xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 545e4006)
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 
19 unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
20 EXPORT_SYMBOL(cpu_khz);
21 unsigned int tsc_khz;
22 EXPORT_SYMBOL(tsc_khz);
23 
24 /*
25  * TSC can be unstable due to cpufreq or due to unsynced TSCs
26  */
27 static int tsc_unstable;
28 
29 /* native_sched_clock() is called before tsc_init(), so
30    we must start with the TSC soft disabled to prevent
31    erroneous rdtsc usage on !cpu_has_tsc processors */
32 static int tsc_disabled = -1;
33 
34 /*
35  * Scheduler clock - returns current time in nanosec units.
36  */
37 u64 native_sched_clock(void)
38 {
39 	u64 this_offset;
40 
41 	/*
42 	 * Fall back to jiffies if there's no TSC available:
43 	 * ( But note that we still use it if the TSC is marked
44 	 *   unstable. We do this because unlike Time Of Day,
45 	 *   the scheduler clock tolerates small errors and it's
46 	 *   very important for it to be as fast as the platform
47 	 *   can achive it. )
48 	 */
49 	if (unlikely(tsc_disabled)) {
50 		/* No locking but a rare wrong value is not a big deal: */
51 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
52 	}
53 
54 	/* read the Time Stamp Counter: */
55 	rdtscll(this_offset);
56 
57 	/* return the value in ns */
58 	return cycles_2_ns(this_offset);
59 }
60 
61 /* We need to define a real function for sched_clock, to override the
62    weak default version */
63 #ifdef CONFIG_PARAVIRT
64 unsigned long long sched_clock(void)
65 {
66 	return paravirt_sched_clock();
67 }
68 #else
69 unsigned long long
70 sched_clock(void) __attribute__((alias("native_sched_clock")));
71 #endif
72 
73 int check_tsc_unstable(void)
74 {
75 	return tsc_unstable;
76 }
77 EXPORT_SYMBOL_GPL(check_tsc_unstable);
78 
79 #ifdef CONFIG_X86_TSC
80 int __init notsc_setup(char *str)
81 {
82 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
83 			"cannot disable TSC completely.\n");
84 	tsc_disabled = 1;
85 	return 1;
86 }
87 #else
88 /*
89  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
90  * in cpu/common.c
91  */
92 int __init notsc_setup(char *str)
93 {
94 	setup_clear_cpu_cap(X86_FEATURE_TSC);
95 	return 1;
96 }
97 #endif
98 
99 __setup("notsc", notsc_setup);
100 
101 #define MAX_RETRIES     5
102 #define SMI_TRESHOLD    50000
103 
104 /*
105  * Read TSC and the reference counters. Take care of SMI disturbance
106  */
107 static u64 __init tsc_read_refs(u64 *pm, u64 *hpet)
108 {
109 	u64 t1, t2;
110 	int i;
111 
112 	for (i = 0; i < MAX_RETRIES; i++) {
113 		t1 = get_cycles();
114 		if (hpet)
115 			*hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
116 		else
117 			*pm = acpi_pm_read_early();
118 		t2 = get_cycles();
119 		if ((t2 - t1) < SMI_TRESHOLD)
120 			return t2;
121 	}
122 	return ULLONG_MAX;
123 }
124 
125 /**
126  * native_calibrate_tsc - calibrate the tsc on boot
127  */
128 unsigned long native_calibrate_tsc(void)
129 {
130 	unsigned long flags;
131 	u64 tsc1, tsc2, tr1, tr2, delta, pm1, pm2, hpet1, hpet2;
132 	int hpet = is_hpet_enabled();
133 	unsigned int tsc_khz_val = 0;
134 
135 	local_irq_save(flags);
136 
137 	tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
138 
139 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
140 
141 	outb(0xb0, 0x43);
142 	outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
143 	outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
144 	tr1 = get_cycles();
145 	while ((inb(0x61) & 0x20) == 0);
146 	tr2 = get_cycles();
147 
148 	tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
149 
150 	local_irq_restore(flags);
151 
152 	/*
153 	 * Preset the result with the raw and inaccurate PIT
154 	 * calibration value
155 	 */
156 	delta = (tr2 - tr1);
157 	do_div(delta, 50);
158 	tsc_khz_val = delta;
159 
160 	/* hpet or pmtimer available ? */
161 	if (!hpet && !pm1 && !pm2) {
162 		printk(KERN_INFO "TSC calibrated against PIT\n");
163 		goto out;
164 	}
165 
166 	/* Check, whether the sampling was disturbed by an SMI */
167 	if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) {
168 		printk(KERN_WARNING "TSC calibration disturbed by SMI, "
169 				"using PIT calibration result\n");
170 		goto out;
171 	}
172 
173 	tsc2 = (tsc2 - tsc1) * 1000000LL;
174 
175 	if (hpet) {
176 		printk(KERN_INFO "TSC calibrated against HPET\n");
177 		if (hpet2 < hpet1)
178 			hpet2 += 0x100000000ULL;
179 		hpet2 -= hpet1;
180 		tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
181 		do_div(tsc1, 1000000);
182 	} else {
183 		printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
184 		if (pm2 < pm1)
185 			pm2 += (u64)ACPI_PM_OVRRUN;
186 		pm2 -= pm1;
187 		tsc1 = pm2 * 1000000000LL;
188 		do_div(tsc1, PMTMR_TICKS_PER_SEC);
189 	}
190 
191 	do_div(tsc2, tsc1);
192 	tsc_khz_val = tsc2;
193 
194 out:
195 	return tsc_khz_val;
196 }
197 
198 
199 #ifdef CONFIG_X86_32
200 /* Only called from the Powernow K7 cpu freq driver */
201 int recalibrate_cpu_khz(void)
202 {
203 #ifndef CONFIG_SMP
204 	unsigned long cpu_khz_old = cpu_khz;
205 
206 	if (cpu_has_tsc) {
207 		tsc_khz = calibrate_tsc();
208 		cpu_khz = tsc_khz;
209 		cpu_data(0).loops_per_jiffy =
210 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
211 					cpu_khz_old, cpu_khz);
212 		return 0;
213 	} else
214 		return -ENODEV;
215 #else
216 	return -ENODEV;
217 #endif
218 }
219 
220 EXPORT_SYMBOL(recalibrate_cpu_khz);
221 
222 #endif /* CONFIG_X86_32 */
223 
224 /* Accelerators for sched_clock()
225  * convert from cycles(64bits) => nanoseconds (64bits)
226  *  basic equation:
227  *              ns = cycles / (freq / ns_per_sec)
228  *              ns = cycles * (ns_per_sec / freq)
229  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
230  *              ns = cycles * (10^6 / cpu_khz)
231  *
232  *      Then we use scaling math (suggested by george@mvista.com) to get:
233  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
234  *              ns = cycles * cyc2ns_scale / SC
235  *
236  *      And since SC is a constant power of two, we can convert the div
237  *  into a shift.
238  *
239  *  We can use khz divisor instead of mhz to keep a better precision, since
240  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
241  *  (mathieu.desnoyers@polymtl.ca)
242  *
243  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
244  */
245 
246 DEFINE_PER_CPU(unsigned long, cyc2ns);
247 
248 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
249 {
250 	unsigned long long tsc_now, ns_now;
251 	unsigned long flags, *scale;
252 
253 	local_irq_save(flags);
254 	sched_clock_idle_sleep_event();
255 
256 	scale = &per_cpu(cyc2ns, cpu);
257 
258 	rdtscll(tsc_now);
259 	ns_now = __cycles_2_ns(tsc_now);
260 
261 	if (cpu_khz)
262 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
263 
264 	sched_clock_idle_wakeup_event(0);
265 	local_irq_restore(flags);
266 }
267 
268 #ifdef CONFIG_CPU_FREQ
269 
270 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
271  * changes.
272  *
273  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
274  * not that important because current Opteron setups do not support
275  * scaling on SMP anyroads.
276  *
277  * Should fix up last_tsc too. Currently gettimeofday in the
278  * first tick after the change will be slightly wrong.
279  */
280 
281 static unsigned int  ref_freq;
282 static unsigned long loops_per_jiffy_ref;
283 static unsigned long tsc_khz_ref;
284 
285 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
286 				void *data)
287 {
288 	struct cpufreq_freqs *freq = data;
289 	unsigned long *lpj, dummy;
290 
291 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
292 		return 0;
293 
294 	lpj = &dummy;
295 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
296 #ifdef CONFIG_SMP
297 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
298 #else
299 	lpj = &boot_cpu_data.loops_per_jiffy;
300 #endif
301 
302 	if (!ref_freq) {
303 		ref_freq = freq->old;
304 		loops_per_jiffy_ref = *lpj;
305 		tsc_khz_ref = tsc_khz;
306 	}
307 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
308 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
309 			(val == CPUFREQ_RESUMECHANGE)) {
310 		*lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
311 
312 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
313 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
314 			mark_tsc_unstable("cpufreq changes");
315 	}
316 
317 	set_cyc2ns_scale(tsc_khz_ref, freq->cpu);
318 
319 	return 0;
320 }
321 
322 static struct notifier_block time_cpufreq_notifier_block = {
323 	.notifier_call  = time_cpufreq_notifier
324 };
325 
326 static int __init cpufreq_tsc(void)
327 {
328 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
329 				CPUFREQ_TRANSITION_NOTIFIER);
330 	return 0;
331 }
332 
333 core_initcall(cpufreq_tsc);
334 
335 #endif /* CONFIG_CPU_FREQ */
336 
337 /* clocksource code */
338 
339 static struct clocksource clocksource_tsc;
340 
341 /*
342  * We compare the TSC to the cycle_last value in the clocksource
343  * structure to avoid a nasty time-warp. This can be observed in a
344  * very small window right after one CPU updated cycle_last under
345  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
346  * is smaller than the cycle_last reference value due to a TSC which
347  * is slighty behind. This delta is nowhere else observable, but in
348  * that case it results in a forward time jump in the range of hours
349  * due to the unsigned delta calculation of the time keeping core
350  * code, which is necessary to support wrapping clocksources like pm
351  * timer.
352  */
353 static cycle_t read_tsc(void)
354 {
355 	cycle_t ret = (cycle_t)get_cycles();
356 
357 	return ret >= clocksource_tsc.cycle_last ?
358 		ret : clocksource_tsc.cycle_last;
359 }
360 
361 #ifdef CONFIG_X86_64
362 static cycle_t __vsyscall_fn vread_tsc(void)
363 {
364 	cycle_t ret = (cycle_t)vget_cycles();
365 
366 	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
367 		ret : __vsyscall_gtod_data.clock.cycle_last;
368 }
369 #endif
370 
371 static struct clocksource clocksource_tsc = {
372 	.name                   = "tsc",
373 	.rating                 = 300,
374 	.read                   = read_tsc,
375 	.mask                   = CLOCKSOURCE_MASK(64),
376 	.shift                  = 22,
377 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
378 				  CLOCK_SOURCE_MUST_VERIFY,
379 #ifdef CONFIG_X86_64
380 	.vread                  = vread_tsc,
381 #endif
382 };
383 
384 void mark_tsc_unstable(char *reason)
385 {
386 	if (!tsc_unstable) {
387 		tsc_unstable = 1;
388 		printk("Marking TSC unstable due to %s\n", reason);
389 		/* Change only the rating, when not registered */
390 		if (clocksource_tsc.mult)
391 			clocksource_change_rating(&clocksource_tsc, 0);
392 		else
393 			clocksource_tsc.rating = 0;
394 	}
395 }
396 
397 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
398 
399 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
400 {
401 	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
402 			d->ident);
403 	tsc_unstable = 1;
404 	return 0;
405 }
406 
407 /* List of systems that have known TSC problems */
408 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
409 	{
410 		.callback = dmi_mark_tsc_unstable,
411 		.ident = "IBM Thinkpad 380XD",
412 		.matches = {
413 			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
414 			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
415 		},
416 	},
417 	{}
418 };
419 
420 /*
421  * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
422  */
423 #ifdef CONFIG_MGEODE_LX
424 /* RTSC counts during suspend */
425 #define RTSC_SUSP 0x100
426 
427 static void __init check_geode_tsc_reliable(void)
428 {
429 	unsigned long res_low, res_high;
430 
431 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
432 	if (res_low & RTSC_SUSP)
433 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
434 }
435 #else
436 static inline void check_geode_tsc_reliable(void) { }
437 #endif
438 
439 /*
440  * Make an educated guess if the TSC is trustworthy and synchronized
441  * over all CPUs.
442  */
443 __cpuinit int unsynchronized_tsc(void)
444 {
445 	if (!cpu_has_tsc || tsc_unstable)
446 		return 1;
447 
448 #ifdef CONFIG_SMP
449 	if (apic_is_clustered_box())
450 		return 1;
451 #endif
452 
453 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
454 		return 0;
455 	/*
456 	 * Intel systems are normally all synchronized.
457 	 * Exceptions must mark TSC as unstable:
458 	 */
459 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
460 		/* assume multi socket systems are not synchronized: */
461 		if (num_possible_cpus() > 1)
462 			tsc_unstable = 1;
463 	}
464 
465 	return tsc_unstable;
466 }
467 
468 static void __init init_tsc_clocksource(void)
469 {
470 	clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
471 			clocksource_tsc.shift);
472 	/* lower the rating if we already know its unstable: */
473 	if (check_tsc_unstable()) {
474 		clocksource_tsc.rating = 0;
475 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
476 	}
477 	clocksource_register(&clocksource_tsc);
478 }
479 
480 void __init tsc_init(void)
481 {
482 	u64 lpj;
483 	int cpu;
484 
485 	if (!cpu_has_tsc)
486 		return;
487 
488 	tsc_khz = calibrate_tsc();
489 	cpu_khz = tsc_khz;
490 
491 	if (!tsc_khz) {
492 		mark_tsc_unstable("could not calculate TSC khz");
493 		return;
494 	}
495 
496 #ifdef CONFIG_X86_64
497 	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
498 			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
499 		cpu_khz = calibrate_cpu();
500 #endif
501 
502 	lpj = ((u64)tsc_khz * 1000);
503 	do_div(lpj, HZ);
504 	lpj_fine = lpj;
505 
506 	printk("Detected %lu.%03lu MHz processor.\n",
507 			(unsigned long)cpu_khz / 1000,
508 			(unsigned long)cpu_khz % 1000);
509 
510 	/*
511 	 * Secondary CPUs do not run through tsc_init(), so set up
512 	 * all the scale factors for all CPUs, assuming the same
513 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
514 	 * up if their speed diverges)
515 	 */
516 	for_each_possible_cpu(cpu)
517 		set_cyc2ns_scale(cpu_khz, cpu);
518 
519 	if (tsc_disabled > 0)
520 		return;
521 
522 	/* now allow native_sched_clock() to use rdtsc */
523 	tsc_disabled = 0;
524 
525 	use_tsc_delay();
526 	/* Check and install the TSC clocksource */
527 	dmi_check_system(bad_tsc_dmi_table);
528 
529 	if (unsynchronized_tsc())
530 		mark_tsc_unstable("TSCs unsynchronized");
531 
532 	check_geode_tsc_reliable();
533 	init_tsc_clocksource();
534 }
535 
536