xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 384740dc)
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 
19 unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
20 EXPORT_SYMBOL(cpu_khz);
21 unsigned int tsc_khz;
22 EXPORT_SYMBOL(tsc_khz);
23 
24 /*
25  * TSC can be unstable due to cpufreq or due to unsynced TSCs
26  */
27 static int tsc_unstable;
28 
29 /* native_sched_clock() is called before tsc_init(), so
30    we must start with the TSC soft disabled to prevent
31    erroneous rdtsc usage on !cpu_has_tsc processors */
32 static int tsc_disabled = -1;
33 
34 /*
35  * Scheduler clock - returns current time in nanosec units.
36  */
37 u64 native_sched_clock(void)
38 {
39 	u64 this_offset;
40 
41 	/*
42 	 * Fall back to jiffies if there's no TSC available:
43 	 * ( But note that we still use it if the TSC is marked
44 	 *   unstable. We do this because unlike Time Of Day,
45 	 *   the scheduler clock tolerates small errors and it's
46 	 *   very important for it to be as fast as the platform
47 	 *   can achive it. )
48 	 */
49 	if (unlikely(tsc_disabled)) {
50 		/* No locking but a rare wrong value is not a big deal: */
51 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
52 	}
53 
54 	/* read the Time Stamp Counter: */
55 	rdtscll(this_offset);
56 
57 	/* return the value in ns */
58 	return cycles_2_ns(this_offset);
59 }
60 
61 /* We need to define a real function for sched_clock, to override the
62    weak default version */
63 #ifdef CONFIG_PARAVIRT
64 unsigned long long sched_clock(void)
65 {
66 	return paravirt_sched_clock();
67 }
68 #else
69 unsigned long long
70 sched_clock(void) __attribute__((alias("native_sched_clock")));
71 #endif
72 
73 int check_tsc_unstable(void)
74 {
75 	return tsc_unstable;
76 }
77 EXPORT_SYMBOL_GPL(check_tsc_unstable);
78 
79 #ifdef CONFIG_X86_TSC
80 int __init notsc_setup(char *str)
81 {
82 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
83 			"cannot disable TSC completely.\n");
84 	tsc_disabled = 1;
85 	return 1;
86 }
87 #else
88 /*
89  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
90  * in cpu/common.c
91  */
92 int __init notsc_setup(char *str)
93 {
94 	setup_clear_cpu_cap(X86_FEATURE_TSC);
95 	return 1;
96 }
97 #endif
98 
99 __setup("notsc", notsc_setup);
100 
101 #define MAX_RETRIES     5
102 #define SMI_TRESHOLD    50000
103 
104 /*
105  * Read TSC and the reference counters. Take care of SMI disturbance
106  */
107 static u64 tsc_read_refs(u64 *p, int hpet)
108 {
109 	u64 t1, t2;
110 	int i;
111 
112 	for (i = 0; i < MAX_RETRIES; i++) {
113 		t1 = get_cycles();
114 		if (hpet)
115 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
116 		else
117 			*p = acpi_pm_read_early();
118 		t2 = get_cycles();
119 		if ((t2 - t1) < SMI_TRESHOLD)
120 			return t2;
121 	}
122 	return ULLONG_MAX;
123 }
124 
125 /*
126  * Calculate the TSC frequency from HPET reference
127  */
128 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
129 {
130 	u64 tmp;
131 
132 	if (hpet2 < hpet1)
133 		hpet2 += 0x100000000ULL;
134 	hpet2 -= hpet1;
135 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
136 	do_div(tmp, 1000000);
137 	do_div(deltatsc, tmp);
138 
139 	return (unsigned long) deltatsc;
140 }
141 
142 /*
143  * Calculate the TSC frequency from PMTimer reference
144  */
145 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
146 {
147 	u64 tmp;
148 
149 	if (!pm1 && !pm2)
150 		return ULONG_MAX;
151 
152 	if (pm2 < pm1)
153 		pm2 += (u64)ACPI_PM_OVRRUN;
154 	pm2 -= pm1;
155 	tmp = pm2 * 1000000000LL;
156 	do_div(tmp, PMTMR_TICKS_PER_SEC);
157 	do_div(deltatsc, tmp);
158 
159 	return (unsigned long) deltatsc;
160 }
161 
162 #define CAL_MS		10
163 #define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
164 #define CAL_PIT_LOOPS	1000
165 
166 #define CAL2_MS		50
167 #define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
168 #define CAL2_PIT_LOOPS	5000
169 
170 
171 /*
172  * Try to calibrate the TSC against the Programmable
173  * Interrupt Timer and return the frequency of the TSC
174  * in kHz.
175  *
176  * Return ULONG_MAX on failure to calibrate.
177  */
178 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
179 {
180 	u64 tsc, t1, t2, delta;
181 	unsigned long tscmin, tscmax;
182 	int pitcnt;
183 
184 	/* Set the Gate high, disable speaker */
185 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
186 
187 	/*
188 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
189 	 * count mode), binary count. Set the latch register to 50ms
190 	 * (LSB then MSB) to begin countdown.
191 	 */
192 	outb(0xb0, 0x43);
193 	outb(latch & 0xff, 0x42);
194 	outb(latch >> 8, 0x42);
195 
196 	tsc = t1 = t2 = get_cycles();
197 
198 	pitcnt = 0;
199 	tscmax = 0;
200 	tscmin = ULONG_MAX;
201 	while ((inb(0x61) & 0x20) == 0) {
202 		t2 = get_cycles();
203 		delta = t2 - tsc;
204 		tsc = t2;
205 		if ((unsigned long) delta < tscmin)
206 			tscmin = (unsigned int) delta;
207 		if ((unsigned long) delta > tscmax)
208 			tscmax = (unsigned int) delta;
209 		pitcnt++;
210 	}
211 
212 	/*
213 	 * Sanity checks:
214 	 *
215 	 * If we were not able to read the PIT more than loopmin
216 	 * times, then we have been hit by a massive SMI
217 	 *
218 	 * If the maximum is 10 times larger than the minimum,
219 	 * then we got hit by an SMI as well.
220 	 */
221 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
222 		return ULONG_MAX;
223 
224 	/* Calculate the PIT value */
225 	delta = t2 - t1;
226 	do_div(delta, ms);
227 	return delta;
228 }
229 
230 /*
231  * This reads the current MSB of the PIT counter, and
232  * checks if we are running on sufficiently fast and
233  * non-virtualized hardware.
234  *
235  * Our expectations are:
236  *
237  *  - the PIT is running at roughly 1.19MHz
238  *
239  *  - each IO is going to take about 1us on real hardware,
240  *    but we allow it to be much faster (by a factor of 10) or
241  *    _slightly_ slower (ie we allow up to a 2us read+counter
242  *    update - anything else implies a unacceptably slow CPU
243  *    or PIT for the fast calibration to work.
244  *
245  *  - with 256 PIT ticks to read the value, we have 214us to
246  *    see the same MSB (and overhead like doing a single TSC
247  *    read per MSB value etc).
248  *
249  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
250  *    them each to take about a microsecond on real hardware.
251  *    So we expect a count value of around 100. But we'll be
252  *    generous, and accept anything over 50.
253  *
254  *  - if the PIT is stuck, and we see *many* more reads, we
255  *    return early (and the next caller of pit_expect_msb()
256  *    then consider it a failure when they don't see the
257  *    next expected value).
258  *
259  * These expectations mean that we know that we have seen the
260  * transition from one expected value to another with a fairly
261  * high accuracy, and we didn't miss any events. We can thus
262  * use the TSC value at the transitions to calculate a pretty
263  * good value for the TSC frequencty.
264  */
265 static inline int pit_expect_msb(unsigned char val)
266 {
267 	int count = 0;
268 
269 	for (count = 0; count < 50000; count++) {
270 		/* Ignore LSB */
271 		inb(0x42);
272 		if (inb(0x42) != val)
273 			break;
274 	}
275 	return count > 50;
276 }
277 
278 /*
279  * How many MSB values do we want to see? We aim for a
280  * 15ms calibration, which assuming a 2us counter read
281  * error should give us roughly 150 ppm precision for
282  * the calibration.
283  */
284 #define QUICK_PIT_MS 15
285 #define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
286 
287 static unsigned long quick_pit_calibrate(void)
288 {
289 	/* Set the Gate high, disable speaker */
290 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
291 
292 	/*
293 	 * Counter 2, mode 0 (one-shot), binary count
294 	 *
295 	 * NOTE! Mode 2 decrements by two (and then the
296 	 * output is flipped each time, giving the same
297 	 * final output frequency as a decrement-by-one),
298 	 * so mode 0 is much better when looking at the
299 	 * individual counts.
300 	 */
301 	outb(0xb0, 0x43);
302 
303 	/* Start at 0xffff */
304 	outb(0xff, 0x42);
305 	outb(0xff, 0x42);
306 
307 	if (pit_expect_msb(0xff)) {
308 		int i;
309 		u64 t1, t2, delta;
310 		unsigned char expect = 0xfe;
311 
312 		t1 = get_cycles();
313 		for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
314 			if (!pit_expect_msb(expect))
315 				goto failed;
316 		}
317 		t2 = get_cycles();
318 
319 		/*
320 		 * Make sure we can rely on the second TSC timestamp:
321 		 */
322 		if (!pit_expect_msb(expect))
323 			goto failed;
324 
325 		/*
326 		 * Ok, if we get here, then we've seen the
327 		 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
328 		 * times, and each MSB had many hits, so we never
329 		 * had any sudden jumps.
330 		 *
331 		 * As a result, we can depend on there not being
332 		 * any odd delays anywhere, and the TSC reads are
333 		 * reliable.
334 		 *
335 		 * kHz = ticks / time-in-seconds / 1000;
336 		 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
337 		 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
338 		 */
339 		delta = (t2 - t1)*PIT_TICK_RATE;
340 		do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
341 		printk("Fast TSC calibration using PIT\n");
342 		return delta;
343 	}
344 failed:
345 	return 0;
346 }
347 
348 /**
349  * native_calibrate_tsc - calibrate the tsc on boot
350  */
351 unsigned long native_calibrate_tsc(void)
352 {
353 	u64 tsc1, tsc2, delta, ref1, ref2;
354 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
355 	unsigned long flags, latch, ms, fast_calibrate;
356 	int hpet = is_hpet_enabled(), i, loopmin;
357 
358 	local_irq_save(flags);
359 	fast_calibrate = quick_pit_calibrate();
360 	local_irq_restore(flags);
361 	if (fast_calibrate)
362 		return fast_calibrate;
363 
364 	/*
365 	 * Run 5 calibration loops to get the lowest frequency value
366 	 * (the best estimate). We use two different calibration modes
367 	 * here:
368 	 *
369 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
370 	 * load a timeout of 50ms. We read the time right after we
371 	 * started the timer and wait until the PIT count down reaches
372 	 * zero. In each wait loop iteration we read the TSC and check
373 	 * the delta to the previous read. We keep track of the min
374 	 * and max values of that delta. The delta is mostly defined
375 	 * by the IO time of the PIT access, so we can detect when a
376 	 * SMI/SMM disturbance happend between the two reads. If the
377 	 * maximum time is significantly larger than the minimum time,
378 	 * then we discard the result and have another try.
379 	 *
380 	 * 2) Reference counter. If available we use the HPET or the
381 	 * PMTIMER as a reference to check the sanity of that value.
382 	 * We use separate TSC readouts and check inside of the
383 	 * reference read for a SMI/SMM disturbance. We dicard
384 	 * disturbed values here as well. We do that around the PIT
385 	 * calibration delay loop as we have to wait for a certain
386 	 * amount of time anyway.
387 	 */
388 
389 	/* Preset PIT loop values */
390 	latch = CAL_LATCH;
391 	ms = CAL_MS;
392 	loopmin = CAL_PIT_LOOPS;
393 
394 	for (i = 0; i < 3; i++) {
395 		unsigned long tsc_pit_khz;
396 
397 		/*
398 		 * Read the start value and the reference count of
399 		 * hpet/pmtimer when available. Then do the PIT
400 		 * calibration, which will take at least 50ms, and
401 		 * read the end value.
402 		 */
403 		local_irq_save(flags);
404 		tsc1 = tsc_read_refs(&ref1, hpet);
405 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
406 		tsc2 = tsc_read_refs(&ref2, hpet);
407 		local_irq_restore(flags);
408 
409 		/* Pick the lowest PIT TSC calibration so far */
410 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
411 
412 		/* hpet or pmtimer available ? */
413 		if (!hpet && !ref1 && !ref2)
414 			continue;
415 
416 		/* Check, whether the sampling was disturbed by an SMI */
417 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
418 			continue;
419 
420 		tsc2 = (tsc2 - tsc1) * 1000000LL;
421 		if (hpet)
422 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
423 		else
424 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
425 
426 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
427 
428 		/* Check the reference deviation */
429 		delta = ((u64) tsc_pit_min) * 100;
430 		do_div(delta, tsc_ref_min);
431 
432 		/*
433 		 * If both calibration results are inside a 10% window
434 		 * then we can be sure, that the calibration
435 		 * succeeded. We break out of the loop right away. We
436 		 * use the reference value, as it is more precise.
437 		 */
438 		if (delta >= 90 && delta <= 110) {
439 			printk(KERN_INFO
440 			       "TSC: PIT calibration matches %s. %d loops\n",
441 			       hpet ? "HPET" : "PMTIMER", i + 1);
442 			return tsc_ref_min;
443 		}
444 
445 		/*
446 		 * Check whether PIT failed more than once. This
447 		 * happens in virtualized environments. We need to
448 		 * give the virtual PC a slightly longer timeframe for
449 		 * the HPET/PMTIMER to make the result precise.
450 		 */
451 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
452 			latch = CAL2_LATCH;
453 			ms = CAL2_MS;
454 			loopmin = CAL2_PIT_LOOPS;
455 		}
456 	}
457 
458 	/*
459 	 * Now check the results.
460 	 */
461 	if (tsc_pit_min == ULONG_MAX) {
462 		/* PIT gave no useful value */
463 		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
464 
465 		/* We don't have an alternative source, disable TSC */
466 		if (!hpet && !ref1 && !ref2) {
467 			printk("TSC: No reference (HPET/PMTIMER) available\n");
468 			return 0;
469 		}
470 
471 		/* The alternative source failed as well, disable TSC */
472 		if (tsc_ref_min == ULONG_MAX) {
473 			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
474 			       "failed.\n");
475 			return 0;
476 		}
477 
478 		/* Use the alternative source */
479 		printk(KERN_INFO "TSC: using %s reference calibration\n",
480 		       hpet ? "HPET" : "PMTIMER");
481 
482 		return tsc_ref_min;
483 	}
484 
485 	/* We don't have an alternative source, use the PIT calibration value */
486 	if (!hpet && !ref1 && !ref2) {
487 		printk(KERN_INFO "TSC: Using PIT calibration value\n");
488 		return tsc_pit_min;
489 	}
490 
491 	/* The alternative source failed, use the PIT calibration value */
492 	if (tsc_ref_min == ULONG_MAX) {
493 		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
494 		       "Using PIT calibration\n");
495 		return tsc_pit_min;
496 	}
497 
498 	/*
499 	 * The calibration values differ too much. In doubt, we use
500 	 * the PIT value as we know that there are PMTIMERs around
501 	 * running at double speed. At least we let the user know:
502 	 */
503 	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
504 	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
505 	printk(KERN_INFO "TSC: Using PIT calibration value\n");
506 	return tsc_pit_min;
507 }
508 
509 #ifdef CONFIG_X86_32
510 /* Only called from the Powernow K7 cpu freq driver */
511 int recalibrate_cpu_khz(void)
512 {
513 #ifndef CONFIG_SMP
514 	unsigned long cpu_khz_old = cpu_khz;
515 
516 	if (cpu_has_tsc) {
517 		tsc_khz = calibrate_tsc();
518 		cpu_khz = tsc_khz;
519 		cpu_data(0).loops_per_jiffy =
520 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
521 					cpu_khz_old, cpu_khz);
522 		return 0;
523 	} else
524 		return -ENODEV;
525 #else
526 	return -ENODEV;
527 #endif
528 }
529 
530 EXPORT_SYMBOL(recalibrate_cpu_khz);
531 
532 #endif /* CONFIG_X86_32 */
533 
534 /* Accelerators for sched_clock()
535  * convert from cycles(64bits) => nanoseconds (64bits)
536  *  basic equation:
537  *              ns = cycles / (freq / ns_per_sec)
538  *              ns = cycles * (ns_per_sec / freq)
539  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
540  *              ns = cycles * (10^6 / cpu_khz)
541  *
542  *      Then we use scaling math (suggested by george@mvista.com) to get:
543  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
544  *              ns = cycles * cyc2ns_scale / SC
545  *
546  *      And since SC is a constant power of two, we can convert the div
547  *  into a shift.
548  *
549  *  We can use khz divisor instead of mhz to keep a better precision, since
550  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
551  *  (mathieu.desnoyers@polymtl.ca)
552  *
553  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
554  */
555 
556 DEFINE_PER_CPU(unsigned long, cyc2ns);
557 
558 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
559 {
560 	unsigned long long tsc_now, ns_now;
561 	unsigned long flags, *scale;
562 
563 	local_irq_save(flags);
564 	sched_clock_idle_sleep_event();
565 
566 	scale = &per_cpu(cyc2ns, cpu);
567 
568 	rdtscll(tsc_now);
569 	ns_now = __cycles_2_ns(tsc_now);
570 
571 	if (cpu_khz)
572 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
573 
574 	sched_clock_idle_wakeup_event(0);
575 	local_irq_restore(flags);
576 }
577 
578 #ifdef CONFIG_CPU_FREQ
579 
580 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
581  * changes.
582  *
583  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
584  * not that important because current Opteron setups do not support
585  * scaling on SMP anyroads.
586  *
587  * Should fix up last_tsc too. Currently gettimeofday in the
588  * first tick after the change will be slightly wrong.
589  */
590 
591 static unsigned int  ref_freq;
592 static unsigned long loops_per_jiffy_ref;
593 static unsigned long tsc_khz_ref;
594 
595 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
596 				void *data)
597 {
598 	struct cpufreq_freqs *freq = data;
599 	unsigned long *lpj, dummy;
600 
601 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
602 		return 0;
603 
604 	lpj = &dummy;
605 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
606 #ifdef CONFIG_SMP
607 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
608 #else
609 	lpj = &boot_cpu_data.loops_per_jiffy;
610 #endif
611 
612 	if (!ref_freq) {
613 		ref_freq = freq->old;
614 		loops_per_jiffy_ref = *lpj;
615 		tsc_khz_ref = tsc_khz;
616 	}
617 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
618 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
619 			(val == CPUFREQ_RESUMECHANGE)) {
620 		*lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
621 
622 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
623 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
624 			mark_tsc_unstable("cpufreq changes");
625 	}
626 
627 	set_cyc2ns_scale(tsc_khz, freq->cpu);
628 
629 	return 0;
630 }
631 
632 static struct notifier_block time_cpufreq_notifier_block = {
633 	.notifier_call  = time_cpufreq_notifier
634 };
635 
636 static int __init cpufreq_tsc(void)
637 {
638 	if (!cpu_has_tsc)
639 		return 0;
640 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
641 		return 0;
642 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
643 				CPUFREQ_TRANSITION_NOTIFIER);
644 	return 0;
645 }
646 
647 core_initcall(cpufreq_tsc);
648 
649 #endif /* CONFIG_CPU_FREQ */
650 
651 /* clocksource code */
652 
653 static struct clocksource clocksource_tsc;
654 
655 /*
656  * We compare the TSC to the cycle_last value in the clocksource
657  * structure to avoid a nasty time-warp. This can be observed in a
658  * very small window right after one CPU updated cycle_last under
659  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
660  * is smaller than the cycle_last reference value due to a TSC which
661  * is slighty behind. This delta is nowhere else observable, but in
662  * that case it results in a forward time jump in the range of hours
663  * due to the unsigned delta calculation of the time keeping core
664  * code, which is necessary to support wrapping clocksources like pm
665  * timer.
666  */
667 static cycle_t read_tsc(void)
668 {
669 	cycle_t ret = (cycle_t)get_cycles();
670 
671 	return ret >= clocksource_tsc.cycle_last ?
672 		ret : clocksource_tsc.cycle_last;
673 }
674 
675 #ifdef CONFIG_X86_64
676 static cycle_t __vsyscall_fn vread_tsc(void)
677 {
678 	cycle_t ret = (cycle_t)vget_cycles();
679 
680 	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
681 		ret : __vsyscall_gtod_data.clock.cycle_last;
682 }
683 #endif
684 
685 static struct clocksource clocksource_tsc = {
686 	.name                   = "tsc",
687 	.rating                 = 300,
688 	.read                   = read_tsc,
689 	.mask                   = CLOCKSOURCE_MASK(64),
690 	.shift                  = 22,
691 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
692 				  CLOCK_SOURCE_MUST_VERIFY,
693 #ifdef CONFIG_X86_64
694 	.vread                  = vread_tsc,
695 #endif
696 };
697 
698 void mark_tsc_unstable(char *reason)
699 {
700 	if (!tsc_unstable) {
701 		tsc_unstable = 1;
702 		printk("Marking TSC unstable due to %s\n", reason);
703 		/* Change only the rating, when not registered */
704 		if (clocksource_tsc.mult)
705 			clocksource_change_rating(&clocksource_tsc, 0);
706 		else
707 			clocksource_tsc.rating = 0;
708 	}
709 }
710 
711 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
712 
713 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
714 {
715 	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
716 			d->ident);
717 	tsc_unstable = 1;
718 	return 0;
719 }
720 
721 /* List of systems that have known TSC problems */
722 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
723 	{
724 		.callback = dmi_mark_tsc_unstable,
725 		.ident = "IBM Thinkpad 380XD",
726 		.matches = {
727 			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
728 			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
729 		},
730 	},
731 	{}
732 };
733 
734 /*
735  * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
736  */
737 #ifdef CONFIG_MGEODE_LX
738 /* RTSC counts during suspend */
739 #define RTSC_SUSP 0x100
740 
741 static void __init check_geode_tsc_reliable(void)
742 {
743 	unsigned long res_low, res_high;
744 
745 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
746 	if (res_low & RTSC_SUSP)
747 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
748 }
749 #else
750 static inline void check_geode_tsc_reliable(void) { }
751 #endif
752 
753 /*
754  * Make an educated guess if the TSC is trustworthy and synchronized
755  * over all CPUs.
756  */
757 __cpuinit int unsynchronized_tsc(void)
758 {
759 	if (!cpu_has_tsc || tsc_unstable)
760 		return 1;
761 
762 #ifdef CONFIG_SMP
763 	if (apic_is_clustered_box())
764 		return 1;
765 #endif
766 
767 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
768 		return 0;
769 	/*
770 	 * Intel systems are normally all synchronized.
771 	 * Exceptions must mark TSC as unstable:
772 	 */
773 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
774 		/* assume multi socket systems are not synchronized: */
775 		if (num_possible_cpus() > 1)
776 			tsc_unstable = 1;
777 	}
778 
779 	return tsc_unstable;
780 }
781 
782 static void __init init_tsc_clocksource(void)
783 {
784 	clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
785 			clocksource_tsc.shift);
786 	/* lower the rating if we already know its unstable: */
787 	if (check_tsc_unstable()) {
788 		clocksource_tsc.rating = 0;
789 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
790 	}
791 	clocksource_register(&clocksource_tsc);
792 }
793 
794 void __init tsc_init(void)
795 {
796 	u64 lpj;
797 	int cpu;
798 
799 	if (!cpu_has_tsc)
800 		return;
801 
802 	tsc_khz = calibrate_tsc();
803 	cpu_khz = tsc_khz;
804 
805 	if (!tsc_khz) {
806 		mark_tsc_unstable("could not calculate TSC khz");
807 		return;
808 	}
809 
810 #ifdef CONFIG_X86_64
811 	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
812 			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
813 		cpu_khz = calibrate_cpu();
814 #endif
815 
816 	lpj = ((u64)tsc_khz * 1000);
817 	do_div(lpj, HZ);
818 	lpj_fine = lpj;
819 
820 	printk("Detected %lu.%03lu MHz processor.\n",
821 			(unsigned long)cpu_khz / 1000,
822 			(unsigned long)cpu_khz % 1000);
823 
824 	/*
825 	 * Secondary CPUs do not run through tsc_init(), so set up
826 	 * all the scale factors for all CPUs, assuming the same
827 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
828 	 * up if their speed diverges)
829 	 */
830 	for_each_possible_cpu(cpu)
831 		set_cyc2ns_scale(cpu_khz, cpu);
832 
833 	if (tsc_disabled > 0)
834 		return;
835 
836 	/* now allow native_sched_clock() to use rdtsc */
837 	tsc_disabled = 0;
838 
839 	use_tsc_delay();
840 	/* Check and install the TSC clocksource */
841 	dmi_check_system(bad_tsc_dmi_table);
842 
843 	if (unsynchronized_tsc())
844 		mark_tsc_unstable("TSCs unsynchronized");
845 
846 	check_geode_tsc_reliable();
847 	init_tsc_clocksource();
848 }
849 
850