xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 23c2b932)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 
26 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz);
28 
29 unsigned int __read_mostly tsc_khz;
30 EXPORT_SYMBOL(tsc_khz);
31 
32 /*
33  * TSC can be unstable due to cpufreq or due to unsynced TSCs
34  */
35 static int __read_mostly tsc_unstable;
36 
37 /* native_sched_clock() is called before tsc_init(), so
38    we must start with the TSC soft disabled to prevent
39    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
40 static int __read_mostly tsc_disabled = -1;
41 
42 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
43 
44 int tsc_clocksource_reliable;
45 
46 static u32 art_to_tsc_numerator;
47 static u32 art_to_tsc_denominator;
48 static u64 art_to_tsc_offset;
49 struct clocksource *art_related_clocksource;
50 
51 /*
52  * Use a ring-buffer like data structure, where a writer advances the head by
53  * writing a new data entry and a reader advances the tail when it observes a
54  * new entry.
55  *
56  * Writers are made to wait on readers until there's space to write a new
57  * entry.
58  *
59  * This means that we can always use an {offset, mul} pair to compute a ns
60  * value that is 'roughly' in the right direction, even if we're writing a new
61  * {offset, mul} pair during the clock read.
62  *
63  * The down-side is that we can no longer guarantee strict monotonicity anymore
64  * (assuming the TSC was that to begin with), because while we compute the
65  * intersection point of the two clock slopes and make sure the time is
66  * continuous at the point of switching; we can no longer guarantee a reader is
67  * strictly before or after the switch point.
68  *
69  * It does mean a reader no longer needs to disable IRQs in order to avoid
70  * CPU-Freq updates messing with his times, and similarly an NMI reader will
71  * no longer run the risk of hitting half-written state.
72  */
73 
74 struct cyc2ns {
75 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
76 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
77 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
78 }; /* exactly fits one cacheline */
79 
80 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
81 
82 struct cyc2ns_data *cyc2ns_read_begin(void)
83 {
84 	struct cyc2ns_data *head;
85 
86 	preempt_disable();
87 
88 	head = this_cpu_read(cyc2ns.head);
89 	/*
90 	 * Ensure we observe the entry when we observe the pointer to it.
91 	 * matches the wmb from cyc2ns_write_end().
92 	 */
93 	smp_read_barrier_depends();
94 	head->__count++;
95 	barrier();
96 
97 	return head;
98 }
99 
100 void cyc2ns_read_end(struct cyc2ns_data *head)
101 {
102 	barrier();
103 	/*
104 	 * If we're the outer most nested read; update the tail pointer
105 	 * when we're done. This notifies possible pending writers
106 	 * that we've observed the head pointer and that the other
107 	 * entry is now free.
108 	 */
109 	if (!--head->__count) {
110 		/*
111 		 * x86-TSO does not reorder writes with older reads;
112 		 * therefore once this write becomes visible to another
113 		 * cpu, we must be finished reading the cyc2ns_data.
114 		 *
115 		 * matches with cyc2ns_write_begin().
116 		 */
117 		this_cpu_write(cyc2ns.tail, head);
118 	}
119 	preempt_enable();
120 }
121 
122 /*
123  * Begin writing a new @data entry for @cpu.
124  *
125  * Assumes some sort of write side lock; currently 'provided' by the assumption
126  * that cpufreq will call its notifiers sequentially.
127  */
128 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
129 {
130 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
131 	struct cyc2ns_data *data = c2n->data;
132 
133 	if (data == c2n->head)
134 		data++;
135 
136 	/* XXX send an IPI to @cpu in order to guarantee a read? */
137 
138 	/*
139 	 * When we observe the tail write from cyc2ns_read_end(),
140 	 * the cpu must be done with that entry and its safe
141 	 * to start writing to it.
142 	 */
143 	while (c2n->tail == data)
144 		cpu_relax();
145 
146 	return data;
147 }
148 
149 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
150 {
151 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
152 
153 	/*
154 	 * Ensure the @data writes are visible before we publish the
155 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
156 	 */
157 	smp_wmb();
158 
159 	ACCESS_ONCE(c2n->head) = data;
160 }
161 
162 /*
163  * Accelerators for sched_clock()
164  * convert from cycles(64bits) => nanoseconds (64bits)
165  *  basic equation:
166  *              ns = cycles / (freq / ns_per_sec)
167  *              ns = cycles * (ns_per_sec / freq)
168  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
169  *              ns = cycles * (10^6 / cpu_khz)
170  *
171  *      Then we use scaling math (suggested by george@mvista.com) to get:
172  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
173  *              ns = cycles * cyc2ns_scale / SC
174  *
175  *      And since SC is a constant power of two, we can convert the div
176  *  into a shift. The larger SC is, the more accurate the conversion, but
177  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
178  *  (64-bit result) can be used.
179  *
180  *  We can use khz divisor instead of mhz to keep a better precision.
181  *  (mathieu.desnoyers@polymtl.ca)
182  *
183  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
184  */
185 
186 static void cyc2ns_data_init(struct cyc2ns_data *data)
187 {
188 	data->cyc2ns_mul = 0;
189 	data->cyc2ns_shift = 0;
190 	data->cyc2ns_offset = 0;
191 	data->__count = 0;
192 }
193 
194 static void cyc2ns_init(int cpu)
195 {
196 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
197 
198 	cyc2ns_data_init(&c2n->data[0]);
199 	cyc2ns_data_init(&c2n->data[1]);
200 
201 	c2n->head = c2n->data;
202 	c2n->tail = c2n->data;
203 }
204 
205 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
206 {
207 	struct cyc2ns_data *data, *tail;
208 	unsigned long long ns;
209 
210 	/*
211 	 * See cyc2ns_read_*() for details; replicated in order to avoid
212 	 * an extra few instructions that came with the abstraction.
213 	 * Notable, it allows us to only do the __count and tail update
214 	 * dance when its actually needed.
215 	 */
216 
217 	preempt_disable_notrace();
218 	data = this_cpu_read(cyc2ns.head);
219 	tail = this_cpu_read(cyc2ns.tail);
220 
221 	if (likely(data == tail)) {
222 		ns = data->cyc2ns_offset;
223 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
224 	} else {
225 		data->__count++;
226 
227 		barrier();
228 
229 		ns = data->cyc2ns_offset;
230 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
231 
232 		barrier();
233 
234 		if (!--data->__count)
235 			this_cpu_write(cyc2ns.tail, data);
236 	}
237 	preempt_enable_notrace();
238 
239 	return ns;
240 }
241 
242 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
243 {
244 	unsigned long long tsc_now, ns_now;
245 	struct cyc2ns_data *data;
246 	unsigned long flags;
247 
248 	local_irq_save(flags);
249 	sched_clock_idle_sleep_event();
250 
251 	if (!cpu_khz)
252 		goto done;
253 
254 	data = cyc2ns_write_begin(cpu);
255 
256 	tsc_now = rdtsc();
257 	ns_now = cycles_2_ns(tsc_now);
258 
259 	/*
260 	 * Compute a new multiplier as per the above comment and ensure our
261 	 * time function is continuous; see the comment near struct
262 	 * cyc2ns_data.
263 	 */
264 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
265 			       NSEC_PER_MSEC, 0);
266 
267 	/*
268 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
269 	 * not expected to be greater than 31 due to the original published
270 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
271 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
272 	 */
273 	if (data->cyc2ns_shift == 32) {
274 		data->cyc2ns_shift = 31;
275 		data->cyc2ns_mul >>= 1;
276 	}
277 
278 	data->cyc2ns_offset = ns_now -
279 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
280 
281 	cyc2ns_write_end(cpu, data);
282 
283 done:
284 	sched_clock_idle_wakeup_event(0);
285 	local_irq_restore(flags);
286 }
287 /*
288  * Scheduler clock - returns current time in nanosec units.
289  */
290 u64 native_sched_clock(void)
291 {
292 	if (static_branch_likely(&__use_tsc)) {
293 		u64 tsc_now = rdtsc();
294 
295 		/* return the value in ns */
296 		return cycles_2_ns(tsc_now);
297 	}
298 
299 	/*
300 	 * Fall back to jiffies if there's no TSC available:
301 	 * ( But note that we still use it if the TSC is marked
302 	 *   unstable. We do this because unlike Time Of Day,
303 	 *   the scheduler clock tolerates small errors and it's
304 	 *   very important for it to be as fast as the platform
305 	 *   can achieve it. )
306 	 */
307 
308 	/* No locking but a rare wrong value is not a big deal: */
309 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
310 }
311 
312 /*
313  * Generate a sched_clock if you already have a TSC value.
314  */
315 u64 native_sched_clock_from_tsc(u64 tsc)
316 {
317 	return cycles_2_ns(tsc);
318 }
319 
320 /* We need to define a real function for sched_clock, to override the
321    weak default version */
322 #ifdef CONFIG_PARAVIRT
323 unsigned long long sched_clock(void)
324 {
325 	return paravirt_sched_clock();
326 }
327 #else
328 unsigned long long
329 sched_clock(void) __attribute__((alias("native_sched_clock")));
330 #endif
331 
332 int check_tsc_unstable(void)
333 {
334 	return tsc_unstable;
335 }
336 EXPORT_SYMBOL_GPL(check_tsc_unstable);
337 
338 int check_tsc_disabled(void)
339 {
340 	return tsc_disabled;
341 }
342 EXPORT_SYMBOL_GPL(check_tsc_disabled);
343 
344 #ifdef CONFIG_X86_TSC
345 int __init notsc_setup(char *str)
346 {
347 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
348 	tsc_disabled = 1;
349 	return 1;
350 }
351 #else
352 /*
353  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
354  * in cpu/common.c
355  */
356 int __init notsc_setup(char *str)
357 {
358 	setup_clear_cpu_cap(X86_FEATURE_TSC);
359 	return 1;
360 }
361 #endif
362 
363 __setup("notsc", notsc_setup);
364 
365 static int no_sched_irq_time;
366 
367 static int __init tsc_setup(char *str)
368 {
369 	if (!strcmp(str, "reliable"))
370 		tsc_clocksource_reliable = 1;
371 	if (!strncmp(str, "noirqtime", 9))
372 		no_sched_irq_time = 1;
373 	return 1;
374 }
375 
376 __setup("tsc=", tsc_setup);
377 
378 #define MAX_RETRIES     5
379 #define SMI_TRESHOLD    50000
380 
381 /*
382  * Read TSC and the reference counters. Take care of SMI disturbance
383  */
384 static u64 tsc_read_refs(u64 *p, int hpet)
385 {
386 	u64 t1, t2;
387 	int i;
388 
389 	for (i = 0; i < MAX_RETRIES; i++) {
390 		t1 = get_cycles();
391 		if (hpet)
392 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
393 		else
394 			*p = acpi_pm_read_early();
395 		t2 = get_cycles();
396 		if ((t2 - t1) < SMI_TRESHOLD)
397 			return t2;
398 	}
399 	return ULLONG_MAX;
400 }
401 
402 /*
403  * Calculate the TSC frequency from HPET reference
404  */
405 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
406 {
407 	u64 tmp;
408 
409 	if (hpet2 < hpet1)
410 		hpet2 += 0x100000000ULL;
411 	hpet2 -= hpet1;
412 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
413 	do_div(tmp, 1000000);
414 	do_div(deltatsc, tmp);
415 
416 	return (unsigned long) deltatsc;
417 }
418 
419 /*
420  * Calculate the TSC frequency from PMTimer reference
421  */
422 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
423 {
424 	u64 tmp;
425 
426 	if (!pm1 && !pm2)
427 		return ULONG_MAX;
428 
429 	if (pm2 < pm1)
430 		pm2 += (u64)ACPI_PM_OVRRUN;
431 	pm2 -= pm1;
432 	tmp = pm2 * 1000000000LL;
433 	do_div(tmp, PMTMR_TICKS_PER_SEC);
434 	do_div(deltatsc, tmp);
435 
436 	return (unsigned long) deltatsc;
437 }
438 
439 #define CAL_MS		10
440 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
441 #define CAL_PIT_LOOPS	1000
442 
443 #define CAL2_MS		50
444 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
445 #define CAL2_PIT_LOOPS	5000
446 
447 
448 /*
449  * Try to calibrate the TSC against the Programmable
450  * Interrupt Timer and return the frequency of the TSC
451  * in kHz.
452  *
453  * Return ULONG_MAX on failure to calibrate.
454  */
455 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
456 {
457 	u64 tsc, t1, t2, delta;
458 	unsigned long tscmin, tscmax;
459 	int pitcnt;
460 
461 	/* Set the Gate high, disable speaker */
462 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
463 
464 	/*
465 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
466 	 * count mode), binary count. Set the latch register to 50ms
467 	 * (LSB then MSB) to begin countdown.
468 	 */
469 	outb(0xb0, 0x43);
470 	outb(latch & 0xff, 0x42);
471 	outb(latch >> 8, 0x42);
472 
473 	tsc = t1 = t2 = get_cycles();
474 
475 	pitcnt = 0;
476 	tscmax = 0;
477 	tscmin = ULONG_MAX;
478 	while ((inb(0x61) & 0x20) == 0) {
479 		t2 = get_cycles();
480 		delta = t2 - tsc;
481 		tsc = t2;
482 		if ((unsigned long) delta < tscmin)
483 			tscmin = (unsigned int) delta;
484 		if ((unsigned long) delta > tscmax)
485 			tscmax = (unsigned int) delta;
486 		pitcnt++;
487 	}
488 
489 	/*
490 	 * Sanity checks:
491 	 *
492 	 * If we were not able to read the PIT more than loopmin
493 	 * times, then we have been hit by a massive SMI
494 	 *
495 	 * If the maximum is 10 times larger than the minimum,
496 	 * then we got hit by an SMI as well.
497 	 */
498 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
499 		return ULONG_MAX;
500 
501 	/* Calculate the PIT value */
502 	delta = t2 - t1;
503 	do_div(delta, ms);
504 	return delta;
505 }
506 
507 /*
508  * This reads the current MSB of the PIT counter, and
509  * checks if we are running on sufficiently fast and
510  * non-virtualized hardware.
511  *
512  * Our expectations are:
513  *
514  *  - the PIT is running at roughly 1.19MHz
515  *
516  *  - each IO is going to take about 1us on real hardware,
517  *    but we allow it to be much faster (by a factor of 10) or
518  *    _slightly_ slower (ie we allow up to a 2us read+counter
519  *    update - anything else implies a unacceptably slow CPU
520  *    or PIT for the fast calibration to work.
521  *
522  *  - with 256 PIT ticks to read the value, we have 214us to
523  *    see the same MSB (and overhead like doing a single TSC
524  *    read per MSB value etc).
525  *
526  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
527  *    them each to take about a microsecond on real hardware.
528  *    So we expect a count value of around 100. But we'll be
529  *    generous, and accept anything over 50.
530  *
531  *  - if the PIT is stuck, and we see *many* more reads, we
532  *    return early (and the next caller of pit_expect_msb()
533  *    then consider it a failure when they don't see the
534  *    next expected value).
535  *
536  * These expectations mean that we know that we have seen the
537  * transition from one expected value to another with a fairly
538  * high accuracy, and we didn't miss any events. We can thus
539  * use the TSC value at the transitions to calculate a pretty
540  * good value for the TSC frequencty.
541  */
542 static inline int pit_verify_msb(unsigned char val)
543 {
544 	/* Ignore LSB */
545 	inb(0x42);
546 	return inb(0x42) == val;
547 }
548 
549 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
550 {
551 	int count;
552 	u64 tsc = 0, prev_tsc = 0;
553 
554 	for (count = 0; count < 50000; count++) {
555 		if (!pit_verify_msb(val))
556 			break;
557 		prev_tsc = tsc;
558 		tsc = get_cycles();
559 	}
560 	*deltap = get_cycles() - prev_tsc;
561 	*tscp = tsc;
562 
563 	/*
564 	 * We require _some_ success, but the quality control
565 	 * will be based on the error terms on the TSC values.
566 	 */
567 	return count > 5;
568 }
569 
570 /*
571  * How many MSB values do we want to see? We aim for
572  * a maximum error rate of 500ppm (in practice the
573  * real error is much smaller), but refuse to spend
574  * more than 50ms on it.
575  */
576 #define MAX_QUICK_PIT_MS 50
577 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
578 
579 static unsigned long quick_pit_calibrate(void)
580 {
581 	int i;
582 	u64 tsc, delta;
583 	unsigned long d1, d2;
584 
585 	/* Set the Gate high, disable speaker */
586 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
587 
588 	/*
589 	 * Counter 2, mode 0 (one-shot), binary count
590 	 *
591 	 * NOTE! Mode 2 decrements by two (and then the
592 	 * output is flipped each time, giving the same
593 	 * final output frequency as a decrement-by-one),
594 	 * so mode 0 is much better when looking at the
595 	 * individual counts.
596 	 */
597 	outb(0xb0, 0x43);
598 
599 	/* Start at 0xffff */
600 	outb(0xff, 0x42);
601 	outb(0xff, 0x42);
602 
603 	/*
604 	 * The PIT starts counting at the next edge, so we
605 	 * need to delay for a microsecond. The easiest way
606 	 * to do that is to just read back the 16-bit counter
607 	 * once from the PIT.
608 	 */
609 	pit_verify_msb(0);
610 
611 	if (pit_expect_msb(0xff, &tsc, &d1)) {
612 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
613 			if (!pit_expect_msb(0xff-i, &delta, &d2))
614 				break;
615 
616 			delta -= tsc;
617 
618 			/*
619 			 * Extrapolate the error and fail fast if the error will
620 			 * never be below 500 ppm.
621 			 */
622 			if (i == 1 &&
623 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
624 				return 0;
625 
626 			/*
627 			 * Iterate until the error is less than 500 ppm
628 			 */
629 			if (d1+d2 >= delta >> 11)
630 				continue;
631 
632 			/*
633 			 * Check the PIT one more time to verify that
634 			 * all TSC reads were stable wrt the PIT.
635 			 *
636 			 * This also guarantees serialization of the
637 			 * last cycle read ('d2') in pit_expect_msb.
638 			 */
639 			if (!pit_verify_msb(0xfe - i))
640 				break;
641 			goto success;
642 		}
643 	}
644 	pr_info("Fast TSC calibration failed\n");
645 	return 0;
646 
647 success:
648 	/*
649 	 * Ok, if we get here, then we've seen the
650 	 * MSB of the PIT decrement 'i' times, and the
651 	 * error has shrunk to less than 500 ppm.
652 	 *
653 	 * As a result, we can depend on there not being
654 	 * any odd delays anywhere, and the TSC reads are
655 	 * reliable (within the error).
656 	 *
657 	 * kHz = ticks / time-in-seconds / 1000;
658 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
659 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
660 	 */
661 	delta *= PIT_TICK_RATE;
662 	do_div(delta, i*256*1000);
663 	pr_info("Fast TSC calibration using PIT\n");
664 	return delta;
665 }
666 
667 /**
668  * native_calibrate_tsc - calibrate the tsc on boot
669  */
670 unsigned long native_calibrate_tsc(void)
671 {
672 	u64 tsc1, tsc2, delta, ref1, ref2;
673 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
674 	unsigned long flags, latch, ms, fast_calibrate;
675 	int hpet = is_hpet_enabled(), i, loopmin;
676 
677 	/* Calibrate TSC using MSR for Intel Atom SoCs */
678 	local_irq_save(flags);
679 	fast_calibrate = try_msr_calibrate_tsc();
680 	local_irq_restore(flags);
681 	if (fast_calibrate)
682 		return fast_calibrate;
683 
684 	local_irq_save(flags);
685 	fast_calibrate = quick_pit_calibrate();
686 	local_irq_restore(flags);
687 	if (fast_calibrate)
688 		return fast_calibrate;
689 
690 	/*
691 	 * Run 5 calibration loops to get the lowest frequency value
692 	 * (the best estimate). We use two different calibration modes
693 	 * here:
694 	 *
695 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
696 	 * load a timeout of 50ms. We read the time right after we
697 	 * started the timer and wait until the PIT count down reaches
698 	 * zero. In each wait loop iteration we read the TSC and check
699 	 * the delta to the previous read. We keep track of the min
700 	 * and max values of that delta. The delta is mostly defined
701 	 * by the IO time of the PIT access, so we can detect when a
702 	 * SMI/SMM disturbance happened between the two reads. If the
703 	 * maximum time is significantly larger than the minimum time,
704 	 * then we discard the result and have another try.
705 	 *
706 	 * 2) Reference counter. If available we use the HPET or the
707 	 * PMTIMER as a reference to check the sanity of that value.
708 	 * We use separate TSC readouts and check inside of the
709 	 * reference read for a SMI/SMM disturbance. We dicard
710 	 * disturbed values here as well. We do that around the PIT
711 	 * calibration delay loop as we have to wait for a certain
712 	 * amount of time anyway.
713 	 */
714 
715 	/* Preset PIT loop values */
716 	latch = CAL_LATCH;
717 	ms = CAL_MS;
718 	loopmin = CAL_PIT_LOOPS;
719 
720 	for (i = 0; i < 3; i++) {
721 		unsigned long tsc_pit_khz;
722 
723 		/*
724 		 * Read the start value and the reference count of
725 		 * hpet/pmtimer when available. Then do the PIT
726 		 * calibration, which will take at least 50ms, and
727 		 * read the end value.
728 		 */
729 		local_irq_save(flags);
730 		tsc1 = tsc_read_refs(&ref1, hpet);
731 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
732 		tsc2 = tsc_read_refs(&ref2, hpet);
733 		local_irq_restore(flags);
734 
735 		/* Pick the lowest PIT TSC calibration so far */
736 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
737 
738 		/* hpet or pmtimer available ? */
739 		if (ref1 == ref2)
740 			continue;
741 
742 		/* Check, whether the sampling was disturbed by an SMI */
743 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
744 			continue;
745 
746 		tsc2 = (tsc2 - tsc1) * 1000000LL;
747 		if (hpet)
748 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
749 		else
750 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
751 
752 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
753 
754 		/* Check the reference deviation */
755 		delta = ((u64) tsc_pit_min) * 100;
756 		do_div(delta, tsc_ref_min);
757 
758 		/*
759 		 * If both calibration results are inside a 10% window
760 		 * then we can be sure, that the calibration
761 		 * succeeded. We break out of the loop right away. We
762 		 * use the reference value, as it is more precise.
763 		 */
764 		if (delta >= 90 && delta <= 110) {
765 			pr_info("PIT calibration matches %s. %d loops\n",
766 				hpet ? "HPET" : "PMTIMER", i + 1);
767 			return tsc_ref_min;
768 		}
769 
770 		/*
771 		 * Check whether PIT failed more than once. This
772 		 * happens in virtualized environments. We need to
773 		 * give the virtual PC a slightly longer timeframe for
774 		 * the HPET/PMTIMER to make the result precise.
775 		 */
776 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
777 			latch = CAL2_LATCH;
778 			ms = CAL2_MS;
779 			loopmin = CAL2_PIT_LOOPS;
780 		}
781 	}
782 
783 	/*
784 	 * Now check the results.
785 	 */
786 	if (tsc_pit_min == ULONG_MAX) {
787 		/* PIT gave no useful value */
788 		pr_warn("Unable to calibrate against PIT\n");
789 
790 		/* We don't have an alternative source, disable TSC */
791 		if (!hpet && !ref1 && !ref2) {
792 			pr_notice("No reference (HPET/PMTIMER) available\n");
793 			return 0;
794 		}
795 
796 		/* The alternative source failed as well, disable TSC */
797 		if (tsc_ref_min == ULONG_MAX) {
798 			pr_warn("HPET/PMTIMER calibration failed\n");
799 			return 0;
800 		}
801 
802 		/* Use the alternative source */
803 		pr_info("using %s reference calibration\n",
804 			hpet ? "HPET" : "PMTIMER");
805 
806 		return tsc_ref_min;
807 	}
808 
809 	/* We don't have an alternative source, use the PIT calibration value */
810 	if (!hpet && !ref1 && !ref2) {
811 		pr_info("Using PIT calibration value\n");
812 		return tsc_pit_min;
813 	}
814 
815 	/* The alternative source failed, use the PIT calibration value */
816 	if (tsc_ref_min == ULONG_MAX) {
817 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
818 		return tsc_pit_min;
819 	}
820 
821 	/*
822 	 * The calibration values differ too much. In doubt, we use
823 	 * the PIT value as we know that there are PMTIMERs around
824 	 * running at double speed. At least we let the user know:
825 	 */
826 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
827 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
828 	pr_info("Using PIT calibration value\n");
829 	return tsc_pit_min;
830 }
831 
832 int recalibrate_cpu_khz(void)
833 {
834 #ifndef CONFIG_SMP
835 	unsigned long cpu_khz_old = cpu_khz;
836 
837 	if (!boot_cpu_has(X86_FEATURE_TSC))
838 		return -ENODEV;
839 
840 	tsc_khz = x86_platform.calibrate_tsc();
841 	cpu_khz = tsc_khz;
842 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
843 						    cpu_khz_old, cpu_khz);
844 
845 	return 0;
846 #else
847 	return -ENODEV;
848 #endif
849 }
850 
851 EXPORT_SYMBOL(recalibrate_cpu_khz);
852 
853 
854 static unsigned long long cyc2ns_suspend;
855 
856 void tsc_save_sched_clock_state(void)
857 {
858 	if (!sched_clock_stable())
859 		return;
860 
861 	cyc2ns_suspend = sched_clock();
862 }
863 
864 /*
865  * Even on processors with invariant TSC, TSC gets reset in some the
866  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
867  * arbitrary value (still sync'd across cpu's) during resume from such sleep
868  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
869  * that sched_clock() continues from the point where it was left off during
870  * suspend.
871  */
872 void tsc_restore_sched_clock_state(void)
873 {
874 	unsigned long long offset;
875 	unsigned long flags;
876 	int cpu;
877 
878 	if (!sched_clock_stable())
879 		return;
880 
881 	local_irq_save(flags);
882 
883 	/*
884 	 * We're coming out of suspend, there's no concurrency yet; don't
885 	 * bother being nice about the RCU stuff, just write to both
886 	 * data fields.
887 	 */
888 
889 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
890 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
891 
892 	offset = cyc2ns_suspend - sched_clock();
893 
894 	for_each_possible_cpu(cpu) {
895 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
896 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
897 	}
898 
899 	local_irq_restore(flags);
900 }
901 
902 #ifdef CONFIG_CPU_FREQ
903 
904 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
905  * changes.
906  *
907  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
908  * not that important because current Opteron setups do not support
909  * scaling on SMP anyroads.
910  *
911  * Should fix up last_tsc too. Currently gettimeofday in the
912  * first tick after the change will be slightly wrong.
913  */
914 
915 static unsigned int  ref_freq;
916 static unsigned long loops_per_jiffy_ref;
917 static unsigned long tsc_khz_ref;
918 
919 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
920 				void *data)
921 {
922 	struct cpufreq_freqs *freq = data;
923 	unsigned long *lpj;
924 
925 	lpj = &boot_cpu_data.loops_per_jiffy;
926 #ifdef CONFIG_SMP
927 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
928 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
929 #endif
930 
931 	if (!ref_freq) {
932 		ref_freq = freq->old;
933 		loops_per_jiffy_ref = *lpj;
934 		tsc_khz_ref = tsc_khz;
935 	}
936 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
937 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
938 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
939 
940 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
941 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
942 			mark_tsc_unstable("cpufreq changes");
943 
944 		set_cyc2ns_scale(tsc_khz, freq->cpu);
945 	}
946 
947 	return 0;
948 }
949 
950 static struct notifier_block time_cpufreq_notifier_block = {
951 	.notifier_call  = time_cpufreq_notifier
952 };
953 
954 static int __init cpufreq_register_tsc_scaling(void)
955 {
956 	if (!boot_cpu_has(X86_FEATURE_TSC))
957 		return 0;
958 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
959 		return 0;
960 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
961 				CPUFREQ_TRANSITION_NOTIFIER);
962 	return 0;
963 }
964 
965 core_initcall(cpufreq_register_tsc_scaling);
966 
967 #endif /* CONFIG_CPU_FREQ */
968 
969 #define ART_CPUID_LEAF (0x15)
970 #define ART_MIN_DENOMINATOR (1)
971 
972 
973 /*
974  * If ART is present detect the numerator:denominator to convert to TSC
975  */
976 static void detect_art(void)
977 {
978 	unsigned int unused[2];
979 
980 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
981 		return;
982 
983 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
984 	      &art_to_tsc_numerator, unused, unused+1);
985 
986 	/* Don't enable ART in a VM, non-stop TSC required */
987 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
988 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
989 	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
990 		return;
991 
992 	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
993 		return;
994 
995 	/* Make this sticky over multiple CPU init calls */
996 	setup_force_cpu_cap(X86_FEATURE_ART);
997 }
998 
999 
1000 /* clocksource code */
1001 
1002 static struct clocksource clocksource_tsc;
1003 
1004 /*
1005  * We used to compare the TSC to the cycle_last value in the clocksource
1006  * structure to avoid a nasty time-warp. This can be observed in a
1007  * very small window right after one CPU updated cycle_last under
1008  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1009  * is smaller than the cycle_last reference value due to a TSC which
1010  * is slighty behind. This delta is nowhere else observable, but in
1011  * that case it results in a forward time jump in the range of hours
1012  * due to the unsigned delta calculation of the time keeping core
1013  * code, which is necessary to support wrapping clocksources like pm
1014  * timer.
1015  *
1016  * This sanity check is now done in the core timekeeping code.
1017  * checking the result of read_tsc() - cycle_last for being negative.
1018  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1019  */
1020 static cycle_t read_tsc(struct clocksource *cs)
1021 {
1022 	return (cycle_t)rdtsc_ordered();
1023 }
1024 
1025 /*
1026  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1027  */
1028 static struct clocksource clocksource_tsc = {
1029 	.name                   = "tsc",
1030 	.rating                 = 300,
1031 	.read                   = read_tsc,
1032 	.mask                   = CLOCKSOURCE_MASK(64),
1033 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1034 				  CLOCK_SOURCE_MUST_VERIFY,
1035 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1036 };
1037 
1038 void mark_tsc_unstable(char *reason)
1039 {
1040 	if (!tsc_unstable) {
1041 		tsc_unstable = 1;
1042 		clear_sched_clock_stable();
1043 		disable_sched_clock_irqtime();
1044 		pr_info("Marking TSC unstable due to %s\n", reason);
1045 		/* Change only the rating, when not registered */
1046 		if (clocksource_tsc.mult)
1047 			clocksource_mark_unstable(&clocksource_tsc);
1048 		else {
1049 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1050 			clocksource_tsc.rating = 0;
1051 		}
1052 	}
1053 }
1054 
1055 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1056 
1057 static void __init check_system_tsc_reliable(void)
1058 {
1059 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1060 	if (is_geode_lx()) {
1061 		/* RTSC counts during suspend */
1062 #define RTSC_SUSP 0x100
1063 		unsigned long res_low, res_high;
1064 
1065 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1066 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1067 		if (res_low & RTSC_SUSP)
1068 			tsc_clocksource_reliable = 1;
1069 	}
1070 #endif
1071 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1072 		tsc_clocksource_reliable = 1;
1073 }
1074 
1075 /*
1076  * Make an educated guess if the TSC is trustworthy and synchronized
1077  * over all CPUs.
1078  */
1079 int unsynchronized_tsc(void)
1080 {
1081 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1082 		return 1;
1083 
1084 #ifdef CONFIG_SMP
1085 	if (apic_is_clustered_box())
1086 		return 1;
1087 #endif
1088 
1089 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1090 		return 0;
1091 
1092 	if (tsc_clocksource_reliable)
1093 		return 0;
1094 	/*
1095 	 * Intel systems are normally all synchronized.
1096 	 * Exceptions must mark TSC as unstable:
1097 	 */
1098 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1099 		/* assume multi socket systems are not synchronized: */
1100 		if (num_possible_cpus() > 1)
1101 			return 1;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Convert ART to TSC given numerator/denominator found in detect_art()
1109  */
1110 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1111 {
1112 	u64 tmp, res, rem;
1113 
1114 	rem = do_div(art, art_to_tsc_denominator);
1115 
1116 	res = art * art_to_tsc_numerator;
1117 	tmp = rem * art_to_tsc_numerator;
1118 
1119 	do_div(tmp, art_to_tsc_denominator);
1120 	res += tmp + art_to_tsc_offset;
1121 
1122 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1123 			.cycles = res};
1124 }
1125 EXPORT_SYMBOL(convert_art_to_tsc);
1126 
1127 static void tsc_refine_calibration_work(struct work_struct *work);
1128 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1129 /**
1130  * tsc_refine_calibration_work - Further refine tsc freq calibration
1131  * @work - ignored.
1132  *
1133  * This functions uses delayed work over a period of a
1134  * second to further refine the TSC freq value. Since this is
1135  * timer based, instead of loop based, we don't block the boot
1136  * process while this longer calibration is done.
1137  *
1138  * If there are any calibration anomalies (too many SMIs, etc),
1139  * or the refined calibration is off by 1% of the fast early
1140  * calibration, we throw out the new calibration and use the
1141  * early calibration.
1142  */
1143 static void tsc_refine_calibration_work(struct work_struct *work)
1144 {
1145 	static u64 tsc_start = -1, ref_start;
1146 	static int hpet;
1147 	u64 tsc_stop, ref_stop, delta;
1148 	unsigned long freq;
1149 
1150 	/* Don't bother refining TSC on unstable systems */
1151 	if (check_tsc_unstable())
1152 		goto out;
1153 
1154 	/*
1155 	 * Since the work is started early in boot, we may be
1156 	 * delayed the first time we expire. So set the workqueue
1157 	 * again once we know timers are working.
1158 	 */
1159 	if (tsc_start == -1) {
1160 		/*
1161 		 * Only set hpet once, to avoid mixing hardware
1162 		 * if the hpet becomes enabled later.
1163 		 */
1164 		hpet = is_hpet_enabled();
1165 		schedule_delayed_work(&tsc_irqwork, HZ);
1166 		tsc_start = tsc_read_refs(&ref_start, hpet);
1167 		return;
1168 	}
1169 
1170 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1171 
1172 	/* hpet or pmtimer available ? */
1173 	if (ref_start == ref_stop)
1174 		goto out;
1175 
1176 	/* Check, whether the sampling was disturbed by an SMI */
1177 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1178 		goto out;
1179 
1180 	delta = tsc_stop - tsc_start;
1181 	delta *= 1000000LL;
1182 	if (hpet)
1183 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1184 	else
1185 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1186 
1187 	/* Make sure we're within 1% */
1188 	if (abs(tsc_khz - freq) > tsc_khz/100)
1189 		goto out;
1190 
1191 	tsc_khz = freq;
1192 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1193 		(unsigned long)tsc_khz / 1000,
1194 		(unsigned long)tsc_khz % 1000);
1195 
1196 out:
1197 	if (boot_cpu_has(X86_FEATURE_ART))
1198 		art_related_clocksource = &clocksource_tsc;
1199 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1200 }
1201 
1202 
1203 static int __init init_tsc_clocksource(void)
1204 {
1205 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1206 		return 0;
1207 
1208 	if (tsc_clocksource_reliable)
1209 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1210 	/* lower the rating if we already know its unstable: */
1211 	if (check_tsc_unstable()) {
1212 		clocksource_tsc.rating = 0;
1213 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1214 	}
1215 
1216 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1217 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1218 
1219 	/*
1220 	 * Trust the results of the earlier calibration on systems
1221 	 * exporting a reliable TSC.
1222 	 */
1223 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1224 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1225 		return 0;
1226 	}
1227 
1228 	schedule_delayed_work(&tsc_irqwork, 0);
1229 	return 0;
1230 }
1231 /*
1232  * We use device_initcall here, to ensure we run after the hpet
1233  * is fully initialized, which may occur at fs_initcall time.
1234  */
1235 device_initcall(init_tsc_clocksource);
1236 
1237 void __init tsc_init(void)
1238 {
1239 	u64 lpj;
1240 	int cpu;
1241 
1242 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1243 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1244 		return;
1245 	}
1246 
1247 	tsc_khz = x86_platform.calibrate_tsc();
1248 	cpu_khz = tsc_khz;
1249 
1250 	if (!tsc_khz) {
1251 		mark_tsc_unstable("could not calculate TSC khz");
1252 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1253 		return;
1254 	}
1255 
1256 	pr_info("Detected %lu.%03lu MHz processor\n",
1257 		(unsigned long)cpu_khz / 1000,
1258 		(unsigned long)cpu_khz % 1000);
1259 
1260 	/*
1261 	 * Secondary CPUs do not run through tsc_init(), so set up
1262 	 * all the scale factors for all CPUs, assuming the same
1263 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1264 	 * up if their speed diverges)
1265 	 */
1266 	for_each_possible_cpu(cpu) {
1267 		cyc2ns_init(cpu);
1268 		set_cyc2ns_scale(cpu_khz, cpu);
1269 	}
1270 
1271 	if (tsc_disabled > 0)
1272 		return;
1273 
1274 	/* now allow native_sched_clock() to use rdtsc */
1275 
1276 	tsc_disabled = 0;
1277 	static_branch_enable(&__use_tsc);
1278 
1279 	if (!no_sched_irq_time)
1280 		enable_sched_clock_irqtime();
1281 
1282 	lpj = ((u64)tsc_khz * 1000);
1283 	do_div(lpj, HZ);
1284 	lpj_fine = lpj;
1285 
1286 	use_tsc_delay();
1287 
1288 	if (unsynchronized_tsc())
1289 		mark_tsc_unstable("TSCs unsynchronized");
1290 
1291 	check_system_tsc_reliable();
1292 
1293 	detect_art();
1294 }
1295 
1296 #ifdef CONFIG_SMP
1297 /*
1298  * If we have a constant TSC and are using the TSC for the delay loop,
1299  * we can skip clock calibration if another cpu in the same socket has already
1300  * been calibrated. This assumes that CONSTANT_TSC applies to all
1301  * cpus in the socket - this should be a safe assumption.
1302  */
1303 unsigned long calibrate_delay_is_known(void)
1304 {
1305 	int sibling, cpu = smp_processor_id();
1306 	struct cpumask *mask = topology_core_cpumask(cpu);
1307 
1308 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1309 		return 0;
1310 
1311 	if (!mask)
1312 		return 0;
1313 
1314 	sibling = cpumask_any_but(mask, cpu);
1315 	if (sibling < nr_cpu_ids)
1316 		return cpu_data(sibling).loops_per_jiffy;
1317 	return 0;
1318 }
1319 #endif
1320