, giving the same 334 * final output frequency as a decrement-by-one), 335 * so mode 0 is much better when looking at the 336 * individual counts. 337 */ 338 outb(0xb0, 0x43); 339 340 /* Start at 0xffff */ 341 outb(0xff, 0x42); 342 outb(0xff, 0x42); 343 344 /* 345 * The PIT starts counting at the next edge, so we 346 * need to delay for a microsecond. The easiest way 347 * to do that is to just read back the 16-bit counter 348 * once from the PIT. 349 */ 350 pit_verify_msb(0); 351 352 if (pit_expect_msb(0xff, &tsc, &d1)) { 353 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 354 if (!pit_expect_msb(0xff-i, &delta, &d2)) 355 break; 356 357 /* 358 * Iterate until the error is less than 500 ppm 359 */ 360 delta -= tsc; 361 if (d1+d2 >= delta >> 11) 362 continue; 363 364 /* 365 * Check the PIT one more time to verify that 366 * all TSC reads were stable wrt the PIT. 367 * 368 * This also guarantees serialization of the 369 * last cycle read ('d2') in pit_expect_msb. 370 */ 371 if (!pit_verify_msb(0xfe - i)) 372 break; 373 goto success; 374 } 375 } 376 printk("Fast TSC calibration failed\n"); 377 return 0; 378 379 success: 380 /* 381 * Ok, if we get here, then we've seen the 382 * MSB of the PIT decrement 'i' times, and the 383 * error has shrunk to less than 500 ppm. 384 * 385 * As a result, we can depend on there not being 386 * any odd delays anywhere, and the TSC reads are 387 * reliable (within the error). We also adjust the 388 * delta to the middle of the error bars, just 389 * because it looks nicer. 390 * 391 * kHz = ticks / time-in-seconds / 1000; 392 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 393 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 394 */ 395 delta += (long)(d2 - d1)/2; 396 delta *= PIT_TICK_RATE; 397 do_div(delta, i*256*1000); 398 printk("Fast TSC calibration using PIT\n"); 399 return delta; 400 } 401 402 /** 403 * native_calibrate_tsc - calibrate the tsc on boot 404 */ 405 unsigned long native_calibrate_tsc(void) 406 { 407 u64 tsc1, tsc2, delta, ref1, ref2; 408 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 409 unsigned long flags, latch, ms, fast_calibrate; 410 int hpet = is_hpet_enabled(), i, loopmin; 411 412 local_irq_save(flags); 413 fast_calibrate = quick_pit_calibrate(); 414 local_irq_restore(flags); 415 if (fast_calibrate) 416 return fast_calibrate; 417 418 /* 419 * Run 5 calibration loops to get the lowest frequency value 420 * (the best estimate). We use two different calibration modes 421 * here: 422 * 423 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 424 * load a timeout of 50ms. We read the time right after we 425 * started the timer and wait until the PIT count down reaches 426 * zero. In each wait loop iteration we read the TSC and check 427 * the delta to the previous read. We keep track of the min 428 * and max values of that delta. The delta is mostly defined 429 * by the IO time of the PIT access, so we can detect when a 430 * SMI/SMM disturbance happened between the two reads. If the 431 * maximum time is significantly larger than the minimum time, 432 * then we discard the result and have another try. 433 * 434 * 2) Reference counter. If available we use the HPET or the 435 * PMTIMER as a reference to check the sanity of that value. 436 * We use separate TSC readouts and check inside of the 437 * reference read for a SMI/SMM disturbance. We dicard 438 * disturbed values here as well. We do that around the PIT 439 * calibration delay loop as we have to wait for a certain 440 * amount of time anyway. 441 */ 442 443 /* Preset PIT loop values */ 444 latch = CAL_LATCH; 445 ms = CAL_MS; 446 loopmin = CAL_PIT_LOOPS; 447 448 for (i = 0; i < 3; i++) { 449 unsigned long tsc_pit_khz; 450 451 /* 452 * Read the start value and the reference count of 453 * hpet/pmtimer when available. Then do the PIT 454 * calibration, which will take at least 50ms, and 455 * read the end value. 456 */ 457 local_irq_save(flags); 458 tsc1 = tsc_read_refs(&ref1, hpet); 459 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 460 tsc2 = tsc_read_refs(&ref2, hpet); 461 local_irq_restore(flags); 462 463 /* Pick the lowest PIT TSC calibration so far */ 464 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 465 466 /* hpet or pmtimer available ? */ 467 if (ref1 == ref2) 468 continue; 469 470 /* Check, whether the sampling was disturbed by an SMI */ 471 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 472 continue; 473 474 tsc2 = (tsc2 - tsc1) * 1000000LL; 475 if (hpet) 476 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 477 else 478 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 479 480 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 481 482 /* Check the reference deviation */ 483 delta = ((u64) tsc_pit_min) * 100; 484 do_div(delta, tsc_ref_min); 485 486 /* 487 * If both calibration results are inside a 10% window 488 * then we can be sure, that the calibration 489 * succeeded. We break out of the loop right away. We 490 * use the reference value, as it is more precise. 491 */ 492 if (delta >= 90 && delta <= 110) { 493 printk(KERN_INFO 494 "TSC: PIT calibration matches %s. %d loops\n", 495 hpet ? "HPET" : "PMTIMER", i + 1); 496 return tsc_ref_min; 497 } 498 499 /* 500 * Check whether PIT failed more than once. This 501 * happens in virtualized environments. We need to 502 * give the virtual PC a slightly longer timeframe for 503 * the HPET/PMTIMER to make the result precise. 504 */ 505 if (i == 1 && tsc_pit_min == ULONG_MAX) { 506 latch = CAL2_LATCH; 507 ms = CAL2_MS; 508 loopmin = CAL2_PIT_LOOPS; 509 } 510 } 511 512 /* 513 * Now check the results. 514 */ 515 if (tsc_pit_min == ULONG_MAX) { 516 /* PIT gave no useful value */ 517 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n"); 518 519 /* We don't have an alternative source, disable TSC */ 520 if (!hpet && !ref1 && !ref2) { 521 printk("TSC: No reference (HPET/PMTIMER) available\n"); 522 return 0; 523 } 524 525 /* The alternative source failed as well, disable TSC */ 526 if (tsc_ref_min == ULONG_MAX) { 527 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " 528 "failed.\n"); 529 return 0; 530 } 531 532 /* Use the alternative source */ 533 printk(KERN_INFO "TSC: using %s reference calibration\n", 534 hpet ? "HPET" : "PMTIMER"); 535 536 return tsc_ref_min; 537 } 538 539 /* We don't have an alternative source, use the PIT calibration value */ 540 if (!hpet && !ref1 && !ref2) { 541 printk(KERN_INFO "TSC: Using PIT calibration value\n"); 542 return tsc_pit_min; 543 } 544 545 /* The alternative source failed, use the PIT calibration value */ 546 if (tsc_ref_min == ULONG_MAX) { 547 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " 548 "Using PIT calibration\n"); 549 return tsc_pit_min; 550 } 551 552 /* 553 * The calibration values differ too much. In doubt, we use 554 * the PIT value as we know that there are PMTIMERs around 555 * running at double speed. At least we let the user know: 556 */ 557 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", 558 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 559 printk(KERN_INFO "TSC: Using PIT calibration value\n"); 560 return tsc_pit_min; 561 } 562 563 int recalibrate_cpu_khz(void) 564 { 565 #ifndef CONFIG_SMP 566 unsigned long cpu_khz_old = cpu_khz; 567 568 if (cpu_has_tsc) { 569 tsc_khz = x86_platform.calibrate_tsc(); 570 cpu_khz = tsc_khz; 571 cpu_data(0).loops_per_jiffy = 572 cpufreq_scale(cpu_data(0).loops_per_jiffy, 573 cpu_khz_old, cpu_khz); 574 return 0; 575 } else 576 return -ENODEV; 577 #else 578 return -ENODEV; 579 #endif 580 } 581 582 EXPORT_SYMBOL(recalibrate_cpu_khz); 583 584 585 /* Accelerators for sched_clock() 586 * convert from cycles(64bits) => nanoseconds (64bits) 587 * basic equation: 588 * ns = cycles / (freq / ns_per_sec) 589 * ns = cycles * (ns_per_sec / freq) 590 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 591 * ns = cycles * (10^6 / cpu_khz) 592 * 593 * Then we use scaling math (suggested by george@mvista.com) to get: 594 * ns = cycles * (10^6 * SC / cpu_khz) / SC 595 * ns = cycles * cyc2ns_scale / SC 596 * 597 * And since SC is a constant power of two, we can convert the div 598 * into a shift. 599 * 600 * We can use khz divisor instead of mhz to keep a better precision, since 601 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 602 * (mathieu.desnoyers@polymtl.ca) 603 * 604 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 605 */ 606 607 DEFINE_PER_CPU(unsigned long, cyc2ns); 608 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); 609 610 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 611 { 612 unsigned long long tsc_now, ns_now, *offset; 613 unsigned long flags, *scale; 614 615 local_irq_save(flags); 616 sched_clock_idle_sleep_event(); 617 618 scale = &per_cpu(cyc2ns, cpu); 619 offset = &per_cpu(cyc2ns_offset, cpu); 620 621 rdtscll(tsc_now); 622 ns_now = __cycles_2_ns(tsc_now); 623 624 if (cpu_khz) { 625 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; 626 *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR); 627 } 628 629 sched_clock_idle_wakeup_event(0); 630 local_irq_restore(flags); 631 } 632 633 static unsigned long long cyc2ns_suspend; 634 635 void save_sched_clock_state(void) 636 { 637 if (!sched_clock_stable) 638 return; 639 640 cyc2ns_suspend = sched_clock(); 641 } 642 643 /* 644 * Even on processors with invariant TSC, TSC gets reset in some the 645 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 646 * arbitrary value (still sync'd across cpu's) during resume from such sleep 647 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 648 * that sched_clock() continues from the point where it was left off during 649 * suspend. 650 */ 651 void restore_sched_clock_state(void) 652 { 653 unsigned long long offset; 654 unsigned long flags; 655 int cpu; 656 657 if (!sched_clock_stable) 658 return; 659 660 local_irq_save(flags); 661 662 __this_cpu_write(cyc2ns_offset, 0); 663 offset = cyc2ns_suspend - sched_clock(); 664 665 for_each_possible_cpu(cpu) 666 per_cpu(cyc2ns_offset, cpu) = offset; 667 668 local_irq_restore(flags); 669 } 670 671 #ifdef CONFIG_CPU_FREQ 672 673 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 674 * changes. 675 * 676 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 677 * not that important because current Opteron setups do not support 678 * scaling on SMP anyroads. 679 * 680 * Should fix up last_tsc too. Currently gettimeofday in the 681 * first tick after the change will be slightly wrong. 682 */ 683 684 static unsigned int ref_freq; 685 static unsigned long loops_per_jiffy_ref; 686 static unsigned long tsc_khz_ref; 687 688 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 689 void *data) 690 { 691 struct cpufreq_freqs *freq = data; 692 unsigned long *lpj; 693 694 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 695 return 0; 696 697 lpj = &boot_cpu_data.loops_per_jiffy; 698 #ifdef CONFIG_SMP 699 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 700 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 701 #endif 702 703 if (!ref_freq) { 704 ref_freq = freq->old; 705 loops_per_jiffy_ref = *lpj; 706 tsc_khz_ref = tsc_khz; 707 } 708 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 709 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 710 (val == CPUFREQ_RESUMECHANGE)) { 711 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 712 713 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 714 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 715 mark_tsc_unstable("cpufreq changes"); 716 } 717 718 set_cyc2ns_scale(tsc_khz, freq->cpu); 719 720 return 0; 721 } 722 723 static struct notifier_block time_cpufreq_notifier_block = { 724 .notifier_call = time_cpufreq_notifier 725 }; 726 727 static int __init cpufreq_tsc(void) 728 { 729 if (!cpu_has_tsc) 730 return 0; 731 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 732 return 0; 733 cpufreq_register_notifier(&time_cpufreq_notifier_block, 734 CPUFREQ_TRANSITION_NOTIFIER); 735 return 0; 736 } 737 738 core_initcall(cpufreq_tsc); 739 740 #endif /* CONFIG_CPU_FREQ */ 741 742 /* clocksource code */ 743 744 static struct clocksource clocksource_tsc; 745 746 /* 747 * We compare the TSC to the cycle_last value in the clocksource 748 * structure to avoid a nasty time-warp. This can be observed in a 749 * very small window right after one CPU updated cycle_last under 750 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 751 * is smaller than the cycle_last reference value due to a TSC which 752 * is slighty behind. This delta is nowhere else observable, but in 753 * that case it results in a forward time jump in the range of hours 754 * due to the unsigned delta calculation of the time keeping core 755 * code, which is necessary to support wrapping clocksources like pm 756 * timer. 757 */ 758 static cycle_t read_tsc(struct clocksource *cs) 759 { 760 cycle_t ret = (cycle_t)get_cycles(); 761 762 return ret >= clocksource_tsc.cycle_last ? 763 ret : clocksource_tsc.cycle_last; 764 } 765 766 #ifdef CONFIG_X86_64 767 static cycle_t __vsyscall_fn vread_tsc(void) 768 { 769 cycle_t ret; 770 771 /* 772 * Surround the RDTSC by barriers, to make sure it's not 773 * speculated to outside the seqlock critical section and 774 * does not cause time warps: 775 */ 776 rdtsc_barrier(); 777 ret = (cycle_t)vget_cycles(); 778 rdtsc_barrier(); 779 780 return ret >= __vsyscall_gtod_data.clock.cycle_last ? 781 ret : __vsyscall_gtod_data.clock.cycle_last; 782 } 783 #endif 784 785 static void resume_tsc(struct clocksource *cs) 786 { 787 clocksource_tsc.cycle_last = 0; 788 } 789 790 static struct clocksource clocksource_tsc = { 791 .name = "tsc", 792 .rating = 300, 793 .read = read_tsc, 794 .resume = resume_tsc, 795 .mask = CLOCKSOURCE_MASK(64), 796 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 797 CLOCK_SOURCE_MUST_VERIFY, 798 #ifdef CONFIG_X86_64 799 .vread = vread_tsc, 800 #endif 801 }; 802 803 void mark_tsc_unstable(char *reason) 804 { 805 if (!tsc_unstable) { 806 tsc_unstable = 1; 807 sched_clock_stable = 0; 808 disable_sched_clock_irqtime(); 809 printk(KERN_INFO "Marking TSC unstable due to %s\n", reason); 810 /* Change only the rating, when not registered */ 811 if (clocksource_tsc.mult) 812 clocksource_mark_unstable(&clocksource_tsc); 813 else { 814 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 815 clocksource_tsc.rating = 0; 816 } 817 } 818 } 819 820 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 821 822 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) 823 { 824 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", 825 d->ident); 826 tsc_unstable = 1; 827 return 0; 828 } 829 830 /* List of systems that have known TSC problems */ 831 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { 832 { 833 .callback = dmi_mark_tsc_unstable, 834 .ident = "IBM Thinkpad 380XD", 835 .matches = { 836 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), 837 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), 838 }, 839 }, 840 {} 841 }; 842 843 static void __init check_system_tsc_reliable(void) 844 { 845 #ifdef CONFIG_MGEODE_LX 846 /* RTSC counts during suspend */ 847 #define RTSC_SUSP 0x100 848 unsigned long res_low, res_high; 849 850 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 851 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 852 if (res_low & RTSC_SUSP) 853 tsc_clocksource_reliable = 1; 854 #endif 855 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 856 tsc_clocksource_reliable = 1; 857 } 858 859 /* 860 * Make an educated guess if the TSC is trustworthy and synchronized 861 * over all CPUs. 862 */ 863 __cpuinit int unsynchronized_tsc(void) 864 { 865 if (!cpu_has_tsc || tsc_unstable) 866 return 1; 867 868 #ifdef CONFIG_SMP 869 if (apic_is_clustered_box()) 870 return 1; 871 #endif 872 873 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 874 return 0; 875 876 if (tsc_clocksource_reliable) 877 return 0; 878 /* 879 * Intel systems are normally all synchronized. 880 * Exceptions must mark TSC as unstable: 881 */ 882 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 883 /* assume multi socket systems are not synchronized: */ 884 if (num_possible_cpus() > 1) 885 return 1; 886 } 887 888 return 0; 889 } 890 891 892 static void tsc_refine_calibration_work(struct work_struct *work); 893 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 894 /** 895 * tsc_refine_calibration_work - Further refine tsc freq calibration 896 * @work - ignored. 897 * 898 * This functions uses delayed work over a period of a 899 * second to further refine the TSC freq value. Since this is 900 * timer based, instead of loop based, we don't block the boot 901 * process while this longer calibration is done. 902 * 903 * If there are any calibration anomalies (too many SMIs, etc), 904 * or the refined calibration is off by 1% of the fast early 905 * calibration, we throw out the new calibration and use the 906 * early calibration. 907 */ 908 static void tsc_refine_calibration_work(struct work_struct *work) 909 { 910 static u64 tsc_start = -1, ref_start; 911 static int hpet; 912 u64 tsc_stop, ref_stop, delta; 913 unsigned long freq; 914 915 /* Don't bother refining TSC on unstable systems */ 916 if (check_tsc_unstable()) 917 goto out; 918 919 /* 920 * Since the work is started early in boot, we may be 921 * delayed the first time we expire. So set the workqueue 922 * again once we know timers are working. 923 */ 924 if (tsc_start == -1) { 925 /* 926 * Only set hpet once, to avoid mixing hardware 927 * if the hpet becomes enabled later. 928 */ 929 hpet = is_hpet_enabled(); 930 schedule_delayed_work(&tsc_irqwork, HZ); 931 tsc_start = tsc_read_refs(&ref_start, hpet); 932 return; 933 } 934 935 tsc_stop = tsc_read_refs(&ref_stop, hpet); 936 937 /* hpet or pmtimer available ? */ 938 if (ref_start == ref_stop) 939 goto out; 940 941 /* Check, whether the sampling was disturbed by an SMI */ 942 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 943 goto out; 944 945 delta = tsc_stop - tsc_start; 946 delta *= 1000000LL; 947 if (hpet) 948 freq = calc_hpet_ref(delta, ref_start, ref_stop); 949 else 950 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 951 952 /* Make sure we're within 1% */ 953 if (abs(tsc_khz - freq) > tsc_khz/100) 954 goto out; 955 956 tsc_khz = freq; 957 printk(KERN_INFO "Refined TSC clocksource calibration: " 958 "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000, 959 (unsigned long)tsc_khz % 1000); 960 961 out: 962 clocksource_register_khz(&clocksource_tsc, tsc_khz); 963 } 964 965 966 static int __init init_tsc_clocksource(void) 967 { 968 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 969 return 0; 970 971 if (tsc_clocksource_reliable) 972 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 973 /* lower the rating if we already know its unstable: */ 974 if (check_tsc_unstable()) { 975 clocksource_tsc.rating = 0; 976 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 977 } 978 schedule_delayed_work(&tsc_irqwork, 0); 979 return 0; 980 } 981 /* 982 * We use device_initcall here, to ensure we run after the hpet 983 * is fully initialized, which may occur at fs_initcall time. 984 */ 985 device_initcall(init_tsc_clocksource); 986 987 void __init tsc_init(void) 988 { 989 u64 lpj; 990 int cpu; 991 992 x86_init.timers.tsc_pre_init(); 993 994 if (!cpu_has_tsc) 995 return; 996 997 tsc_khz = x86_platform.calibrate_tsc(); 998 cpu_khz = tsc_khz; 999 1000 if (!tsc_khz) { 1001 mark_tsc_unstable("could not calculate TSC khz"); 1002 return; 1003 } 1004 1005 printk("Detected %lu.%03lu MHz processor.\n", 1006 (unsigned long)cpu_khz / 1000, 1007 (unsigned long)cpu_khz % 1000); 1008 1009 /* 1010 * Secondary CPUs do not run through tsc_init(), so set up 1011 * all the scale factors for all CPUs, assuming the same 1012 * speed as the bootup CPU. (cpufreq notifiers will fix this 1013 * up if their speed diverges) 1014 */ 1015 for_each_possible_cpu(cpu) 1016 set_cyc2ns_scale(cpu_khz, cpu); 1017 1018 if (tsc_disabled > 0) 1019 return; 1020 1021 /* now allow native_sched_clock() to use rdtsc */ 1022 tsc_disabled = 0; 1023 1024 if (!no_sched_irq_time) 1025 enable_sched_clock_irqtime(); 1026 1027 lpj = ((u64)tsc_khz * 1000); 1028 do_div(lpj, HZ); 1029 lpj_fine = lpj; 1030 1031 use_tsc_delay(); 1032 /* Check and install the TSC clocksource */ 1033 dmi_check_system(bad_tsc_dmi_table); 1034 1035 if (unsynchronized_tsc()) 1036 mark_tsc_unstable("TSCs unsynchronized"); 1037 1038 check_system_tsc_reliable(); 1039 } 1040 1041