xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 26cfd12b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 
18 #include <asm/hpet.h>
19 #include <asm/timer.h>
20 #include <asm/vgtod.h>
21 #include <asm/time.h>
22 #include <asm/delay.h>
23 #include <asm/hypervisor.h>
24 #include <asm/nmi.h>
25 #include <asm/x86_init.h>
26 #include <asm/geode.h>
27 #include <asm/apic.h>
28 #include <asm/intel-family.h>
29 #include <asm/i8259.h>
30 #include <asm/uv/uv.h>
31 
32 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
33 EXPORT_SYMBOL(cpu_khz);
34 
35 unsigned int __read_mostly tsc_khz;
36 EXPORT_SYMBOL(tsc_khz);
37 
38 #define KHZ	1000
39 
40 /*
41  * TSC can be unstable due to cpufreq or due to unsynced TSCs
42  */
43 static int __read_mostly tsc_unstable;
44 static unsigned int __initdata tsc_early_khz;
45 
46 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
47 
48 int tsc_clocksource_reliable;
49 
50 static u32 art_to_tsc_numerator;
51 static u32 art_to_tsc_denominator;
52 static u64 art_to_tsc_offset;
53 struct clocksource *art_related_clocksource;
54 
55 struct cyc2ns {
56 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
57 	seqcount_t	   seq;		/* 32 + 4    = 36 */
58 
59 }; /* fits one cacheline */
60 
61 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
62 
63 static int __init tsc_early_khz_setup(char *buf)
64 {
65 	return kstrtouint(buf, 0, &tsc_early_khz);
66 }
67 early_param("tsc_early_khz", tsc_early_khz_setup);
68 
69 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
70 {
71 	int seq, idx;
72 
73 	preempt_disable_notrace();
74 
75 	do {
76 		seq = this_cpu_read(cyc2ns.seq.sequence);
77 		idx = seq & 1;
78 
79 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
80 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
81 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
82 
83 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
84 }
85 
86 __always_inline void cyc2ns_read_end(void)
87 {
88 	preempt_enable_notrace();
89 }
90 
91 /*
92  * Accelerators for sched_clock()
93  * convert from cycles(64bits) => nanoseconds (64bits)
94  *  basic equation:
95  *              ns = cycles / (freq / ns_per_sec)
96  *              ns = cycles * (ns_per_sec / freq)
97  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
98  *              ns = cycles * (10^6 / cpu_khz)
99  *
100  *      Then we use scaling math (suggested by george@mvista.com) to get:
101  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
102  *              ns = cycles * cyc2ns_scale / SC
103  *
104  *      And since SC is a constant power of two, we can convert the div
105  *  into a shift. The larger SC is, the more accurate the conversion, but
106  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
107  *  (64-bit result) can be used.
108  *
109  *  We can use khz divisor instead of mhz to keep a better precision.
110  *  (mathieu.desnoyers@polymtl.ca)
111  *
112  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
113  */
114 
115 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
116 {
117 	struct cyc2ns_data data;
118 	unsigned long long ns;
119 
120 	cyc2ns_read_begin(&data);
121 
122 	ns = data.cyc2ns_offset;
123 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
124 
125 	cyc2ns_read_end();
126 
127 	return ns;
128 }
129 
130 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
131 {
132 	unsigned long long ns_now;
133 	struct cyc2ns_data data;
134 	struct cyc2ns *c2n;
135 
136 	ns_now = cycles_2_ns(tsc_now);
137 
138 	/*
139 	 * Compute a new multiplier as per the above comment and ensure our
140 	 * time function is continuous; see the comment near struct
141 	 * cyc2ns_data.
142 	 */
143 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
144 			       NSEC_PER_MSEC, 0);
145 
146 	/*
147 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
148 	 * not expected to be greater than 31 due to the original published
149 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
150 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
151 	 */
152 	if (data.cyc2ns_shift == 32) {
153 		data.cyc2ns_shift = 31;
154 		data.cyc2ns_mul >>= 1;
155 	}
156 
157 	data.cyc2ns_offset = ns_now -
158 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
159 
160 	c2n = per_cpu_ptr(&cyc2ns, cpu);
161 
162 	raw_write_seqcount_latch(&c2n->seq);
163 	c2n->data[0] = data;
164 	raw_write_seqcount_latch(&c2n->seq);
165 	c2n->data[1] = data;
166 }
167 
168 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
169 {
170 	unsigned long flags;
171 
172 	local_irq_save(flags);
173 	sched_clock_idle_sleep_event();
174 
175 	if (khz)
176 		__set_cyc2ns_scale(khz, cpu, tsc_now);
177 
178 	sched_clock_idle_wakeup_event();
179 	local_irq_restore(flags);
180 }
181 
182 /*
183  * Initialize cyc2ns for boot cpu
184  */
185 static void __init cyc2ns_init_boot_cpu(void)
186 {
187 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
188 
189 	seqcount_init(&c2n->seq);
190 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
191 }
192 
193 /*
194  * Secondary CPUs do not run through tsc_init(), so set up
195  * all the scale factors for all CPUs, assuming the same
196  * speed as the bootup CPU.
197  */
198 static void __init cyc2ns_init_secondary_cpus(void)
199 {
200 	unsigned int cpu, this_cpu = smp_processor_id();
201 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
202 	struct cyc2ns_data *data = c2n->data;
203 
204 	for_each_possible_cpu(cpu) {
205 		if (cpu != this_cpu) {
206 			seqcount_init(&c2n->seq);
207 			c2n = per_cpu_ptr(&cyc2ns, cpu);
208 			c2n->data[0] = data[0];
209 			c2n->data[1] = data[1];
210 		}
211 	}
212 }
213 
214 /*
215  * Scheduler clock - returns current time in nanosec units.
216  */
217 u64 native_sched_clock(void)
218 {
219 	if (static_branch_likely(&__use_tsc)) {
220 		u64 tsc_now = rdtsc();
221 
222 		/* return the value in ns */
223 		return cycles_2_ns(tsc_now);
224 	}
225 
226 	/*
227 	 * Fall back to jiffies if there's no TSC available:
228 	 * ( But note that we still use it if the TSC is marked
229 	 *   unstable. We do this because unlike Time Of Day,
230 	 *   the scheduler clock tolerates small errors and it's
231 	 *   very important for it to be as fast as the platform
232 	 *   can achieve it. )
233 	 */
234 
235 	/* No locking but a rare wrong value is not a big deal: */
236 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
237 }
238 
239 /*
240  * Generate a sched_clock if you already have a TSC value.
241  */
242 u64 native_sched_clock_from_tsc(u64 tsc)
243 {
244 	return cycles_2_ns(tsc);
245 }
246 
247 /* We need to define a real function for sched_clock, to override the
248    weak default version */
249 #ifdef CONFIG_PARAVIRT
250 unsigned long long sched_clock(void)
251 {
252 	return paravirt_sched_clock();
253 }
254 
255 bool using_native_sched_clock(void)
256 {
257 	return pv_ops.time.sched_clock == native_sched_clock;
258 }
259 #else
260 unsigned long long
261 sched_clock(void) __attribute__((alias("native_sched_clock")));
262 
263 bool using_native_sched_clock(void) { return true; }
264 #endif
265 
266 int check_tsc_unstable(void)
267 {
268 	return tsc_unstable;
269 }
270 EXPORT_SYMBOL_GPL(check_tsc_unstable);
271 
272 #ifdef CONFIG_X86_TSC
273 int __init notsc_setup(char *str)
274 {
275 	mark_tsc_unstable("boot parameter notsc");
276 	return 1;
277 }
278 #else
279 /*
280  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
281  * in cpu/common.c
282  */
283 int __init notsc_setup(char *str)
284 {
285 	setup_clear_cpu_cap(X86_FEATURE_TSC);
286 	return 1;
287 }
288 #endif
289 
290 __setup("notsc", notsc_setup);
291 
292 static int no_sched_irq_time;
293 static int no_tsc_watchdog;
294 
295 static int __init tsc_setup(char *str)
296 {
297 	if (!strcmp(str, "reliable"))
298 		tsc_clocksource_reliable = 1;
299 	if (!strncmp(str, "noirqtime", 9))
300 		no_sched_irq_time = 1;
301 	if (!strcmp(str, "unstable"))
302 		mark_tsc_unstable("boot parameter");
303 	if (!strcmp(str, "nowatchdog"))
304 		no_tsc_watchdog = 1;
305 	return 1;
306 }
307 
308 __setup("tsc=", tsc_setup);
309 
310 #define MAX_RETRIES		5
311 #define TSC_DEFAULT_THRESHOLD	0x20000
312 
313 /*
314  * Read TSC and the reference counters. Take care of any disturbances
315  */
316 static u64 tsc_read_refs(u64 *p, int hpet)
317 {
318 	u64 t1, t2;
319 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
320 	int i;
321 
322 	for (i = 0; i < MAX_RETRIES; i++) {
323 		t1 = get_cycles();
324 		if (hpet)
325 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
326 		else
327 			*p = acpi_pm_read_early();
328 		t2 = get_cycles();
329 		if ((t2 - t1) < thresh)
330 			return t2;
331 	}
332 	return ULLONG_MAX;
333 }
334 
335 /*
336  * Calculate the TSC frequency from HPET reference
337  */
338 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
339 {
340 	u64 tmp;
341 
342 	if (hpet2 < hpet1)
343 		hpet2 += 0x100000000ULL;
344 	hpet2 -= hpet1;
345 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
346 	do_div(tmp, 1000000);
347 	deltatsc = div64_u64(deltatsc, tmp);
348 
349 	return (unsigned long) deltatsc;
350 }
351 
352 /*
353  * Calculate the TSC frequency from PMTimer reference
354  */
355 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
356 {
357 	u64 tmp;
358 
359 	if (!pm1 && !pm2)
360 		return ULONG_MAX;
361 
362 	if (pm2 < pm1)
363 		pm2 += (u64)ACPI_PM_OVRRUN;
364 	pm2 -= pm1;
365 	tmp = pm2 * 1000000000LL;
366 	do_div(tmp, PMTMR_TICKS_PER_SEC);
367 	do_div(deltatsc, tmp);
368 
369 	return (unsigned long) deltatsc;
370 }
371 
372 #define CAL_MS		10
373 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
374 #define CAL_PIT_LOOPS	1000
375 
376 #define CAL2_MS		50
377 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
378 #define CAL2_PIT_LOOPS	5000
379 
380 
381 /*
382  * Try to calibrate the TSC against the Programmable
383  * Interrupt Timer and return the frequency of the TSC
384  * in kHz.
385  *
386  * Return ULONG_MAX on failure to calibrate.
387  */
388 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
389 {
390 	u64 tsc, t1, t2, delta;
391 	unsigned long tscmin, tscmax;
392 	int pitcnt;
393 
394 	if (!has_legacy_pic()) {
395 		/*
396 		 * Relies on tsc_early_delay_calibrate() to have given us semi
397 		 * usable udelay(), wait for the same 50ms we would have with
398 		 * the PIT loop below.
399 		 */
400 		udelay(10 * USEC_PER_MSEC);
401 		udelay(10 * USEC_PER_MSEC);
402 		udelay(10 * USEC_PER_MSEC);
403 		udelay(10 * USEC_PER_MSEC);
404 		udelay(10 * USEC_PER_MSEC);
405 		return ULONG_MAX;
406 	}
407 
408 	/* Set the Gate high, disable speaker */
409 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
410 
411 	/*
412 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
413 	 * count mode), binary count. Set the latch register to 50ms
414 	 * (LSB then MSB) to begin countdown.
415 	 */
416 	outb(0xb0, 0x43);
417 	outb(latch & 0xff, 0x42);
418 	outb(latch >> 8, 0x42);
419 
420 	tsc = t1 = t2 = get_cycles();
421 
422 	pitcnt = 0;
423 	tscmax = 0;
424 	tscmin = ULONG_MAX;
425 	while ((inb(0x61) & 0x20) == 0) {
426 		t2 = get_cycles();
427 		delta = t2 - tsc;
428 		tsc = t2;
429 		if ((unsigned long) delta < tscmin)
430 			tscmin = (unsigned int) delta;
431 		if ((unsigned long) delta > tscmax)
432 			tscmax = (unsigned int) delta;
433 		pitcnt++;
434 	}
435 
436 	/*
437 	 * Sanity checks:
438 	 *
439 	 * If we were not able to read the PIT more than loopmin
440 	 * times, then we have been hit by a massive SMI
441 	 *
442 	 * If the maximum is 10 times larger than the minimum,
443 	 * then we got hit by an SMI as well.
444 	 */
445 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
446 		return ULONG_MAX;
447 
448 	/* Calculate the PIT value */
449 	delta = t2 - t1;
450 	do_div(delta, ms);
451 	return delta;
452 }
453 
454 /*
455  * This reads the current MSB of the PIT counter, and
456  * checks if we are running on sufficiently fast and
457  * non-virtualized hardware.
458  *
459  * Our expectations are:
460  *
461  *  - the PIT is running at roughly 1.19MHz
462  *
463  *  - each IO is going to take about 1us on real hardware,
464  *    but we allow it to be much faster (by a factor of 10) or
465  *    _slightly_ slower (ie we allow up to a 2us read+counter
466  *    update - anything else implies a unacceptably slow CPU
467  *    or PIT for the fast calibration to work.
468  *
469  *  - with 256 PIT ticks to read the value, we have 214us to
470  *    see the same MSB (and overhead like doing a single TSC
471  *    read per MSB value etc).
472  *
473  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
474  *    them each to take about a microsecond on real hardware.
475  *    So we expect a count value of around 100. But we'll be
476  *    generous, and accept anything over 50.
477  *
478  *  - if the PIT is stuck, and we see *many* more reads, we
479  *    return early (and the next caller of pit_expect_msb()
480  *    then consider it a failure when they don't see the
481  *    next expected value).
482  *
483  * These expectations mean that we know that we have seen the
484  * transition from one expected value to another with a fairly
485  * high accuracy, and we didn't miss any events. We can thus
486  * use the TSC value at the transitions to calculate a pretty
487  * good value for the TSC frequency.
488  */
489 static inline int pit_verify_msb(unsigned char val)
490 {
491 	/* Ignore LSB */
492 	inb(0x42);
493 	return inb(0x42) == val;
494 }
495 
496 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
497 {
498 	int count;
499 	u64 tsc = 0, prev_tsc = 0;
500 
501 	for (count = 0; count < 50000; count++) {
502 		if (!pit_verify_msb(val))
503 			break;
504 		prev_tsc = tsc;
505 		tsc = get_cycles();
506 	}
507 	*deltap = get_cycles() - prev_tsc;
508 	*tscp = tsc;
509 
510 	/*
511 	 * We require _some_ success, but the quality control
512 	 * will be based on the error terms on the TSC values.
513 	 */
514 	return count > 5;
515 }
516 
517 /*
518  * How many MSB values do we want to see? We aim for
519  * a maximum error rate of 500ppm (in practice the
520  * real error is much smaller), but refuse to spend
521  * more than 50ms on it.
522  */
523 #define MAX_QUICK_PIT_MS 50
524 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
525 
526 static unsigned long quick_pit_calibrate(void)
527 {
528 	int i;
529 	u64 tsc, delta;
530 	unsigned long d1, d2;
531 
532 	if (!has_legacy_pic())
533 		return 0;
534 
535 	/* Set the Gate high, disable speaker */
536 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
537 
538 	/*
539 	 * Counter 2, mode 0 (one-shot), binary count
540 	 *
541 	 * NOTE! Mode 2 decrements by two (and then the
542 	 * output is flipped each time, giving the same
543 	 * final output frequency as a decrement-by-one),
544 	 * so mode 0 is much better when looking at the
545 	 * individual counts.
546 	 */
547 	outb(0xb0, 0x43);
548 
549 	/* Start at 0xffff */
550 	outb(0xff, 0x42);
551 	outb(0xff, 0x42);
552 
553 	/*
554 	 * The PIT starts counting at the next edge, so we
555 	 * need to delay for a microsecond. The easiest way
556 	 * to do that is to just read back the 16-bit counter
557 	 * once from the PIT.
558 	 */
559 	pit_verify_msb(0);
560 
561 	if (pit_expect_msb(0xff, &tsc, &d1)) {
562 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
563 			if (!pit_expect_msb(0xff-i, &delta, &d2))
564 				break;
565 
566 			delta -= tsc;
567 
568 			/*
569 			 * Extrapolate the error and fail fast if the error will
570 			 * never be below 500 ppm.
571 			 */
572 			if (i == 1 &&
573 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
574 				return 0;
575 
576 			/*
577 			 * Iterate until the error is less than 500 ppm
578 			 */
579 			if (d1+d2 >= delta >> 11)
580 				continue;
581 
582 			/*
583 			 * Check the PIT one more time to verify that
584 			 * all TSC reads were stable wrt the PIT.
585 			 *
586 			 * This also guarantees serialization of the
587 			 * last cycle read ('d2') in pit_expect_msb.
588 			 */
589 			if (!pit_verify_msb(0xfe - i))
590 				break;
591 			goto success;
592 		}
593 	}
594 	pr_info("Fast TSC calibration failed\n");
595 	return 0;
596 
597 success:
598 	/*
599 	 * Ok, if we get here, then we've seen the
600 	 * MSB of the PIT decrement 'i' times, and the
601 	 * error has shrunk to less than 500 ppm.
602 	 *
603 	 * As a result, we can depend on there not being
604 	 * any odd delays anywhere, and the TSC reads are
605 	 * reliable (within the error).
606 	 *
607 	 * kHz = ticks / time-in-seconds / 1000;
608 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
609 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
610 	 */
611 	delta *= PIT_TICK_RATE;
612 	do_div(delta, i*256*1000);
613 	pr_info("Fast TSC calibration using PIT\n");
614 	return delta;
615 }
616 
617 /**
618  * native_calibrate_tsc
619  * Determine TSC frequency via CPUID, else return 0.
620  */
621 unsigned long native_calibrate_tsc(void)
622 {
623 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
624 	unsigned int crystal_khz;
625 
626 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
627 		return 0;
628 
629 	if (boot_cpu_data.cpuid_level < 0x15)
630 		return 0;
631 
632 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
633 
634 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
635 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
636 
637 	if (ebx_numerator == 0 || eax_denominator == 0)
638 		return 0;
639 
640 	crystal_khz = ecx_hz / 1000;
641 
642 	/*
643 	 * Denverton SoCs don't report crystal clock, and also don't support
644 	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
645 	 * clock.
646 	 */
647 	if (crystal_khz == 0 &&
648 			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
649 		crystal_khz = 25000;
650 
651 	/*
652 	 * TSC frequency reported directly by CPUID is a "hardware reported"
653 	 * frequency and is the most accurate one so far we have. This
654 	 * is considered a known frequency.
655 	 */
656 	if (crystal_khz != 0)
657 		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
658 
659 	/*
660 	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
661 	 * clock, but we can easily calculate it to a high degree of accuracy
662 	 * by considering the crystal ratio and the CPU speed.
663 	 */
664 	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
665 		unsigned int eax_base_mhz, ebx, ecx, edx;
666 
667 		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
668 		crystal_khz = eax_base_mhz * 1000 *
669 			eax_denominator / ebx_numerator;
670 	}
671 
672 	if (crystal_khz == 0)
673 		return 0;
674 
675 	/*
676 	 * For Atom SoCs TSC is the only reliable clocksource.
677 	 * Mark TSC reliable so no watchdog on it.
678 	 */
679 	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
680 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
681 
682 #ifdef CONFIG_X86_LOCAL_APIC
683 	/*
684 	 * The local APIC appears to be fed by the core crystal clock
685 	 * (which sounds entirely sensible). We can set the global
686 	 * lapic_timer_period here to avoid having to calibrate the APIC
687 	 * timer later.
688 	 */
689 	lapic_timer_period = crystal_khz * 1000 / HZ;
690 #endif
691 
692 	return crystal_khz * ebx_numerator / eax_denominator;
693 }
694 
695 static unsigned long cpu_khz_from_cpuid(void)
696 {
697 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
698 
699 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
700 		return 0;
701 
702 	if (boot_cpu_data.cpuid_level < 0x16)
703 		return 0;
704 
705 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
706 
707 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
708 
709 	return eax_base_mhz * 1000;
710 }
711 
712 /*
713  * calibrate cpu using pit, hpet, and ptimer methods. They are available
714  * later in boot after acpi is initialized.
715  */
716 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
717 {
718 	u64 tsc1, tsc2, delta, ref1, ref2;
719 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
720 	unsigned long flags, latch, ms;
721 	int hpet = is_hpet_enabled(), i, loopmin;
722 
723 	/*
724 	 * Run 5 calibration loops to get the lowest frequency value
725 	 * (the best estimate). We use two different calibration modes
726 	 * here:
727 	 *
728 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
729 	 * load a timeout of 50ms. We read the time right after we
730 	 * started the timer and wait until the PIT count down reaches
731 	 * zero. In each wait loop iteration we read the TSC and check
732 	 * the delta to the previous read. We keep track of the min
733 	 * and max values of that delta. The delta is mostly defined
734 	 * by the IO time of the PIT access, so we can detect when
735 	 * any disturbance happened between the two reads. If the
736 	 * maximum time is significantly larger than the minimum time,
737 	 * then we discard the result and have another try.
738 	 *
739 	 * 2) Reference counter. If available we use the HPET or the
740 	 * PMTIMER as a reference to check the sanity of that value.
741 	 * We use separate TSC readouts and check inside of the
742 	 * reference read for any possible disturbance. We dicard
743 	 * disturbed values here as well. We do that around the PIT
744 	 * calibration delay loop as we have to wait for a certain
745 	 * amount of time anyway.
746 	 */
747 
748 	/* Preset PIT loop values */
749 	latch = CAL_LATCH;
750 	ms = CAL_MS;
751 	loopmin = CAL_PIT_LOOPS;
752 
753 	for (i = 0; i < 3; i++) {
754 		unsigned long tsc_pit_khz;
755 
756 		/*
757 		 * Read the start value and the reference count of
758 		 * hpet/pmtimer when available. Then do the PIT
759 		 * calibration, which will take at least 50ms, and
760 		 * read the end value.
761 		 */
762 		local_irq_save(flags);
763 		tsc1 = tsc_read_refs(&ref1, hpet);
764 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
765 		tsc2 = tsc_read_refs(&ref2, hpet);
766 		local_irq_restore(flags);
767 
768 		/* Pick the lowest PIT TSC calibration so far */
769 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
770 
771 		/* hpet or pmtimer available ? */
772 		if (ref1 == ref2)
773 			continue;
774 
775 		/* Check, whether the sampling was disturbed */
776 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
777 			continue;
778 
779 		tsc2 = (tsc2 - tsc1) * 1000000LL;
780 		if (hpet)
781 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
782 		else
783 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
784 
785 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
786 
787 		/* Check the reference deviation */
788 		delta = ((u64) tsc_pit_min) * 100;
789 		do_div(delta, tsc_ref_min);
790 
791 		/*
792 		 * If both calibration results are inside a 10% window
793 		 * then we can be sure, that the calibration
794 		 * succeeded. We break out of the loop right away. We
795 		 * use the reference value, as it is more precise.
796 		 */
797 		if (delta >= 90 && delta <= 110) {
798 			pr_info("PIT calibration matches %s. %d loops\n",
799 				hpet ? "HPET" : "PMTIMER", i + 1);
800 			return tsc_ref_min;
801 		}
802 
803 		/*
804 		 * Check whether PIT failed more than once. This
805 		 * happens in virtualized environments. We need to
806 		 * give the virtual PC a slightly longer timeframe for
807 		 * the HPET/PMTIMER to make the result precise.
808 		 */
809 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
810 			latch = CAL2_LATCH;
811 			ms = CAL2_MS;
812 			loopmin = CAL2_PIT_LOOPS;
813 		}
814 	}
815 
816 	/*
817 	 * Now check the results.
818 	 */
819 	if (tsc_pit_min == ULONG_MAX) {
820 		/* PIT gave no useful value */
821 		pr_warn("Unable to calibrate against PIT\n");
822 
823 		/* We don't have an alternative source, disable TSC */
824 		if (!hpet && !ref1 && !ref2) {
825 			pr_notice("No reference (HPET/PMTIMER) available\n");
826 			return 0;
827 		}
828 
829 		/* The alternative source failed as well, disable TSC */
830 		if (tsc_ref_min == ULONG_MAX) {
831 			pr_warn("HPET/PMTIMER calibration failed\n");
832 			return 0;
833 		}
834 
835 		/* Use the alternative source */
836 		pr_info("using %s reference calibration\n",
837 			hpet ? "HPET" : "PMTIMER");
838 
839 		return tsc_ref_min;
840 	}
841 
842 	/* We don't have an alternative source, use the PIT calibration value */
843 	if (!hpet && !ref1 && !ref2) {
844 		pr_info("Using PIT calibration value\n");
845 		return tsc_pit_min;
846 	}
847 
848 	/* The alternative source failed, use the PIT calibration value */
849 	if (tsc_ref_min == ULONG_MAX) {
850 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
851 		return tsc_pit_min;
852 	}
853 
854 	/*
855 	 * The calibration values differ too much. In doubt, we use
856 	 * the PIT value as we know that there are PMTIMERs around
857 	 * running at double speed. At least we let the user know:
858 	 */
859 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
860 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
861 	pr_info("Using PIT calibration value\n");
862 	return tsc_pit_min;
863 }
864 
865 /**
866  * native_calibrate_cpu_early - can calibrate the cpu early in boot
867  */
868 unsigned long native_calibrate_cpu_early(void)
869 {
870 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
871 
872 	if (!fast_calibrate)
873 		fast_calibrate = cpu_khz_from_msr();
874 	if (!fast_calibrate) {
875 		local_irq_save(flags);
876 		fast_calibrate = quick_pit_calibrate();
877 		local_irq_restore(flags);
878 	}
879 	return fast_calibrate;
880 }
881 
882 
883 /**
884  * native_calibrate_cpu - calibrate the cpu
885  */
886 static unsigned long native_calibrate_cpu(void)
887 {
888 	unsigned long tsc_freq = native_calibrate_cpu_early();
889 
890 	if (!tsc_freq)
891 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
892 
893 	return tsc_freq;
894 }
895 
896 void recalibrate_cpu_khz(void)
897 {
898 #ifndef CONFIG_SMP
899 	unsigned long cpu_khz_old = cpu_khz;
900 
901 	if (!boot_cpu_has(X86_FEATURE_TSC))
902 		return;
903 
904 	cpu_khz = x86_platform.calibrate_cpu();
905 	tsc_khz = x86_platform.calibrate_tsc();
906 	if (tsc_khz == 0)
907 		tsc_khz = cpu_khz;
908 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
909 		cpu_khz = tsc_khz;
910 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
911 						    cpu_khz_old, cpu_khz);
912 #endif
913 }
914 
915 EXPORT_SYMBOL(recalibrate_cpu_khz);
916 
917 
918 static unsigned long long cyc2ns_suspend;
919 
920 void tsc_save_sched_clock_state(void)
921 {
922 	if (!sched_clock_stable())
923 		return;
924 
925 	cyc2ns_suspend = sched_clock();
926 }
927 
928 /*
929  * Even on processors with invariant TSC, TSC gets reset in some the
930  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
931  * arbitrary value (still sync'd across cpu's) during resume from such sleep
932  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
933  * that sched_clock() continues from the point where it was left off during
934  * suspend.
935  */
936 void tsc_restore_sched_clock_state(void)
937 {
938 	unsigned long long offset;
939 	unsigned long flags;
940 	int cpu;
941 
942 	if (!sched_clock_stable())
943 		return;
944 
945 	local_irq_save(flags);
946 
947 	/*
948 	 * We're coming out of suspend, there's no concurrency yet; don't
949 	 * bother being nice about the RCU stuff, just write to both
950 	 * data fields.
951 	 */
952 
953 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
954 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
955 
956 	offset = cyc2ns_suspend - sched_clock();
957 
958 	for_each_possible_cpu(cpu) {
959 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
960 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
961 	}
962 
963 	local_irq_restore(flags);
964 }
965 
966 #ifdef CONFIG_CPU_FREQ
967 /*
968  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
969  * changes.
970  *
971  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
972  * as unstable and give up in those cases.
973  *
974  * Should fix up last_tsc too. Currently gettimeofday in the
975  * first tick after the change will be slightly wrong.
976  */
977 
978 static unsigned int  ref_freq;
979 static unsigned long loops_per_jiffy_ref;
980 static unsigned long tsc_khz_ref;
981 
982 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
983 				void *data)
984 {
985 	struct cpufreq_freqs *freq = data;
986 
987 	if (num_online_cpus() > 1) {
988 		mark_tsc_unstable("cpufreq changes on SMP");
989 		return 0;
990 	}
991 
992 	if (!ref_freq) {
993 		ref_freq = freq->old;
994 		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
995 		tsc_khz_ref = tsc_khz;
996 	}
997 
998 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
999 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1000 		boot_cpu_data.loops_per_jiffy =
1001 			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1002 
1003 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1004 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1005 			mark_tsc_unstable("cpufreq changes");
1006 
1007 		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static struct notifier_block time_cpufreq_notifier_block = {
1014 	.notifier_call  = time_cpufreq_notifier
1015 };
1016 
1017 static int __init cpufreq_register_tsc_scaling(void)
1018 {
1019 	if (!boot_cpu_has(X86_FEATURE_TSC))
1020 		return 0;
1021 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1022 		return 0;
1023 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1024 				CPUFREQ_TRANSITION_NOTIFIER);
1025 	return 0;
1026 }
1027 
1028 core_initcall(cpufreq_register_tsc_scaling);
1029 
1030 #endif /* CONFIG_CPU_FREQ */
1031 
1032 #define ART_CPUID_LEAF (0x15)
1033 #define ART_MIN_DENOMINATOR (1)
1034 
1035 
1036 /*
1037  * If ART is present detect the numerator:denominator to convert to TSC
1038  */
1039 static void __init detect_art(void)
1040 {
1041 	unsigned int unused[2];
1042 
1043 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1044 		return;
1045 
1046 	/*
1047 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1048 	 * and the TSC counter resets must not occur asynchronously.
1049 	 */
1050 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1051 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1052 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1053 	    tsc_async_resets)
1054 		return;
1055 
1056 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1057 	      &art_to_tsc_numerator, unused, unused+1);
1058 
1059 	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1060 		return;
1061 
1062 	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1063 
1064 	/* Make this sticky over multiple CPU init calls */
1065 	setup_force_cpu_cap(X86_FEATURE_ART);
1066 }
1067 
1068 
1069 /* clocksource code */
1070 
1071 static void tsc_resume(struct clocksource *cs)
1072 {
1073 	tsc_verify_tsc_adjust(true);
1074 }
1075 
1076 /*
1077  * We used to compare the TSC to the cycle_last value in the clocksource
1078  * structure to avoid a nasty time-warp. This can be observed in a
1079  * very small window right after one CPU updated cycle_last under
1080  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1081  * is smaller than the cycle_last reference value due to a TSC which
1082  * is slighty behind. This delta is nowhere else observable, but in
1083  * that case it results in a forward time jump in the range of hours
1084  * due to the unsigned delta calculation of the time keeping core
1085  * code, which is necessary to support wrapping clocksources like pm
1086  * timer.
1087  *
1088  * This sanity check is now done in the core timekeeping code.
1089  * checking the result of read_tsc() - cycle_last for being negative.
1090  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1091  */
1092 static u64 read_tsc(struct clocksource *cs)
1093 {
1094 	return (u64)rdtsc_ordered();
1095 }
1096 
1097 static void tsc_cs_mark_unstable(struct clocksource *cs)
1098 {
1099 	if (tsc_unstable)
1100 		return;
1101 
1102 	tsc_unstable = 1;
1103 	if (using_native_sched_clock())
1104 		clear_sched_clock_stable();
1105 	disable_sched_clock_irqtime();
1106 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1107 }
1108 
1109 static void tsc_cs_tick_stable(struct clocksource *cs)
1110 {
1111 	if (tsc_unstable)
1112 		return;
1113 
1114 	if (using_native_sched_clock())
1115 		sched_clock_tick_stable();
1116 }
1117 
1118 static int tsc_cs_enable(struct clocksource *cs)
1119 {
1120 	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1121 	return 0;
1122 }
1123 
1124 /*
1125  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1126  */
1127 static struct clocksource clocksource_tsc_early = {
1128 	.name			= "tsc-early",
1129 	.rating			= 299,
1130 	.read			= read_tsc,
1131 	.mask			= CLOCKSOURCE_MASK(64),
1132 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1133 				  CLOCK_SOURCE_MUST_VERIFY,
1134 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1135 	.enable			= tsc_cs_enable,
1136 	.resume			= tsc_resume,
1137 	.mark_unstable		= tsc_cs_mark_unstable,
1138 	.tick_stable		= tsc_cs_tick_stable,
1139 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1140 };
1141 
1142 /*
1143  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1144  * this one will immediately take over. We will only register if TSC has
1145  * been found good.
1146  */
1147 static struct clocksource clocksource_tsc = {
1148 	.name			= "tsc",
1149 	.rating			= 300,
1150 	.read			= read_tsc,
1151 	.mask			= CLOCKSOURCE_MASK(64),
1152 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1153 				  CLOCK_SOURCE_VALID_FOR_HRES |
1154 				  CLOCK_SOURCE_MUST_VERIFY,
1155 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1156 	.enable			= tsc_cs_enable,
1157 	.resume			= tsc_resume,
1158 	.mark_unstable		= tsc_cs_mark_unstable,
1159 	.tick_stable		= tsc_cs_tick_stable,
1160 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1161 };
1162 
1163 void mark_tsc_unstable(char *reason)
1164 {
1165 	if (tsc_unstable)
1166 		return;
1167 
1168 	tsc_unstable = 1;
1169 	if (using_native_sched_clock())
1170 		clear_sched_clock_stable();
1171 	disable_sched_clock_irqtime();
1172 	pr_info("Marking TSC unstable due to %s\n", reason);
1173 
1174 	clocksource_mark_unstable(&clocksource_tsc_early);
1175 	clocksource_mark_unstable(&clocksource_tsc);
1176 }
1177 
1178 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1179 
1180 static void __init check_system_tsc_reliable(void)
1181 {
1182 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1183 	if (is_geode_lx()) {
1184 		/* RTSC counts during suspend */
1185 #define RTSC_SUSP 0x100
1186 		unsigned long res_low, res_high;
1187 
1188 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1189 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1190 		if (res_low & RTSC_SUSP)
1191 			tsc_clocksource_reliable = 1;
1192 	}
1193 #endif
1194 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1195 		tsc_clocksource_reliable = 1;
1196 }
1197 
1198 /*
1199  * Make an educated guess if the TSC is trustworthy and synchronized
1200  * over all CPUs.
1201  */
1202 int unsynchronized_tsc(void)
1203 {
1204 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1205 		return 1;
1206 
1207 #ifdef CONFIG_SMP
1208 	if (apic_is_clustered_box())
1209 		return 1;
1210 #endif
1211 
1212 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1213 		return 0;
1214 
1215 	if (tsc_clocksource_reliable)
1216 		return 0;
1217 	/*
1218 	 * Intel systems are normally all synchronized.
1219 	 * Exceptions must mark TSC as unstable:
1220 	 */
1221 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1222 		/* assume multi socket systems are not synchronized: */
1223 		if (num_possible_cpus() > 1)
1224 			return 1;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 /*
1231  * Convert ART to TSC given numerator/denominator found in detect_art()
1232  */
1233 struct system_counterval_t convert_art_to_tsc(u64 art)
1234 {
1235 	u64 tmp, res, rem;
1236 
1237 	rem = do_div(art, art_to_tsc_denominator);
1238 
1239 	res = art * art_to_tsc_numerator;
1240 	tmp = rem * art_to_tsc_numerator;
1241 
1242 	do_div(tmp, art_to_tsc_denominator);
1243 	res += tmp + art_to_tsc_offset;
1244 
1245 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1246 			.cycles = res};
1247 }
1248 EXPORT_SYMBOL(convert_art_to_tsc);
1249 
1250 /**
1251  * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1252  * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1253  *
1254  * PTM requires all timestamps to be in units of nanoseconds. When user
1255  * software requests a cross-timestamp, this function converts system timestamp
1256  * to TSC.
1257  *
1258  * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1259  * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1260  * that this flag is set before conversion to TSC is attempted.
1261  *
1262  * Return:
1263  * struct system_counterval_t - system counter value with the pointer to the
1264  *	corresponding clocksource
1265  *	@cycles:	System counter value
1266  *	@cs:		Clocksource corresponding to system counter value. Used
1267  *			by timekeeping code to verify comparibility of two cycle
1268  *			values.
1269  */
1270 
1271 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1272 {
1273 	u64 tmp, res, rem;
1274 
1275 	rem = do_div(art_ns, USEC_PER_SEC);
1276 
1277 	res = art_ns * tsc_khz;
1278 	tmp = rem * tsc_khz;
1279 
1280 	do_div(tmp, USEC_PER_SEC);
1281 	res += tmp;
1282 
1283 	return (struct system_counterval_t) { .cs = art_related_clocksource,
1284 					      .cycles = res};
1285 }
1286 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1287 
1288 
1289 static void tsc_refine_calibration_work(struct work_struct *work);
1290 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1291 /**
1292  * tsc_refine_calibration_work - Further refine tsc freq calibration
1293  * @work - ignored.
1294  *
1295  * This functions uses delayed work over a period of a
1296  * second to further refine the TSC freq value. Since this is
1297  * timer based, instead of loop based, we don't block the boot
1298  * process while this longer calibration is done.
1299  *
1300  * If there are any calibration anomalies (too many SMIs, etc),
1301  * or the refined calibration is off by 1% of the fast early
1302  * calibration, we throw out the new calibration and use the
1303  * early calibration.
1304  */
1305 static void tsc_refine_calibration_work(struct work_struct *work)
1306 {
1307 	static u64 tsc_start = ULLONG_MAX, ref_start;
1308 	static int hpet;
1309 	u64 tsc_stop, ref_stop, delta;
1310 	unsigned long freq;
1311 	int cpu;
1312 
1313 	/* Don't bother refining TSC on unstable systems */
1314 	if (tsc_unstable)
1315 		goto unreg;
1316 
1317 	/*
1318 	 * Since the work is started early in boot, we may be
1319 	 * delayed the first time we expire. So set the workqueue
1320 	 * again once we know timers are working.
1321 	 */
1322 	if (tsc_start == ULLONG_MAX) {
1323 restart:
1324 		/*
1325 		 * Only set hpet once, to avoid mixing hardware
1326 		 * if the hpet becomes enabled later.
1327 		 */
1328 		hpet = is_hpet_enabled();
1329 		tsc_start = tsc_read_refs(&ref_start, hpet);
1330 		schedule_delayed_work(&tsc_irqwork, HZ);
1331 		return;
1332 	}
1333 
1334 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1335 
1336 	/* hpet or pmtimer available ? */
1337 	if (ref_start == ref_stop)
1338 		goto out;
1339 
1340 	/* Check, whether the sampling was disturbed */
1341 	if (tsc_stop == ULLONG_MAX)
1342 		goto restart;
1343 
1344 	delta = tsc_stop - tsc_start;
1345 	delta *= 1000000LL;
1346 	if (hpet)
1347 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1348 	else
1349 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1350 
1351 	/* Make sure we're within 1% */
1352 	if (abs(tsc_khz - freq) > tsc_khz/100)
1353 		goto out;
1354 
1355 	tsc_khz = freq;
1356 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1357 		(unsigned long)tsc_khz / 1000,
1358 		(unsigned long)tsc_khz % 1000);
1359 
1360 	/* Inform the TSC deadline clockevent devices about the recalibration */
1361 	lapic_update_tsc_freq();
1362 
1363 	/* Update the sched_clock() rate to match the clocksource one */
1364 	for_each_possible_cpu(cpu)
1365 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1366 
1367 out:
1368 	if (tsc_unstable)
1369 		goto unreg;
1370 
1371 	if (boot_cpu_has(X86_FEATURE_ART))
1372 		art_related_clocksource = &clocksource_tsc;
1373 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1374 unreg:
1375 	clocksource_unregister(&clocksource_tsc_early);
1376 }
1377 
1378 
1379 static int __init init_tsc_clocksource(void)
1380 {
1381 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1382 		return 0;
1383 
1384 	if (tsc_unstable)
1385 		goto unreg;
1386 
1387 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1388 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1389 
1390 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1391 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1392 
1393 	/*
1394 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1395 	 * the refined calibration and directly register it as a clocksource.
1396 	 */
1397 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1398 		if (boot_cpu_has(X86_FEATURE_ART))
1399 			art_related_clocksource = &clocksource_tsc;
1400 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1401 unreg:
1402 		clocksource_unregister(&clocksource_tsc_early);
1403 		return 0;
1404 	}
1405 
1406 	schedule_delayed_work(&tsc_irqwork, 0);
1407 	return 0;
1408 }
1409 /*
1410  * We use device_initcall here, to ensure we run after the hpet
1411  * is fully initialized, which may occur at fs_initcall time.
1412  */
1413 device_initcall(init_tsc_clocksource);
1414 
1415 static bool __init determine_cpu_tsc_frequencies(bool early)
1416 {
1417 	/* Make sure that cpu and tsc are not already calibrated */
1418 	WARN_ON(cpu_khz || tsc_khz);
1419 
1420 	if (early) {
1421 		cpu_khz = x86_platform.calibrate_cpu();
1422 		if (tsc_early_khz)
1423 			tsc_khz = tsc_early_khz;
1424 		else
1425 			tsc_khz = x86_platform.calibrate_tsc();
1426 	} else {
1427 		/* We should not be here with non-native cpu calibration */
1428 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1429 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1430 	}
1431 
1432 	/*
1433 	 * Trust non-zero tsc_khz as authoritative,
1434 	 * and use it to sanity check cpu_khz,
1435 	 * which will be off if system timer is off.
1436 	 */
1437 	if (tsc_khz == 0)
1438 		tsc_khz = cpu_khz;
1439 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1440 		cpu_khz = tsc_khz;
1441 
1442 	if (tsc_khz == 0)
1443 		return false;
1444 
1445 	pr_info("Detected %lu.%03lu MHz processor\n",
1446 		(unsigned long)cpu_khz / KHZ,
1447 		(unsigned long)cpu_khz % KHZ);
1448 
1449 	if (cpu_khz != tsc_khz) {
1450 		pr_info("Detected %lu.%03lu MHz TSC",
1451 			(unsigned long)tsc_khz / KHZ,
1452 			(unsigned long)tsc_khz % KHZ);
1453 	}
1454 	return true;
1455 }
1456 
1457 static unsigned long __init get_loops_per_jiffy(void)
1458 {
1459 	u64 lpj = (u64)tsc_khz * KHZ;
1460 
1461 	do_div(lpj, HZ);
1462 	return lpj;
1463 }
1464 
1465 static void __init tsc_enable_sched_clock(void)
1466 {
1467 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1468 	tsc_store_and_check_tsc_adjust(true);
1469 	cyc2ns_init_boot_cpu();
1470 	static_branch_enable(&__use_tsc);
1471 }
1472 
1473 void __init tsc_early_init(void)
1474 {
1475 	if (!boot_cpu_has(X86_FEATURE_TSC))
1476 		return;
1477 	/* Don't change UV TSC multi-chassis synchronization */
1478 	if (is_early_uv_system())
1479 		return;
1480 	if (!determine_cpu_tsc_frequencies(true))
1481 		return;
1482 	loops_per_jiffy = get_loops_per_jiffy();
1483 
1484 	tsc_enable_sched_clock();
1485 }
1486 
1487 void __init tsc_init(void)
1488 {
1489 	/*
1490 	 * native_calibrate_cpu_early can only calibrate using methods that are
1491 	 * available early in boot.
1492 	 */
1493 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1494 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1495 
1496 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1497 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1498 		return;
1499 	}
1500 
1501 	if (!tsc_khz) {
1502 		/* We failed to determine frequencies earlier, try again */
1503 		if (!determine_cpu_tsc_frequencies(false)) {
1504 			mark_tsc_unstable("could not calculate TSC khz");
1505 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1506 			return;
1507 		}
1508 		tsc_enable_sched_clock();
1509 	}
1510 
1511 	cyc2ns_init_secondary_cpus();
1512 
1513 	if (!no_sched_irq_time)
1514 		enable_sched_clock_irqtime();
1515 
1516 	lpj_fine = get_loops_per_jiffy();
1517 	use_tsc_delay();
1518 
1519 	check_system_tsc_reliable();
1520 
1521 	if (unsynchronized_tsc()) {
1522 		mark_tsc_unstable("TSCs unsynchronized");
1523 		return;
1524 	}
1525 
1526 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1527 		clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1528 
1529 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1530 	detect_art();
1531 }
1532 
1533 #ifdef CONFIG_SMP
1534 /*
1535  * If we have a constant TSC and are using the TSC for the delay loop,
1536  * we can skip clock calibration if another cpu in the same socket has already
1537  * been calibrated. This assumes that CONSTANT_TSC applies to all
1538  * cpus in the socket - this should be a safe assumption.
1539  */
1540 unsigned long calibrate_delay_is_known(void)
1541 {
1542 	int sibling, cpu = smp_processor_id();
1543 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1544 	const struct cpumask *mask = topology_core_cpumask(cpu);
1545 
1546 	if (!constant_tsc || !mask)
1547 		return 0;
1548 
1549 	sibling = cpumask_any_but(mask, cpu);
1550 	if (sibling < nr_cpu_ids)
1551 		return cpu_data(sibling).loops_per_jiffy;
1552 	return 0;
1553 }
1554 #endif
1555