1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 #include <asm/geode.h> 25 26 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 27 EXPORT_SYMBOL(cpu_khz); 28 29 unsigned int __read_mostly tsc_khz; 30 EXPORT_SYMBOL(tsc_khz); 31 32 /* 33 * TSC can be unstable due to cpufreq or due to unsynced TSCs 34 */ 35 static int __read_mostly tsc_unstable; 36 37 /* native_sched_clock() is called before tsc_init(), so 38 we must start with the TSC soft disabled to prevent 39 erroneous rdtsc usage on !cpu_has_tsc processors */ 40 static int __read_mostly tsc_disabled = -1; 41 42 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 43 44 int tsc_clocksource_reliable; 45 46 /* 47 * Use a ring-buffer like data structure, where a writer advances the head by 48 * writing a new data entry and a reader advances the tail when it observes a 49 * new entry. 50 * 51 * Writers are made to wait on readers until there's space to write a new 52 * entry. 53 * 54 * This means that we can always use an {offset, mul} pair to compute a ns 55 * value that is 'roughly' in the right direction, even if we're writing a new 56 * {offset, mul} pair during the clock read. 57 * 58 * The down-side is that we can no longer guarantee strict monotonicity anymore 59 * (assuming the TSC was that to begin with), because while we compute the 60 * intersection point of the two clock slopes and make sure the time is 61 * continuous at the point of switching; we can no longer guarantee a reader is 62 * strictly before or after the switch point. 63 * 64 * It does mean a reader no longer needs to disable IRQs in order to avoid 65 * CPU-Freq updates messing with his times, and similarly an NMI reader will 66 * no longer run the risk of hitting half-written state. 67 */ 68 69 struct cyc2ns { 70 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 71 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 72 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 73 }; /* exactly fits one cacheline */ 74 75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 76 77 struct cyc2ns_data *cyc2ns_read_begin(void) 78 { 79 struct cyc2ns_data *head; 80 81 preempt_disable(); 82 83 head = this_cpu_read(cyc2ns.head); 84 /* 85 * Ensure we observe the entry when we observe the pointer to it. 86 * matches the wmb from cyc2ns_write_end(). 87 */ 88 smp_read_barrier_depends(); 89 head->__count++; 90 barrier(); 91 92 return head; 93 } 94 95 void cyc2ns_read_end(struct cyc2ns_data *head) 96 { 97 barrier(); 98 /* 99 * If we're the outer most nested read; update the tail pointer 100 * when we're done. This notifies possible pending writers 101 * that we've observed the head pointer and that the other 102 * entry is now free. 103 */ 104 if (!--head->__count) { 105 /* 106 * x86-TSO does not reorder writes with older reads; 107 * therefore once this write becomes visible to another 108 * cpu, we must be finished reading the cyc2ns_data. 109 * 110 * matches with cyc2ns_write_begin(). 111 */ 112 this_cpu_write(cyc2ns.tail, head); 113 } 114 preempt_enable(); 115 } 116 117 /* 118 * Begin writing a new @data entry for @cpu. 119 * 120 * Assumes some sort of write side lock; currently 'provided' by the assumption 121 * that cpufreq will call its notifiers sequentially. 122 */ 123 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 124 { 125 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 126 struct cyc2ns_data *data = c2n->data; 127 128 if (data == c2n->head) 129 data++; 130 131 /* XXX send an IPI to @cpu in order to guarantee a read? */ 132 133 /* 134 * When we observe the tail write from cyc2ns_read_end(), 135 * the cpu must be done with that entry and its safe 136 * to start writing to it. 137 */ 138 while (c2n->tail == data) 139 cpu_relax(); 140 141 return data; 142 } 143 144 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 145 { 146 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 147 148 /* 149 * Ensure the @data writes are visible before we publish the 150 * entry. Matches the data-depencency in cyc2ns_read_begin(). 151 */ 152 smp_wmb(); 153 154 ACCESS_ONCE(c2n->head) = data; 155 } 156 157 /* 158 * Accelerators for sched_clock() 159 * convert from cycles(64bits) => nanoseconds (64bits) 160 * basic equation: 161 * ns = cycles / (freq / ns_per_sec) 162 * ns = cycles * (ns_per_sec / freq) 163 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 164 * ns = cycles * (10^6 / cpu_khz) 165 * 166 * Then we use scaling math (suggested by george@mvista.com) to get: 167 * ns = cycles * (10^6 * SC / cpu_khz) / SC 168 * ns = cycles * cyc2ns_scale / SC 169 * 170 * And since SC is a constant power of two, we can convert the div 171 * into a shift. The larger SC is, the more accurate the conversion, but 172 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 173 * (64-bit result) can be used. 174 * 175 * We can use khz divisor instead of mhz to keep a better precision. 176 * (mathieu.desnoyers@polymtl.ca) 177 * 178 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 179 */ 180 181 static void cyc2ns_data_init(struct cyc2ns_data *data) 182 { 183 data->cyc2ns_mul = 0; 184 data->cyc2ns_shift = 0; 185 data->cyc2ns_offset = 0; 186 data->__count = 0; 187 } 188 189 static void cyc2ns_init(int cpu) 190 { 191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 192 193 cyc2ns_data_init(&c2n->data[0]); 194 cyc2ns_data_init(&c2n->data[1]); 195 196 c2n->head = c2n->data; 197 c2n->tail = c2n->data; 198 } 199 200 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 201 { 202 struct cyc2ns_data *data, *tail; 203 unsigned long long ns; 204 205 /* 206 * See cyc2ns_read_*() for details; replicated in order to avoid 207 * an extra few instructions that came with the abstraction. 208 * Notable, it allows us to only do the __count and tail update 209 * dance when its actually needed. 210 */ 211 212 preempt_disable_notrace(); 213 data = this_cpu_read(cyc2ns.head); 214 tail = this_cpu_read(cyc2ns.tail); 215 216 if (likely(data == tail)) { 217 ns = data->cyc2ns_offset; 218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 219 } else { 220 data->__count++; 221 222 barrier(); 223 224 ns = data->cyc2ns_offset; 225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 226 227 barrier(); 228 229 if (!--data->__count) 230 this_cpu_write(cyc2ns.tail, data); 231 } 232 preempt_enable_notrace(); 233 234 return ns; 235 } 236 237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 238 { 239 unsigned long long tsc_now, ns_now; 240 struct cyc2ns_data *data; 241 unsigned long flags; 242 243 local_irq_save(flags); 244 sched_clock_idle_sleep_event(); 245 246 if (!cpu_khz) 247 goto done; 248 249 data = cyc2ns_write_begin(cpu); 250 251 tsc_now = rdtsc(); 252 ns_now = cycles_2_ns(tsc_now); 253 254 /* 255 * Compute a new multiplier as per the above comment and ensure our 256 * time function is continuous; see the comment near struct 257 * cyc2ns_data. 258 */ 259 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz, 260 NSEC_PER_MSEC, 0); 261 262 /* 263 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 264 * not expected to be greater than 31 due to the original published 265 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 266 * value) - refer perf_event_mmap_page documentation in perf_event.h. 267 */ 268 if (data->cyc2ns_shift == 32) { 269 data->cyc2ns_shift = 31; 270 data->cyc2ns_mul >>= 1; 271 } 272 273 data->cyc2ns_offset = ns_now - 274 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift); 275 276 cyc2ns_write_end(cpu, data); 277 278 done: 279 sched_clock_idle_wakeup_event(0); 280 local_irq_restore(flags); 281 } 282 /* 283 * Scheduler clock - returns current time in nanosec units. 284 */ 285 u64 native_sched_clock(void) 286 { 287 if (static_branch_likely(&__use_tsc)) { 288 u64 tsc_now = rdtsc(); 289 290 /* return the value in ns */ 291 return cycles_2_ns(tsc_now); 292 } 293 294 /* 295 * Fall back to jiffies if there's no TSC available: 296 * ( But note that we still use it if the TSC is marked 297 * unstable. We do this because unlike Time Of Day, 298 * the scheduler clock tolerates small errors and it's 299 * very important for it to be as fast as the platform 300 * can achieve it. ) 301 */ 302 303 /* No locking but a rare wrong value is not a big deal: */ 304 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 305 } 306 307 /* 308 * Generate a sched_clock if you already have a TSC value. 309 */ 310 u64 native_sched_clock_from_tsc(u64 tsc) 311 { 312 return cycles_2_ns(tsc); 313 } 314 315 /* We need to define a real function for sched_clock, to override the 316 weak default version */ 317 #ifdef CONFIG_PARAVIRT 318 unsigned long long sched_clock(void) 319 { 320 return paravirt_sched_clock(); 321 } 322 #else 323 unsigned long long 324 sched_clock(void) __attribute__((alias("native_sched_clock"))); 325 #endif 326 327 int check_tsc_unstable(void) 328 { 329 return tsc_unstable; 330 } 331 EXPORT_SYMBOL_GPL(check_tsc_unstable); 332 333 int check_tsc_disabled(void) 334 { 335 return tsc_disabled; 336 } 337 EXPORT_SYMBOL_GPL(check_tsc_disabled); 338 339 #ifdef CONFIG_X86_TSC 340 int __init notsc_setup(char *str) 341 { 342 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 343 tsc_disabled = 1; 344 return 1; 345 } 346 #else 347 /* 348 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 349 * in cpu/common.c 350 */ 351 int __init notsc_setup(char *str) 352 { 353 setup_clear_cpu_cap(X86_FEATURE_TSC); 354 return 1; 355 } 356 #endif 357 358 __setup("notsc", notsc_setup); 359 360 static int no_sched_irq_time; 361 362 static int __init tsc_setup(char *str) 363 { 364 if (!strcmp(str, "reliable")) 365 tsc_clocksource_reliable = 1; 366 if (!strncmp(str, "noirqtime", 9)) 367 no_sched_irq_time = 1; 368 return 1; 369 } 370 371 __setup("tsc=", tsc_setup); 372 373 #define MAX_RETRIES 5 374 #define SMI_TRESHOLD 50000 375 376 /* 377 * Read TSC and the reference counters. Take care of SMI disturbance 378 */ 379 static u64 tsc_read_refs(u64 *p, int hpet) 380 { 381 u64 t1, t2; 382 int i; 383 384 for (i = 0; i < MAX_RETRIES; i++) { 385 t1 = get_cycles(); 386 if (hpet) 387 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 388 else 389 *p = acpi_pm_read_early(); 390 t2 = get_cycles(); 391 if ((t2 - t1) < SMI_TRESHOLD) 392 return t2; 393 } 394 return ULLONG_MAX; 395 } 396 397 /* 398 * Calculate the TSC frequency from HPET reference 399 */ 400 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 401 { 402 u64 tmp; 403 404 if (hpet2 < hpet1) 405 hpet2 += 0x100000000ULL; 406 hpet2 -= hpet1; 407 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 408 do_div(tmp, 1000000); 409 do_div(deltatsc, tmp); 410 411 return (unsigned long) deltatsc; 412 } 413 414 /* 415 * Calculate the TSC frequency from PMTimer reference 416 */ 417 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 418 { 419 u64 tmp; 420 421 if (!pm1 && !pm2) 422 return ULONG_MAX; 423 424 if (pm2 < pm1) 425 pm2 += (u64)ACPI_PM_OVRRUN; 426 pm2 -= pm1; 427 tmp = pm2 * 1000000000LL; 428 do_div(tmp, PMTMR_TICKS_PER_SEC); 429 do_div(deltatsc, tmp); 430 431 return (unsigned long) deltatsc; 432 } 433 434 #define CAL_MS 10 435 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 436 #define CAL_PIT_LOOPS 1000 437 438 #define CAL2_MS 50 439 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 440 #define CAL2_PIT_LOOPS 5000 441 442 443 /* 444 * Try to calibrate the TSC against the Programmable 445 * Interrupt Timer and return the frequency of the TSC 446 * in kHz. 447 * 448 * Return ULONG_MAX on failure to calibrate. 449 */ 450 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 451 { 452 u64 tsc, t1, t2, delta; 453 unsigned long tscmin, tscmax; 454 int pitcnt; 455 456 /* Set the Gate high, disable speaker */ 457 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 458 459 /* 460 * Setup CTC channel 2* for mode 0, (interrupt on terminal 461 * count mode), binary count. Set the latch register to 50ms 462 * (LSB then MSB) to begin countdown. 463 */ 464 outb(0xb0, 0x43); 465 outb(latch & 0xff, 0x42); 466 outb(latch >> 8, 0x42); 467 468 tsc = t1 = t2 = get_cycles(); 469 470 pitcnt = 0; 471 tscmax = 0; 472 tscmin = ULONG_MAX; 473 while ((inb(0x61) & 0x20) == 0) { 474 t2 = get_cycles(); 475 delta = t2 - tsc; 476 tsc = t2; 477 if ((unsigned long) delta < tscmin) 478 tscmin = (unsigned int) delta; 479 if ((unsigned long) delta > tscmax) 480 tscmax = (unsigned int) delta; 481 pitcnt++; 482 } 483 484 /* 485 * Sanity checks: 486 * 487 * If we were not able to read the PIT more than loopmin 488 * times, then we have been hit by a massive SMI 489 * 490 * If the maximum is 10 times larger than the minimum, 491 * then we got hit by an SMI as well. 492 */ 493 if (pitcnt < loopmin || tscmax > 10 * tscmin) 494 return ULONG_MAX; 495 496 /* Calculate the PIT value */ 497 delta = t2 - t1; 498 do_div(delta, ms); 499 return delta; 500 } 501 502 /* 503 * This reads the current MSB of the PIT counter, and 504 * checks if we are running on sufficiently fast and 505 * non-virtualized hardware. 506 * 507 * Our expectations are: 508 * 509 * - the PIT is running at roughly 1.19MHz 510 * 511 * - each IO is going to take about 1us on real hardware, 512 * but we allow it to be much faster (by a factor of 10) or 513 * _slightly_ slower (ie we allow up to a 2us read+counter 514 * update - anything else implies a unacceptably slow CPU 515 * or PIT for the fast calibration to work. 516 * 517 * - with 256 PIT ticks to read the value, we have 214us to 518 * see the same MSB (and overhead like doing a single TSC 519 * read per MSB value etc). 520 * 521 * - We're doing 2 reads per loop (LSB, MSB), and we expect 522 * them each to take about a microsecond on real hardware. 523 * So we expect a count value of around 100. But we'll be 524 * generous, and accept anything over 50. 525 * 526 * - if the PIT is stuck, and we see *many* more reads, we 527 * return early (and the next caller of pit_expect_msb() 528 * then consider it a failure when they don't see the 529 * next expected value). 530 * 531 * These expectations mean that we know that we have seen the 532 * transition from one expected value to another with a fairly 533 * high accuracy, and we didn't miss any events. We can thus 534 * use the TSC value at the transitions to calculate a pretty 535 * good value for the TSC frequencty. 536 */ 537 static inline int pit_verify_msb(unsigned char val) 538 { 539 /* Ignore LSB */ 540 inb(0x42); 541 return inb(0x42) == val; 542 } 543 544 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 545 { 546 int count; 547 u64 tsc = 0, prev_tsc = 0; 548 549 for (count = 0; count < 50000; count++) { 550 if (!pit_verify_msb(val)) 551 break; 552 prev_tsc = tsc; 553 tsc = get_cycles(); 554 } 555 *deltap = get_cycles() - prev_tsc; 556 *tscp = tsc; 557 558 /* 559 * We require _some_ success, but the quality control 560 * will be based on the error terms on the TSC values. 561 */ 562 return count > 5; 563 } 564 565 /* 566 * How many MSB values do we want to see? We aim for 567 * a maximum error rate of 500ppm (in practice the 568 * real error is much smaller), but refuse to spend 569 * more than 50ms on it. 570 */ 571 #define MAX_QUICK_PIT_MS 50 572 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 573 574 static unsigned long quick_pit_calibrate(void) 575 { 576 int i; 577 u64 tsc, delta; 578 unsigned long d1, d2; 579 580 /* Set the Gate high, disable speaker */ 581 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 582 583 /* 584 * Counter 2, mode 0 (one-shot), binary count 585 * 586 * NOTE! Mode 2 decrements by two (and then the 587 * output is flipped each time, giving the same 588 * final output frequency as a decrement-by-one), 589 * so mode 0 is much better when looking at the 590 * individual counts. 591 */ 592 outb(0xb0, 0x43); 593 594 /* Start at 0xffff */ 595 outb(0xff, 0x42); 596 outb(0xff, 0x42); 597 598 /* 599 * The PIT starts counting at the next edge, so we 600 * need to delay for a microsecond. The easiest way 601 * to do that is to just read back the 16-bit counter 602 * once from the PIT. 603 */ 604 pit_verify_msb(0); 605 606 if (pit_expect_msb(0xff, &tsc, &d1)) { 607 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 608 if (!pit_expect_msb(0xff-i, &delta, &d2)) 609 break; 610 611 delta -= tsc; 612 613 /* 614 * Extrapolate the error and fail fast if the error will 615 * never be below 500 ppm. 616 */ 617 if (i == 1 && 618 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 619 return 0; 620 621 /* 622 * Iterate until the error is less than 500 ppm 623 */ 624 if (d1+d2 >= delta >> 11) 625 continue; 626 627 /* 628 * Check the PIT one more time to verify that 629 * all TSC reads were stable wrt the PIT. 630 * 631 * This also guarantees serialization of the 632 * last cycle read ('d2') in pit_expect_msb. 633 */ 634 if (!pit_verify_msb(0xfe - i)) 635 break; 636 goto success; 637 } 638 } 639 pr_info("Fast TSC calibration failed\n"); 640 return 0; 641 642 success: 643 /* 644 * Ok, if we get here, then we've seen the 645 * MSB of the PIT decrement 'i' times, and the 646 * error has shrunk to less than 500 ppm. 647 * 648 * As a result, we can depend on there not being 649 * any odd delays anywhere, and the TSC reads are 650 * reliable (within the error). 651 * 652 * kHz = ticks / time-in-seconds / 1000; 653 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 654 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 655 */ 656 delta *= PIT_TICK_RATE; 657 do_div(delta, i*256*1000); 658 pr_info("Fast TSC calibration using PIT\n"); 659 return delta; 660 } 661 662 /** 663 * native_calibrate_tsc - calibrate the tsc on boot 664 */ 665 unsigned long native_calibrate_tsc(void) 666 { 667 u64 tsc1, tsc2, delta, ref1, ref2; 668 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 669 unsigned long flags, latch, ms, fast_calibrate; 670 int hpet = is_hpet_enabled(), i, loopmin; 671 672 /* Calibrate TSC using MSR for Intel Atom SoCs */ 673 local_irq_save(flags); 674 fast_calibrate = try_msr_calibrate_tsc(); 675 local_irq_restore(flags); 676 if (fast_calibrate) 677 return fast_calibrate; 678 679 local_irq_save(flags); 680 fast_calibrate = quick_pit_calibrate(); 681 local_irq_restore(flags); 682 if (fast_calibrate) 683 return fast_calibrate; 684 685 /* 686 * Run 5 calibration loops to get the lowest frequency value 687 * (the best estimate). We use two different calibration modes 688 * here: 689 * 690 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 691 * load a timeout of 50ms. We read the time right after we 692 * started the timer and wait until the PIT count down reaches 693 * zero. In each wait loop iteration we read the TSC and check 694 * the delta to the previous read. We keep track of the min 695 * and max values of that delta. The delta is mostly defined 696 * by the IO time of the PIT access, so we can detect when a 697 * SMI/SMM disturbance happened between the two reads. If the 698 * maximum time is significantly larger than the minimum time, 699 * then we discard the result and have another try. 700 * 701 * 2) Reference counter. If available we use the HPET or the 702 * PMTIMER as a reference to check the sanity of that value. 703 * We use separate TSC readouts and check inside of the 704 * reference read for a SMI/SMM disturbance. We dicard 705 * disturbed values here as well. We do that around the PIT 706 * calibration delay loop as we have to wait for a certain 707 * amount of time anyway. 708 */ 709 710 /* Preset PIT loop values */ 711 latch = CAL_LATCH; 712 ms = CAL_MS; 713 loopmin = CAL_PIT_LOOPS; 714 715 for (i = 0; i < 3; i++) { 716 unsigned long tsc_pit_khz; 717 718 /* 719 * Read the start value and the reference count of 720 * hpet/pmtimer when available. Then do the PIT 721 * calibration, which will take at least 50ms, and 722 * read the end value. 723 */ 724 local_irq_save(flags); 725 tsc1 = tsc_read_refs(&ref1, hpet); 726 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 727 tsc2 = tsc_read_refs(&ref2, hpet); 728 local_irq_restore(flags); 729 730 /* Pick the lowest PIT TSC calibration so far */ 731 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 732 733 /* hpet or pmtimer available ? */ 734 if (ref1 == ref2) 735 continue; 736 737 /* Check, whether the sampling was disturbed by an SMI */ 738 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 739 continue; 740 741 tsc2 = (tsc2 - tsc1) * 1000000LL; 742 if (hpet) 743 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 744 else 745 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 746 747 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 748 749 /* Check the reference deviation */ 750 delta = ((u64) tsc_pit_min) * 100; 751 do_div(delta, tsc_ref_min); 752 753 /* 754 * If both calibration results are inside a 10% window 755 * then we can be sure, that the calibration 756 * succeeded. We break out of the loop right away. We 757 * use the reference value, as it is more precise. 758 */ 759 if (delta >= 90 && delta <= 110) { 760 pr_info("PIT calibration matches %s. %d loops\n", 761 hpet ? "HPET" : "PMTIMER", i + 1); 762 return tsc_ref_min; 763 } 764 765 /* 766 * Check whether PIT failed more than once. This 767 * happens in virtualized environments. We need to 768 * give the virtual PC a slightly longer timeframe for 769 * the HPET/PMTIMER to make the result precise. 770 */ 771 if (i == 1 && tsc_pit_min == ULONG_MAX) { 772 latch = CAL2_LATCH; 773 ms = CAL2_MS; 774 loopmin = CAL2_PIT_LOOPS; 775 } 776 } 777 778 /* 779 * Now check the results. 780 */ 781 if (tsc_pit_min == ULONG_MAX) { 782 /* PIT gave no useful value */ 783 pr_warn("Unable to calibrate against PIT\n"); 784 785 /* We don't have an alternative source, disable TSC */ 786 if (!hpet && !ref1 && !ref2) { 787 pr_notice("No reference (HPET/PMTIMER) available\n"); 788 return 0; 789 } 790 791 /* The alternative source failed as well, disable TSC */ 792 if (tsc_ref_min == ULONG_MAX) { 793 pr_warn("HPET/PMTIMER calibration failed\n"); 794 return 0; 795 } 796 797 /* Use the alternative source */ 798 pr_info("using %s reference calibration\n", 799 hpet ? "HPET" : "PMTIMER"); 800 801 return tsc_ref_min; 802 } 803 804 /* We don't have an alternative source, use the PIT calibration value */ 805 if (!hpet && !ref1 && !ref2) { 806 pr_info("Using PIT calibration value\n"); 807 return tsc_pit_min; 808 } 809 810 /* The alternative source failed, use the PIT calibration value */ 811 if (tsc_ref_min == ULONG_MAX) { 812 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 813 return tsc_pit_min; 814 } 815 816 /* 817 * The calibration values differ too much. In doubt, we use 818 * the PIT value as we know that there are PMTIMERs around 819 * running at double speed. At least we let the user know: 820 */ 821 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 822 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 823 pr_info("Using PIT calibration value\n"); 824 return tsc_pit_min; 825 } 826 827 int recalibrate_cpu_khz(void) 828 { 829 #ifndef CONFIG_SMP 830 unsigned long cpu_khz_old = cpu_khz; 831 832 if (cpu_has_tsc) { 833 tsc_khz = x86_platform.calibrate_tsc(); 834 cpu_khz = tsc_khz; 835 cpu_data(0).loops_per_jiffy = 836 cpufreq_scale(cpu_data(0).loops_per_jiffy, 837 cpu_khz_old, cpu_khz); 838 return 0; 839 } else 840 return -ENODEV; 841 #else 842 return -ENODEV; 843 #endif 844 } 845 846 EXPORT_SYMBOL(recalibrate_cpu_khz); 847 848 849 static unsigned long long cyc2ns_suspend; 850 851 void tsc_save_sched_clock_state(void) 852 { 853 if (!sched_clock_stable()) 854 return; 855 856 cyc2ns_suspend = sched_clock(); 857 } 858 859 /* 860 * Even on processors with invariant TSC, TSC gets reset in some the 861 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 862 * arbitrary value (still sync'd across cpu's) during resume from such sleep 863 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 864 * that sched_clock() continues from the point where it was left off during 865 * suspend. 866 */ 867 void tsc_restore_sched_clock_state(void) 868 { 869 unsigned long long offset; 870 unsigned long flags; 871 int cpu; 872 873 if (!sched_clock_stable()) 874 return; 875 876 local_irq_save(flags); 877 878 /* 879 * We're comming out of suspend, there's no concurrency yet; don't 880 * bother being nice about the RCU stuff, just write to both 881 * data fields. 882 */ 883 884 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 885 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 886 887 offset = cyc2ns_suspend - sched_clock(); 888 889 for_each_possible_cpu(cpu) { 890 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 891 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 892 } 893 894 local_irq_restore(flags); 895 } 896 897 #ifdef CONFIG_CPU_FREQ 898 899 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 900 * changes. 901 * 902 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 903 * not that important because current Opteron setups do not support 904 * scaling on SMP anyroads. 905 * 906 * Should fix up last_tsc too. Currently gettimeofday in the 907 * first tick after the change will be slightly wrong. 908 */ 909 910 static unsigned int ref_freq; 911 static unsigned long loops_per_jiffy_ref; 912 static unsigned long tsc_khz_ref; 913 914 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 915 void *data) 916 { 917 struct cpufreq_freqs *freq = data; 918 unsigned long *lpj; 919 920 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 921 return 0; 922 923 lpj = &boot_cpu_data.loops_per_jiffy; 924 #ifdef CONFIG_SMP 925 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 926 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 927 #endif 928 929 if (!ref_freq) { 930 ref_freq = freq->old; 931 loops_per_jiffy_ref = *lpj; 932 tsc_khz_ref = tsc_khz; 933 } 934 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 935 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 936 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 937 938 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 939 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 940 mark_tsc_unstable("cpufreq changes"); 941 942 set_cyc2ns_scale(tsc_khz, freq->cpu); 943 } 944 945 return 0; 946 } 947 948 static struct notifier_block time_cpufreq_notifier_block = { 949 .notifier_call = time_cpufreq_notifier 950 }; 951 952 static int __init cpufreq_tsc(void) 953 { 954 if (!cpu_has_tsc) 955 return 0; 956 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 957 return 0; 958 cpufreq_register_notifier(&time_cpufreq_notifier_block, 959 CPUFREQ_TRANSITION_NOTIFIER); 960 return 0; 961 } 962 963 core_initcall(cpufreq_tsc); 964 965 #endif /* CONFIG_CPU_FREQ */ 966 967 /* clocksource code */ 968 969 static struct clocksource clocksource_tsc; 970 971 /* 972 * We used to compare the TSC to the cycle_last value in the clocksource 973 * structure to avoid a nasty time-warp. This can be observed in a 974 * very small window right after one CPU updated cycle_last under 975 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 976 * is smaller than the cycle_last reference value due to a TSC which 977 * is slighty behind. This delta is nowhere else observable, but in 978 * that case it results in a forward time jump in the range of hours 979 * due to the unsigned delta calculation of the time keeping core 980 * code, which is necessary to support wrapping clocksources like pm 981 * timer. 982 * 983 * This sanity check is now done in the core timekeeping code. 984 * checking the result of read_tsc() - cycle_last for being negative. 985 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 986 */ 987 static cycle_t read_tsc(struct clocksource *cs) 988 { 989 return (cycle_t)rdtsc_ordered(); 990 } 991 992 /* 993 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 994 */ 995 static struct clocksource clocksource_tsc = { 996 .name = "tsc", 997 .rating = 300, 998 .read = read_tsc, 999 .mask = CLOCKSOURCE_MASK(64), 1000 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1001 CLOCK_SOURCE_MUST_VERIFY, 1002 .archdata = { .vclock_mode = VCLOCK_TSC }, 1003 }; 1004 1005 void mark_tsc_unstable(char *reason) 1006 { 1007 if (!tsc_unstable) { 1008 tsc_unstable = 1; 1009 clear_sched_clock_stable(); 1010 disable_sched_clock_irqtime(); 1011 pr_info("Marking TSC unstable due to %s\n", reason); 1012 /* Change only the rating, when not registered */ 1013 if (clocksource_tsc.mult) 1014 clocksource_mark_unstable(&clocksource_tsc); 1015 else { 1016 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1017 clocksource_tsc.rating = 0; 1018 } 1019 } 1020 } 1021 1022 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1023 1024 static void __init check_system_tsc_reliable(void) 1025 { 1026 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1027 if (is_geode_lx()) { 1028 /* RTSC counts during suspend */ 1029 #define RTSC_SUSP 0x100 1030 unsigned long res_low, res_high; 1031 1032 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1033 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1034 if (res_low & RTSC_SUSP) 1035 tsc_clocksource_reliable = 1; 1036 } 1037 #endif 1038 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1039 tsc_clocksource_reliable = 1; 1040 } 1041 1042 /* 1043 * Make an educated guess if the TSC is trustworthy and synchronized 1044 * over all CPUs. 1045 */ 1046 int unsynchronized_tsc(void) 1047 { 1048 if (!cpu_has_tsc || tsc_unstable) 1049 return 1; 1050 1051 #ifdef CONFIG_SMP 1052 if (apic_is_clustered_box()) 1053 return 1; 1054 #endif 1055 1056 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1057 return 0; 1058 1059 if (tsc_clocksource_reliable) 1060 return 0; 1061 /* 1062 * Intel systems are normally all synchronized. 1063 * Exceptions must mark TSC as unstable: 1064 */ 1065 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1066 /* assume multi socket systems are not synchronized: */ 1067 if (num_possible_cpus() > 1) 1068 return 1; 1069 } 1070 1071 return 0; 1072 } 1073 1074 1075 static void tsc_refine_calibration_work(struct work_struct *work); 1076 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1077 /** 1078 * tsc_refine_calibration_work - Further refine tsc freq calibration 1079 * @work - ignored. 1080 * 1081 * This functions uses delayed work over a period of a 1082 * second to further refine the TSC freq value. Since this is 1083 * timer based, instead of loop based, we don't block the boot 1084 * process while this longer calibration is done. 1085 * 1086 * If there are any calibration anomalies (too many SMIs, etc), 1087 * or the refined calibration is off by 1% of the fast early 1088 * calibration, we throw out the new calibration and use the 1089 * early calibration. 1090 */ 1091 static void tsc_refine_calibration_work(struct work_struct *work) 1092 { 1093 static u64 tsc_start = -1, ref_start; 1094 static int hpet; 1095 u64 tsc_stop, ref_stop, delta; 1096 unsigned long freq; 1097 1098 /* Don't bother refining TSC on unstable systems */ 1099 if (check_tsc_unstable()) 1100 goto out; 1101 1102 /* 1103 * Since the work is started early in boot, we may be 1104 * delayed the first time we expire. So set the workqueue 1105 * again once we know timers are working. 1106 */ 1107 if (tsc_start == -1) { 1108 /* 1109 * Only set hpet once, to avoid mixing hardware 1110 * if the hpet becomes enabled later. 1111 */ 1112 hpet = is_hpet_enabled(); 1113 schedule_delayed_work(&tsc_irqwork, HZ); 1114 tsc_start = tsc_read_refs(&ref_start, hpet); 1115 return; 1116 } 1117 1118 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1119 1120 /* hpet or pmtimer available ? */ 1121 if (ref_start == ref_stop) 1122 goto out; 1123 1124 /* Check, whether the sampling was disturbed by an SMI */ 1125 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1126 goto out; 1127 1128 delta = tsc_stop - tsc_start; 1129 delta *= 1000000LL; 1130 if (hpet) 1131 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1132 else 1133 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1134 1135 /* Make sure we're within 1% */ 1136 if (abs(tsc_khz - freq) > tsc_khz/100) 1137 goto out; 1138 1139 tsc_khz = freq; 1140 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1141 (unsigned long)tsc_khz / 1000, 1142 (unsigned long)tsc_khz % 1000); 1143 1144 out: 1145 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1146 } 1147 1148 1149 static int __init init_tsc_clocksource(void) 1150 { 1151 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 1152 return 0; 1153 1154 if (tsc_clocksource_reliable) 1155 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1156 /* lower the rating if we already know its unstable: */ 1157 if (check_tsc_unstable()) { 1158 clocksource_tsc.rating = 0; 1159 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1160 } 1161 1162 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1163 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1164 1165 /* 1166 * Trust the results of the earlier calibration on systems 1167 * exporting a reliable TSC. 1168 */ 1169 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1170 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1171 return 0; 1172 } 1173 1174 schedule_delayed_work(&tsc_irqwork, 0); 1175 return 0; 1176 } 1177 /* 1178 * We use device_initcall here, to ensure we run after the hpet 1179 * is fully initialized, which may occur at fs_initcall time. 1180 */ 1181 device_initcall(init_tsc_clocksource); 1182 1183 void __init tsc_init(void) 1184 { 1185 u64 lpj; 1186 int cpu; 1187 1188 x86_init.timers.tsc_pre_init(); 1189 1190 if (!cpu_has_tsc) { 1191 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1192 return; 1193 } 1194 1195 tsc_khz = x86_platform.calibrate_tsc(); 1196 cpu_khz = tsc_khz; 1197 1198 if (!tsc_khz) { 1199 mark_tsc_unstable("could not calculate TSC khz"); 1200 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1201 return; 1202 } 1203 1204 pr_info("Detected %lu.%03lu MHz processor\n", 1205 (unsigned long)cpu_khz / 1000, 1206 (unsigned long)cpu_khz % 1000); 1207 1208 /* 1209 * Secondary CPUs do not run through tsc_init(), so set up 1210 * all the scale factors for all CPUs, assuming the same 1211 * speed as the bootup CPU. (cpufreq notifiers will fix this 1212 * up if their speed diverges) 1213 */ 1214 for_each_possible_cpu(cpu) { 1215 cyc2ns_init(cpu); 1216 set_cyc2ns_scale(cpu_khz, cpu); 1217 } 1218 1219 if (tsc_disabled > 0) 1220 return; 1221 1222 /* now allow native_sched_clock() to use rdtsc */ 1223 1224 tsc_disabled = 0; 1225 static_branch_enable(&__use_tsc); 1226 1227 if (!no_sched_irq_time) 1228 enable_sched_clock_irqtime(); 1229 1230 lpj = ((u64)tsc_khz * 1000); 1231 do_div(lpj, HZ); 1232 lpj_fine = lpj; 1233 1234 use_tsc_delay(); 1235 1236 if (unsynchronized_tsc()) 1237 mark_tsc_unstable("TSCs unsynchronized"); 1238 1239 check_system_tsc_reliable(); 1240 } 1241 1242 #ifdef CONFIG_SMP 1243 /* 1244 * If we have a constant TSC and are using the TSC for the delay loop, 1245 * we can skip clock calibration if another cpu in the same socket has already 1246 * been calibrated. This assumes that CONSTANT_TSC applies to all 1247 * cpus in the socket - this should be a safe assumption. 1248 */ 1249 unsigned long calibrate_delay_is_known(void) 1250 { 1251 int i, cpu = smp_processor_id(); 1252 1253 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1254 return 0; 1255 1256 for_each_online_cpu(i) 1257 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) 1258 return cpu_data(i).loops_per_jiffy; 1259 return 0; 1260 } 1261 #endif 1262