xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
16 
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 
29 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
31 
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
34 
35 /*
36  * TSC can be unstable due to cpufreq or due to unsynced TSCs
37  */
38 static int __read_mostly tsc_unstable;
39 
40 /* native_sched_clock() is called before tsc_init(), so
41    we must start with the TSC soft disabled to prevent
42    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
44 
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46 
47 int tsc_clocksource_reliable;
48 
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53 
54 /*
55  * Use a ring-buffer like data structure, where a writer advances the head by
56  * writing a new data entry and a reader advances the tail when it observes a
57  * new entry.
58  *
59  * Writers are made to wait on readers until there's space to write a new
60  * entry.
61  *
62  * This means that we can always use an {offset, mul} pair to compute a ns
63  * value that is 'roughly' in the right direction, even if we're writing a new
64  * {offset, mul} pair during the clock read.
65  *
66  * The down-side is that we can no longer guarantee strict monotonicity anymore
67  * (assuming the TSC was that to begin with), because while we compute the
68  * intersection point of the two clock slopes and make sure the time is
69  * continuous at the point of switching; we can no longer guarantee a reader is
70  * strictly before or after the switch point.
71  *
72  * It does mean a reader no longer needs to disable IRQs in order to avoid
73  * CPU-Freq updates messing with his times, and similarly an NMI reader will
74  * no longer run the risk of hitting half-written state.
75  */
76 
77 struct cyc2ns {
78 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
79 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
80 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
81 }; /* exactly fits one cacheline */
82 
83 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
84 
85 struct cyc2ns_data *cyc2ns_read_begin(void)
86 {
87 	struct cyc2ns_data *head;
88 
89 	preempt_disable();
90 
91 	head = this_cpu_read(cyc2ns.head);
92 	/*
93 	 * Ensure we observe the entry when we observe the pointer to it.
94 	 * matches the wmb from cyc2ns_write_end().
95 	 */
96 	smp_read_barrier_depends();
97 	head->__count++;
98 	barrier();
99 
100 	return head;
101 }
102 
103 void cyc2ns_read_end(struct cyc2ns_data *head)
104 {
105 	barrier();
106 	/*
107 	 * If we're the outer most nested read; update the tail pointer
108 	 * when we're done. This notifies possible pending writers
109 	 * that we've observed the head pointer and that the other
110 	 * entry is now free.
111 	 */
112 	if (!--head->__count) {
113 		/*
114 		 * x86-TSO does not reorder writes with older reads;
115 		 * therefore once this write becomes visible to another
116 		 * cpu, we must be finished reading the cyc2ns_data.
117 		 *
118 		 * matches with cyc2ns_write_begin().
119 		 */
120 		this_cpu_write(cyc2ns.tail, head);
121 	}
122 	preempt_enable();
123 }
124 
125 /*
126  * Begin writing a new @data entry for @cpu.
127  *
128  * Assumes some sort of write side lock; currently 'provided' by the assumption
129  * that cpufreq will call its notifiers sequentially.
130  */
131 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
132 {
133 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
134 	struct cyc2ns_data *data = c2n->data;
135 
136 	if (data == c2n->head)
137 		data++;
138 
139 	/* XXX send an IPI to @cpu in order to guarantee a read? */
140 
141 	/*
142 	 * When we observe the tail write from cyc2ns_read_end(),
143 	 * the cpu must be done with that entry and its safe
144 	 * to start writing to it.
145 	 */
146 	while (c2n->tail == data)
147 		cpu_relax();
148 
149 	return data;
150 }
151 
152 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
153 {
154 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
155 
156 	/*
157 	 * Ensure the @data writes are visible before we publish the
158 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
159 	 */
160 	smp_wmb();
161 
162 	ACCESS_ONCE(c2n->head) = data;
163 }
164 
165 /*
166  * Accelerators for sched_clock()
167  * convert from cycles(64bits) => nanoseconds (64bits)
168  *  basic equation:
169  *              ns = cycles / (freq / ns_per_sec)
170  *              ns = cycles * (ns_per_sec / freq)
171  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
172  *              ns = cycles * (10^6 / cpu_khz)
173  *
174  *      Then we use scaling math (suggested by george@mvista.com) to get:
175  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
176  *              ns = cycles * cyc2ns_scale / SC
177  *
178  *      And since SC is a constant power of two, we can convert the div
179  *  into a shift. The larger SC is, the more accurate the conversion, but
180  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
181  *  (64-bit result) can be used.
182  *
183  *  We can use khz divisor instead of mhz to keep a better precision.
184  *  (mathieu.desnoyers@polymtl.ca)
185  *
186  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
187  */
188 
189 static void cyc2ns_data_init(struct cyc2ns_data *data)
190 {
191 	data->cyc2ns_mul = 0;
192 	data->cyc2ns_shift = 0;
193 	data->cyc2ns_offset = 0;
194 	data->__count = 0;
195 }
196 
197 static void cyc2ns_init(int cpu)
198 {
199 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
200 
201 	cyc2ns_data_init(&c2n->data[0]);
202 	cyc2ns_data_init(&c2n->data[1]);
203 
204 	c2n->head = c2n->data;
205 	c2n->tail = c2n->data;
206 }
207 
208 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
209 {
210 	struct cyc2ns_data *data, *tail;
211 	unsigned long long ns;
212 
213 	/*
214 	 * See cyc2ns_read_*() for details; replicated in order to avoid
215 	 * an extra few instructions that came with the abstraction.
216 	 * Notable, it allows us to only do the __count and tail update
217 	 * dance when its actually needed.
218 	 */
219 
220 	preempt_disable_notrace();
221 	data = this_cpu_read(cyc2ns.head);
222 	tail = this_cpu_read(cyc2ns.tail);
223 
224 	if (likely(data == tail)) {
225 		ns = data->cyc2ns_offset;
226 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
227 	} else {
228 		data->__count++;
229 
230 		barrier();
231 
232 		ns = data->cyc2ns_offset;
233 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
234 
235 		barrier();
236 
237 		if (!--data->__count)
238 			this_cpu_write(cyc2ns.tail, data);
239 	}
240 	preempt_enable_notrace();
241 
242 	return ns;
243 }
244 
245 static void set_cyc2ns_scale(unsigned long khz, int cpu)
246 {
247 	unsigned long long tsc_now, ns_now;
248 	struct cyc2ns_data *data;
249 	unsigned long flags;
250 
251 	local_irq_save(flags);
252 	sched_clock_idle_sleep_event();
253 
254 	if (!khz)
255 		goto done;
256 
257 	data = cyc2ns_write_begin(cpu);
258 
259 	tsc_now = rdtsc();
260 	ns_now = cycles_2_ns(tsc_now);
261 
262 	/*
263 	 * Compute a new multiplier as per the above comment and ensure our
264 	 * time function is continuous; see the comment near struct
265 	 * cyc2ns_data.
266 	 */
267 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
268 			       NSEC_PER_MSEC, 0);
269 
270 	/*
271 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
272 	 * not expected to be greater than 31 due to the original published
273 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
274 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
275 	 */
276 	if (data->cyc2ns_shift == 32) {
277 		data->cyc2ns_shift = 31;
278 		data->cyc2ns_mul >>= 1;
279 	}
280 
281 	data->cyc2ns_offset = ns_now -
282 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
283 
284 	cyc2ns_write_end(cpu, data);
285 
286 done:
287 	sched_clock_idle_wakeup_event(0);
288 	local_irq_restore(flags);
289 }
290 /*
291  * Scheduler clock - returns current time in nanosec units.
292  */
293 u64 native_sched_clock(void)
294 {
295 	if (static_branch_likely(&__use_tsc)) {
296 		u64 tsc_now = rdtsc();
297 
298 		/* return the value in ns */
299 		return cycles_2_ns(tsc_now);
300 	}
301 
302 	/*
303 	 * Fall back to jiffies if there's no TSC available:
304 	 * ( But note that we still use it if the TSC is marked
305 	 *   unstable. We do this because unlike Time Of Day,
306 	 *   the scheduler clock tolerates small errors and it's
307 	 *   very important for it to be as fast as the platform
308 	 *   can achieve it. )
309 	 */
310 
311 	/* No locking but a rare wrong value is not a big deal: */
312 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
313 }
314 
315 /*
316  * Generate a sched_clock if you already have a TSC value.
317  */
318 u64 native_sched_clock_from_tsc(u64 tsc)
319 {
320 	return cycles_2_ns(tsc);
321 }
322 
323 /* We need to define a real function for sched_clock, to override the
324    weak default version */
325 #ifdef CONFIG_PARAVIRT
326 unsigned long long sched_clock(void)
327 {
328 	return paravirt_sched_clock();
329 }
330 
331 bool using_native_sched_clock(void)
332 {
333 	return pv_time_ops.sched_clock == native_sched_clock;
334 }
335 #else
336 unsigned long long
337 sched_clock(void) __attribute__((alias("native_sched_clock")));
338 
339 bool using_native_sched_clock(void) { return true; }
340 #endif
341 
342 int check_tsc_unstable(void)
343 {
344 	return tsc_unstable;
345 }
346 EXPORT_SYMBOL_GPL(check_tsc_unstable);
347 
348 #ifdef CONFIG_X86_TSC
349 int __init notsc_setup(char *str)
350 {
351 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
352 	tsc_disabled = 1;
353 	return 1;
354 }
355 #else
356 /*
357  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
358  * in cpu/common.c
359  */
360 int __init notsc_setup(char *str)
361 {
362 	setup_clear_cpu_cap(X86_FEATURE_TSC);
363 	return 1;
364 }
365 #endif
366 
367 __setup("notsc", notsc_setup);
368 
369 static int no_sched_irq_time;
370 
371 static int __init tsc_setup(char *str)
372 {
373 	if (!strcmp(str, "reliable"))
374 		tsc_clocksource_reliable = 1;
375 	if (!strncmp(str, "noirqtime", 9))
376 		no_sched_irq_time = 1;
377 	return 1;
378 }
379 
380 __setup("tsc=", tsc_setup);
381 
382 #define MAX_RETRIES     5
383 #define SMI_TRESHOLD    50000
384 
385 /*
386  * Read TSC and the reference counters. Take care of SMI disturbance
387  */
388 static u64 tsc_read_refs(u64 *p, int hpet)
389 {
390 	u64 t1, t2;
391 	int i;
392 
393 	for (i = 0; i < MAX_RETRIES; i++) {
394 		t1 = get_cycles();
395 		if (hpet)
396 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
397 		else
398 			*p = acpi_pm_read_early();
399 		t2 = get_cycles();
400 		if ((t2 - t1) < SMI_TRESHOLD)
401 			return t2;
402 	}
403 	return ULLONG_MAX;
404 }
405 
406 /*
407  * Calculate the TSC frequency from HPET reference
408  */
409 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
410 {
411 	u64 tmp;
412 
413 	if (hpet2 < hpet1)
414 		hpet2 += 0x100000000ULL;
415 	hpet2 -= hpet1;
416 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
417 	do_div(tmp, 1000000);
418 	do_div(deltatsc, tmp);
419 
420 	return (unsigned long) deltatsc;
421 }
422 
423 /*
424  * Calculate the TSC frequency from PMTimer reference
425  */
426 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
427 {
428 	u64 tmp;
429 
430 	if (!pm1 && !pm2)
431 		return ULONG_MAX;
432 
433 	if (pm2 < pm1)
434 		pm2 += (u64)ACPI_PM_OVRRUN;
435 	pm2 -= pm1;
436 	tmp = pm2 * 1000000000LL;
437 	do_div(tmp, PMTMR_TICKS_PER_SEC);
438 	do_div(deltatsc, tmp);
439 
440 	return (unsigned long) deltatsc;
441 }
442 
443 #define CAL_MS		10
444 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
445 #define CAL_PIT_LOOPS	1000
446 
447 #define CAL2_MS		50
448 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
449 #define CAL2_PIT_LOOPS	5000
450 
451 
452 /*
453  * Try to calibrate the TSC against the Programmable
454  * Interrupt Timer and return the frequency of the TSC
455  * in kHz.
456  *
457  * Return ULONG_MAX on failure to calibrate.
458  */
459 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
460 {
461 	u64 tsc, t1, t2, delta;
462 	unsigned long tscmin, tscmax;
463 	int pitcnt;
464 
465 	/* Set the Gate high, disable speaker */
466 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
467 
468 	/*
469 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
470 	 * count mode), binary count. Set the latch register to 50ms
471 	 * (LSB then MSB) to begin countdown.
472 	 */
473 	outb(0xb0, 0x43);
474 	outb(latch & 0xff, 0x42);
475 	outb(latch >> 8, 0x42);
476 
477 	tsc = t1 = t2 = get_cycles();
478 
479 	pitcnt = 0;
480 	tscmax = 0;
481 	tscmin = ULONG_MAX;
482 	while ((inb(0x61) & 0x20) == 0) {
483 		t2 = get_cycles();
484 		delta = t2 - tsc;
485 		tsc = t2;
486 		if ((unsigned long) delta < tscmin)
487 			tscmin = (unsigned int) delta;
488 		if ((unsigned long) delta > tscmax)
489 			tscmax = (unsigned int) delta;
490 		pitcnt++;
491 	}
492 
493 	/*
494 	 * Sanity checks:
495 	 *
496 	 * If we were not able to read the PIT more than loopmin
497 	 * times, then we have been hit by a massive SMI
498 	 *
499 	 * If the maximum is 10 times larger than the minimum,
500 	 * then we got hit by an SMI as well.
501 	 */
502 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
503 		return ULONG_MAX;
504 
505 	/* Calculate the PIT value */
506 	delta = t2 - t1;
507 	do_div(delta, ms);
508 	return delta;
509 }
510 
511 /*
512  * This reads the current MSB of the PIT counter, and
513  * checks if we are running on sufficiently fast and
514  * non-virtualized hardware.
515  *
516  * Our expectations are:
517  *
518  *  - the PIT is running at roughly 1.19MHz
519  *
520  *  - each IO is going to take about 1us on real hardware,
521  *    but we allow it to be much faster (by a factor of 10) or
522  *    _slightly_ slower (ie we allow up to a 2us read+counter
523  *    update - anything else implies a unacceptably slow CPU
524  *    or PIT for the fast calibration to work.
525  *
526  *  - with 256 PIT ticks to read the value, we have 214us to
527  *    see the same MSB (and overhead like doing a single TSC
528  *    read per MSB value etc).
529  *
530  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
531  *    them each to take about a microsecond on real hardware.
532  *    So we expect a count value of around 100. But we'll be
533  *    generous, and accept anything over 50.
534  *
535  *  - if the PIT is stuck, and we see *many* more reads, we
536  *    return early (and the next caller of pit_expect_msb()
537  *    then consider it a failure when they don't see the
538  *    next expected value).
539  *
540  * These expectations mean that we know that we have seen the
541  * transition from one expected value to another with a fairly
542  * high accuracy, and we didn't miss any events. We can thus
543  * use the TSC value at the transitions to calculate a pretty
544  * good value for the TSC frequencty.
545  */
546 static inline int pit_verify_msb(unsigned char val)
547 {
548 	/* Ignore LSB */
549 	inb(0x42);
550 	return inb(0x42) == val;
551 }
552 
553 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
554 {
555 	int count;
556 	u64 tsc = 0, prev_tsc = 0;
557 
558 	for (count = 0; count < 50000; count++) {
559 		if (!pit_verify_msb(val))
560 			break;
561 		prev_tsc = tsc;
562 		tsc = get_cycles();
563 	}
564 	*deltap = get_cycles() - prev_tsc;
565 	*tscp = tsc;
566 
567 	/*
568 	 * We require _some_ success, but the quality control
569 	 * will be based on the error terms on the TSC values.
570 	 */
571 	return count > 5;
572 }
573 
574 /*
575  * How many MSB values do we want to see? We aim for
576  * a maximum error rate of 500ppm (in practice the
577  * real error is much smaller), but refuse to spend
578  * more than 50ms on it.
579  */
580 #define MAX_QUICK_PIT_MS 50
581 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
582 
583 static unsigned long quick_pit_calibrate(void)
584 {
585 	int i;
586 	u64 tsc, delta;
587 	unsigned long d1, d2;
588 
589 	/* Set the Gate high, disable speaker */
590 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
591 
592 	/*
593 	 * Counter 2, mode 0 (one-shot), binary count
594 	 *
595 	 * NOTE! Mode 2 decrements by two (and then the
596 	 * output is flipped each time, giving the same
597 	 * final output frequency as a decrement-by-one),
598 	 * so mode 0 is much better when looking at the
599 	 * individual counts.
600 	 */
601 	outb(0xb0, 0x43);
602 
603 	/* Start at 0xffff */
604 	outb(0xff, 0x42);
605 	outb(0xff, 0x42);
606 
607 	/*
608 	 * The PIT starts counting at the next edge, so we
609 	 * need to delay for a microsecond. The easiest way
610 	 * to do that is to just read back the 16-bit counter
611 	 * once from the PIT.
612 	 */
613 	pit_verify_msb(0);
614 
615 	if (pit_expect_msb(0xff, &tsc, &d1)) {
616 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
617 			if (!pit_expect_msb(0xff-i, &delta, &d2))
618 				break;
619 
620 			delta -= tsc;
621 
622 			/*
623 			 * Extrapolate the error and fail fast if the error will
624 			 * never be below 500 ppm.
625 			 */
626 			if (i == 1 &&
627 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
628 				return 0;
629 
630 			/*
631 			 * Iterate until the error is less than 500 ppm
632 			 */
633 			if (d1+d2 >= delta >> 11)
634 				continue;
635 
636 			/*
637 			 * Check the PIT one more time to verify that
638 			 * all TSC reads were stable wrt the PIT.
639 			 *
640 			 * This also guarantees serialization of the
641 			 * last cycle read ('d2') in pit_expect_msb.
642 			 */
643 			if (!pit_verify_msb(0xfe - i))
644 				break;
645 			goto success;
646 		}
647 	}
648 	pr_info("Fast TSC calibration failed\n");
649 	return 0;
650 
651 success:
652 	/*
653 	 * Ok, if we get here, then we've seen the
654 	 * MSB of the PIT decrement 'i' times, and the
655 	 * error has shrunk to less than 500 ppm.
656 	 *
657 	 * As a result, we can depend on there not being
658 	 * any odd delays anywhere, and the TSC reads are
659 	 * reliable (within the error).
660 	 *
661 	 * kHz = ticks / time-in-seconds / 1000;
662 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
663 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
664 	 */
665 	delta *= PIT_TICK_RATE;
666 	do_div(delta, i*256*1000);
667 	pr_info("Fast TSC calibration using PIT\n");
668 	return delta;
669 }
670 
671 /**
672  * native_calibrate_tsc
673  * Determine TSC frequency via CPUID, else return 0.
674  */
675 unsigned long native_calibrate_tsc(void)
676 {
677 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
678 	unsigned int crystal_khz;
679 
680 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
681 		return 0;
682 
683 	if (boot_cpu_data.cpuid_level < 0x15)
684 		return 0;
685 
686 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
687 
688 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
689 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
690 
691 	if (ebx_numerator == 0 || eax_denominator == 0)
692 		return 0;
693 
694 	crystal_khz = ecx_hz / 1000;
695 
696 	if (crystal_khz == 0) {
697 		switch (boot_cpu_data.x86_model) {
698 		case INTEL_FAM6_SKYLAKE_MOBILE:
699 		case INTEL_FAM6_SKYLAKE_DESKTOP:
700 		case INTEL_FAM6_KABYLAKE_MOBILE:
701 		case INTEL_FAM6_KABYLAKE_DESKTOP:
702 			crystal_khz = 24000;	/* 24.0 MHz */
703 			break;
704 		case INTEL_FAM6_SKYLAKE_X:
705 		case INTEL_FAM6_ATOM_DENVERTON:
706 			crystal_khz = 25000;	/* 25.0 MHz */
707 			break;
708 		case INTEL_FAM6_ATOM_GOLDMONT:
709 			crystal_khz = 19200;	/* 19.2 MHz */
710 			break;
711 		}
712 	}
713 
714 	/*
715 	 * TSC frequency determined by CPUID is a "hardware reported"
716 	 * frequency and is the most accurate one so far we have. This
717 	 * is considered a known frequency.
718 	 */
719 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
720 
721 	/*
722 	 * For Atom SoCs TSC is the only reliable clocksource.
723 	 * Mark TSC reliable so no watchdog on it.
724 	 */
725 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
726 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
727 
728 	return crystal_khz * ebx_numerator / eax_denominator;
729 }
730 
731 static unsigned long cpu_khz_from_cpuid(void)
732 {
733 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
734 
735 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
736 		return 0;
737 
738 	if (boot_cpu_data.cpuid_level < 0x16)
739 		return 0;
740 
741 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
742 
743 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
744 
745 	return eax_base_mhz * 1000;
746 }
747 
748 /**
749  * native_calibrate_cpu - calibrate the cpu on boot
750  */
751 unsigned long native_calibrate_cpu(void)
752 {
753 	u64 tsc1, tsc2, delta, ref1, ref2;
754 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
755 	unsigned long flags, latch, ms, fast_calibrate;
756 	int hpet = is_hpet_enabled(), i, loopmin;
757 
758 	fast_calibrate = cpu_khz_from_cpuid();
759 	if (fast_calibrate)
760 		return fast_calibrate;
761 
762 	fast_calibrate = cpu_khz_from_msr();
763 	if (fast_calibrate)
764 		return fast_calibrate;
765 
766 	local_irq_save(flags);
767 	fast_calibrate = quick_pit_calibrate();
768 	local_irq_restore(flags);
769 	if (fast_calibrate)
770 		return fast_calibrate;
771 
772 	/*
773 	 * Run 5 calibration loops to get the lowest frequency value
774 	 * (the best estimate). We use two different calibration modes
775 	 * here:
776 	 *
777 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
778 	 * load a timeout of 50ms. We read the time right after we
779 	 * started the timer and wait until the PIT count down reaches
780 	 * zero. In each wait loop iteration we read the TSC and check
781 	 * the delta to the previous read. We keep track of the min
782 	 * and max values of that delta. The delta is mostly defined
783 	 * by the IO time of the PIT access, so we can detect when a
784 	 * SMI/SMM disturbance happened between the two reads. If the
785 	 * maximum time is significantly larger than the minimum time,
786 	 * then we discard the result and have another try.
787 	 *
788 	 * 2) Reference counter. If available we use the HPET or the
789 	 * PMTIMER as a reference to check the sanity of that value.
790 	 * We use separate TSC readouts and check inside of the
791 	 * reference read for a SMI/SMM disturbance. We dicard
792 	 * disturbed values here as well. We do that around the PIT
793 	 * calibration delay loop as we have to wait for a certain
794 	 * amount of time anyway.
795 	 */
796 
797 	/* Preset PIT loop values */
798 	latch = CAL_LATCH;
799 	ms = CAL_MS;
800 	loopmin = CAL_PIT_LOOPS;
801 
802 	for (i = 0; i < 3; i++) {
803 		unsigned long tsc_pit_khz;
804 
805 		/*
806 		 * Read the start value and the reference count of
807 		 * hpet/pmtimer when available. Then do the PIT
808 		 * calibration, which will take at least 50ms, and
809 		 * read the end value.
810 		 */
811 		local_irq_save(flags);
812 		tsc1 = tsc_read_refs(&ref1, hpet);
813 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
814 		tsc2 = tsc_read_refs(&ref2, hpet);
815 		local_irq_restore(flags);
816 
817 		/* Pick the lowest PIT TSC calibration so far */
818 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
819 
820 		/* hpet or pmtimer available ? */
821 		if (ref1 == ref2)
822 			continue;
823 
824 		/* Check, whether the sampling was disturbed by an SMI */
825 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
826 			continue;
827 
828 		tsc2 = (tsc2 - tsc1) * 1000000LL;
829 		if (hpet)
830 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
831 		else
832 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
833 
834 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
835 
836 		/* Check the reference deviation */
837 		delta = ((u64) tsc_pit_min) * 100;
838 		do_div(delta, tsc_ref_min);
839 
840 		/*
841 		 * If both calibration results are inside a 10% window
842 		 * then we can be sure, that the calibration
843 		 * succeeded. We break out of the loop right away. We
844 		 * use the reference value, as it is more precise.
845 		 */
846 		if (delta >= 90 && delta <= 110) {
847 			pr_info("PIT calibration matches %s. %d loops\n",
848 				hpet ? "HPET" : "PMTIMER", i + 1);
849 			return tsc_ref_min;
850 		}
851 
852 		/*
853 		 * Check whether PIT failed more than once. This
854 		 * happens in virtualized environments. We need to
855 		 * give the virtual PC a slightly longer timeframe for
856 		 * the HPET/PMTIMER to make the result precise.
857 		 */
858 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
859 			latch = CAL2_LATCH;
860 			ms = CAL2_MS;
861 			loopmin = CAL2_PIT_LOOPS;
862 		}
863 	}
864 
865 	/*
866 	 * Now check the results.
867 	 */
868 	if (tsc_pit_min == ULONG_MAX) {
869 		/* PIT gave no useful value */
870 		pr_warn("Unable to calibrate against PIT\n");
871 
872 		/* We don't have an alternative source, disable TSC */
873 		if (!hpet && !ref1 && !ref2) {
874 			pr_notice("No reference (HPET/PMTIMER) available\n");
875 			return 0;
876 		}
877 
878 		/* The alternative source failed as well, disable TSC */
879 		if (tsc_ref_min == ULONG_MAX) {
880 			pr_warn("HPET/PMTIMER calibration failed\n");
881 			return 0;
882 		}
883 
884 		/* Use the alternative source */
885 		pr_info("using %s reference calibration\n",
886 			hpet ? "HPET" : "PMTIMER");
887 
888 		return tsc_ref_min;
889 	}
890 
891 	/* We don't have an alternative source, use the PIT calibration value */
892 	if (!hpet && !ref1 && !ref2) {
893 		pr_info("Using PIT calibration value\n");
894 		return tsc_pit_min;
895 	}
896 
897 	/* The alternative source failed, use the PIT calibration value */
898 	if (tsc_ref_min == ULONG_MAX) {
899 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
900 		return tsc_pit_min;
901 	}
902 
903 	/*
904 	 * The calibration values differ too much. In doubt, we use
905 	 * the PIT value as we know that there are PMTIMERs around
906 	 * running at double speed. At least we let the user know:
907 	 */
908 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
909 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
910 	pr_info("Using PIT calibration value\n");
911 	return tsc_pit_min;
912 }
913 
914 int recalibrate_cpu_khz(void)
915 {
916 #ifndef CONFIG_SMP
917 	unsigned long cpu_khz_old = cpu_khz;
918 
919 	if (!boot_cpu_has(X86_FEATURE_TSC))
920 		return -ENODEV;
921 
922 	cpu_khz = x86_platform.calibrate_cpu();
923 	tsc_khz = x86_platform.calibrate_tsc();
924 	if (tsc_khz == 0)
925 		tsc_khz = cpu_khz;
926 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
927 		cpu_khz = tsc_khz;
928 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
929 						    cpu_khz_old, cpu_khz);
930 
931 	return 0;
932 #else
933 	return -ENODEV;
934 #endif
935 }
936 
937 EXPORT_SYMBOL(recalibrate_cpu_khz);
938 
939 
940 static unsigned long long cyc2ns_suspend;
941 
942 void tsc_save_sched_clock_state(void)
943 {
944 	if (!sched_clock_stable())
945 		return;
946 
947 	cyc2ns_suspend = sched_clock();
948 }
949 
950 /*
951  * Even on processors with invariant TSC, TSC gets reset in some the
952  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
953  * arbitrary value (still sync'd across cpu's) during resume from such sleep
954  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
955  * that sched_clock() continues from the point where it was left off during
956  * suspend.
957  */
958 void tsc_restore_sched_clock_state(void)
959 {
960 	unsigned long long offset;
961 	unsigned long flags;
962 	int cpu;
963 
964 	if (!sched_clock_stable())
965 		return;
966 
967 	local_irq_save(flags);
968 
969 	/*
970 	 * We're coming out of suspend, there's no concurrency yet; don't
971 	 * bother being nice about the RCU stuff, just write to both
972 	 * data fields.
973 	 */
974 
975 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
976 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
977 
978 	offset = cyc2ns_suspend - sched_clock();
979 
980 	for_each_possible_cpu(cpu) {
981 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
982 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
983 	}
984 
985 	local_irq_restore(flags);
986 }
987 
988 #ifdef CONFIG_CPU_FREQ
989 
990 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
991  * changes.
992  *
993  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
994  * not that important because current Opteron setups do not support
995  * scaling on SMP anyroads.
996  *
997  * Should fix up last_tsc too. Currently gettimeofday in the
998  * first tick after the change will be slightly wrong.
999  */
1000 
1001 static unsigned int  ref_freq;
1002 static unsigned long loops_per_jiffy_ref;
1003 static unsigned long tsc_khz_ref;
1004 
1005 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1006 				void *data)
1007 {
1008 	struct cpufreq_freqs *freq = data;
1009 	unsigned long *lpj;
1010 
1011 	lpj = &boot_cpu_data.loops_per_jiffy;
1012 #ifdef CONFIG_SMP
1013 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1014 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
1015 #endif
1016 
1017 	if (!ref_freq) {
1018 		ref_freq = freq->old;
1019 		loops_per_jiffy_ref = *lpj;
1020 		tsc_khz_ref = tsc_khz;
1021 	}
1022 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1023 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1024 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1025 
1026 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1027 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1028 			mark_tsc_unstable("cpufreq changes");
1029 
1030 		set_cyc2ns_scale(tsc_khz, freq->cpu);
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static struct notifier_block time_cpufreq_notifier_block = {
1037 	.notifier_call  = time_cpufreq_notifier
1038 };
1039 
1040 static int __init cpufreq_register_tsc_scaling(void)
1041 {
1042 	if (!boot_cpu_has(X86_FEATURE_TSC))
1043 		return 0;
1044 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1045 		return 0;
1046 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1047 				CPUFREQ_TRANSITION_NOTIFIER);
1048 	return 0;
1049 }
1050 
1051 core_initcall(cpufreq_register_tsc_scaling);
1052 
1053 #endif /* CONFIG_CPU_FREQ */
1054 
1055 #define ART_CPUID_LEAF (0x15)
1056 #define ART_MIN_DENOMINATOR (1)
1057 
1058 
1059 /*
1060  * If ART is present detect the numerator:denominator to convert to TSC
1061  */
1062 static void detect_art(void)
1063 {
1064 	unsigned int unused[2];
1065 
1066 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1067 		return;
1068 
1069 	/* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1070 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1071 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1072 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1073 		return;
1074 
1075 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1076 	      &art_to_tsc_numerator, unused, unused+1);
1077 
1078 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1079 		return;
1080 
1081 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1082 
1083 	/* Make this sticky over multiple CPU init calls */
1084 	setup_force_cpu_cap(X86_FEATURE_ART);
1085 }
1086 
1087 
1088 /* clocksource code */
1089 
1090 static struct clocksource clocksource_tsc;
1091 
1092 static void tsc_resume(struct clocksource *cs)
1093 {
1094 	tsc_verify_tsc_adjust(true);
1095 }
1096 
1097 /*
1098  * We used to compare the TSC to the cycle_last value in the clocksource
1099  * structure to avoid a nasty time-warp. This can be observed in a
1100  * very small window right after one CPU updated cycle_last under
1101  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1102  * is smaller than the cycle_last reference value due to a TSC which
1103  * is slighty behind. This delta is nowhere else observable, but in
1104  * that case it results in a forward time jump in the range of hours
1105  * due to the unsigned delta calculation of the time keeping core
1106  * code, which is necessary to support wrapping clocksources like pm
1107  * timer.
1108  *
1109  * This sanity check is now done in the core timekeeping code.
1110  * checking the result of read_tsc() - cycle_last for being negative.
1111  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1112  */
1113 static u64 read_tsc(struct clocksource *cs)
1114 {
1115 	return (u64)rdtsc_ordered();
1116 }
1117 
1118 static void tsc_cs_mark_unstable(struct clocksource *cs)
1119 {
1120 	if (tsc_unstable)
1121 		return;
1122 
1123 	tsc_unstable = 1;
1124 	if (using_native_sched_clock())
1125 		clear_sched_clock_stable();
1126 	disable_sched_clock_irqtime();
1127 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1128 }
1129 
1130 /*
1131  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1132  */
1133 static struct clocksource clocksource_tsc = {
1134 	.name                   = "tsc",
1135 	.rating                 = 300,
1136 	.read                   = read_tsc,
1137 	.mask                   = CLOCKSOURCE_MASK(64),
1138 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1139 				  CLOCK_SOURCE_MUST_VERIFY,
1140 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1141 	.resume			= tsc_resume,
1142 	.mark_unstable		= tsc_cs_mark_unstable,
1143 };
1144 
1145 void mark_tsc_unstable(char *reason)
1146 {
1147 	if (tsc_unstable)
1148 		return;
1149 
1150 	tsc_unstable = 1;
1151 	if (using_native_sched_clock())
1152 		clear_sched_clock_stable();
1153 	disable_sched_clock_irqtime();
1154 	pr_info("Marking TSC unstable due to %s\n", reason);
1155 	/* Change only the rating, when not registered */
1156 	if (clocksource_tsc.mult) {
1157 		clocksource_mark_unstable(&clocksource_tsc);
1158 	} else {
1159 		clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1160 		clocksource_tsc.rating = 0;
1161 	}
1162 }
1163 
1164 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1165 
1166 static void __init check_system_tsc_reliable(void)
1167 {
1168 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1169 	if (is_geode_lx()) {
1170 		/* RTSC counts during suspend */
1171 #define RTSC_SUSP 0x100
1172 		unsigned long res_low, res_high;
1173 
1174 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1175 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1176 		if (res_low & RTSC_SUSP)
1177 			tsc_clocksource_reliable = 1;
1178 	}
1179 #endif
1180 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1181 		tsc_clocksource_reliable = 1;
1182 }
1183 
1184 /*
1185  * Make an educated guess if the TSC is trustworthy and synchronized
1186  * over all CPUs.
1187  */
1188 int unsynchronized_tsc(void)
1189 {
1190 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1191 		return 1;
1192 
1193 #ifdef CONFIG_SMP
1194 	if (apic_is_clustered_box())
1195 		return 1;
1196 #endif
1197 
1198 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1199 		return 0;
1200 
1201 	if (tsc_clocksource_reliable)
1202 		return 0;
1203 	/*
1204 	 * Intel systems are normally all synchronized.
1205 	 * Exceptions must mark TSC as unstable:
1206 	 */
1207 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1208 		/* assume multi socket systems are not synchronized: */
1209 		if (num_possible_cpus() > 1)
1210 			return 1;
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 /*
1217  * Convert ART to TSC given numerator/denominator found in detect_art()
1218  */
1219 struct system_counterval_t convert_art_to_tsc(u64 art)
1220 {
1221 	u64 tmp, res, rem;
1222 
1223 	rem = do_div(art, art_to_tsc_denominator);
1224 
1225 	res = art * art_to_tsc_numerator;
1226 	tmp = rem * art_to_tsc_numerator;
1227 
1228 	do_div(tmp, art_to_tsc_denominator);
1229 	res += tmp + art_to_tsc_offset;
1230 
1231 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1232 			.cycles = res};
1233 }
1234 EXPORT_SYMBOL(convert_art_to_tsc);
1235 
1236 static void tsc_refine_calibration_work(struct work_struct *work);
1237 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1238 /**
1239  * tsc_refine_calibration_work - Further refine tsc freq calibration
1240  * @work - ignored.
1241  *
1242  * This functions uses delayed work over a period of a
1243  * second to further refine the TSC freq value. Since this is
1244  * timer based, instead of loop based, we don't block the boot
1245  * process while this longer calibration is done.
1246  *
1247  * If there are any calibration anomalies (too many SMIs, etc),
1248  * or the refined calibration is off by 1% of the fast early
1249  * calibration, we throw out the new calibration and use the
1250  * early calibration.
1251  */
1252 static void tsc_refine_calibration_work(struct work_struct *work)
1253 {
1254 	static u64 tsc_start = -1, ref_start;
1255 	static int hpet;
1256 	u64 tsc_stop, ref_stop, delta;
1257 	unsigned long freq;
1258 
1259 	/* Don't bother refining TSC on unstable systems */
1260 	if (check_tsc_unstable())
1261 		goto out;
1262 
1263 	/*
1264 	 * Since the work is started early in boot, we may be
1265 	 * delayed the first time we expire. So set the workqueue
1266 	 * again once we know timers are working.
1267 	 */
1268 	if (tsc_start == -1) {
1269 		/*
1270 		 * Only set hpet once, to avoid mixing hardware
1271 		 * if the hpet becomes enabled later.
1272 		 */
1273 		hpet = is_hpet_enabled();
1274 		schedule_delayed_work(&tsc_irqwork, HZ);
1275 		tsc_start = tsc_read_refs(&ref_start, hpet);
1276 		return;
1277 	}
1278 
1279 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1280 
1281 	/* hpet or pmtimer available ? */
1282 	if (ref_start == ref_stop)
1283 		goto out;
1284 
1285 	/* Check, whether the sampling was disturbed by an SMI */
1286 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1287 		goto out;
1288 
1289 	delta = tsc_stop - tsc_start;
1290 	delta *= 1000000LL;
1291 	if (hpet)
1292 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1293 	else
1294 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1295 
1296 	/* Make sure we're within 1% */
1297 	if (abs(tsc_khz - freq) > tsc_khz/100)
1298 		goto out;
1299 
1300 	tsc_khz = freq;
1301 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1302 		(unsigned long)tsc_khz / 1000,
1303 		(unsigned long)tsc_khz % 1000);
1304 
1305 	/* Inform the TSC deadline clockevent devices about the recalibration */
1306 	lapic_update_tsc_freq();
1307 
1308 out:
1309 	if (boot_cpu_has(X86_FEATURE_ART))
1310 		art_related_clocksource = &clocksource_tsc;
1311 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1312 }
1313 
1314 
1315 static int __init init_tsc_clocksource(void)
1316 {
1317 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1318 		return 0;
1319 
1320 	if (tsc_clocksource_reliable)
1321 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1322 	/* lower the rating if we already know its unstable: */
1323 	if (check_tsc_unstable()) {
1324 		clocksource_tsc.rating = 0;
1325 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1326 	}
1327 
1328 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1329 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1330 
1331 	/*
1332 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1333 	 * the refined calibration and directly register it as a clocksource.
1334 	 */
1335 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1336 		if (boot_cpu_has(X86_FEATURE_ART))
1337 			art_related_clocksource = &clocksource_tsc;
1338 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1339 		return 0;
1340 	}
1341 
1342 	schedule_delayed_work(&tsc_irqwork, 0);
1343 	return 0;
1344 }
1345 /*
1346  * We use device_initcall here, to ensure we run after the hpet
1347  * is fully initialized, which may occur at fs_initcall time.
1348  */
1349 device_initcall(init_tsc_clocksource);
1350 
1351 void __init tsc_init(void)
1352 {
1353 	u64 lpj;
1354 	int cpu;
1355 
1356 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1357 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1358 		return;
1359 	}
1360 
1361 	cpu_khz = x86_platform.calibrate_cpu();
1362 	tsc_khz = x86_platform.calibrate_tsc();
1363 
1364 	/*
1365 	 * Trust non-zero tsc_khz as authorative,
1366 	 * and use it to sanity check cpu_khz,
1367 	 * which will be off if system timer is off.
1368 	 */
1369 	if (tsc_khz == 0)
1370 		tsc_khz = cpu_khz;
1371 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1372 		cpu_khz = tsc_khz;
1373 
1374 	if (!tsc_khz) {
1375 		mark_tsc_unstable("could not calculate TSC khz");
1376 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1377 		return;
1378 	}
1379 
1380 	pr_info("Detected %lu.%03lu MHz processor\n",
1381 		(unsigned long)cpu_khz / 1000,
1382 		(unsigned long)cpu_khz % 1000);
1383 
1384 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1385 	tsc_store_and_check_tsc_adjust(true);
1386 
1387 	/*
1388 	 * Secondary CPUs do not run through tsc_init(), so set up
1389 	 * all the scale factors for all CPUs, assuming the same
1390 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1391 	 * up if their speed diverges)
1392 	 */
1393 	for_each_possible_cpu(cpu) {
1394 		cyc2ns_init(cpu);
1395 		set_cyc2ns_scale(tsc_khz, cpu);
1396 	}
1397 
1398 	if (tsc_disabled > 0)
1399 		return;
1400 
1401 	/* now allow native_sched_clock() to use rdtsc */
1402 
1403 	tsc_disabled = 0;
1404 	static_branch_enable(&__use_tsc);
1405 
1406 	if (!no_sched_irq_time)
1407 		enable_sched_clock_irqtime();
1408 
1409 	lpj = ((u64)tsc_khz * 1000);
1410 	do_div(lpj, HZ);
1411 	lpj_fine = lpj;
1412 
1413 	use_tsc_delay();
1414 
1415 	if (unsynchronized_tsc())
1416 		mark_tsc_unstable("TSCs unsynchronized");
1417 
1418 	check_system_tsc_reliable();
1419 
1420 	detect_art();
1421 }
1422 
1423 #ifdef CONFIG_SMP
1424 /*
1425  * If we have a constant TSC and are using the TSC for the delay loop,
1426  * we can skip clock calibration if another cpu in the same socket has already
1427  * been calibrated. This assumes that CONSTANT_TSC applies to all
1428  * cpus in the socket - this should be a safe assumption.
1429  */
1430 unsigned long calibrate_delay_is_known(void)
1431 {
1432 	int sibling, cpu = smp_processor_id();
1433 	struct cpumask *mask = topology_core_cpumask(cpu);
1434 
1435 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1436 		return 0;
1437 
1438 	if (!mask)
1439 		return 0;
1440 
1441 	sibling = cpumask_any_but(mask, cpu);
1442 	if (sibling < nr_cpu_ids)
1443 		return cpu_data(sibling).loops_per_jiffy;
1444 	return 0;
1445 }
1446 #endif
1447