1bfc0f594SAlok Kataria #include <linux/kernel.h> 20ef95533SAlok Kataria #include <linux/sched.h> 30ef95533SAlok Kataria #include <linux/init.h> 40ef95533SAlok Kataria #include <linux/module.h> 50ef95533SAlok Kataria #include <linux/timer.h> 6bfc0f594SAlok Kataria #include <linux/acpi_pmtmr.h> 72dbe06faSAlok Kataria #include <linux/cpufreq.h> 88fbbc4b4SAlok Kataria #include <linux/dmi.h> 98fbbc4b4SAlok Kataria #include <linux/delay.h> 108fbbc4b4SAlok Kataria #include <linux/clocksource.h> 118fbbc4b4SAlok Kataria #include <linux/percpu.h> 1208604bd9SArnd Bergmann #include <linux/timex.h> 13bfc0f594SAlok Kataria 14bfc0f594SAlok Kataria #include <asm/hpet.h> 158fbbc4b4SAlok Kataria #include <asm/timer.h> 168fbbc4b4SAlok Kataria #include <asm/vgtod.h> 178fbbc4b4SAlok Kataria #include <asm/time.h> 188fbbc4b4SAlok Kataria #include <asm/delay.h> 1988b094fbSAlok Kataria #include <asm/hypervisor.h> 2008047c4fSThomas Gleixner #include <asm/nmi.h> 212d826404SThomas Gleixner #include <asm/x86_init.h> 220ef95533SAlok Kataria 23f24ade3aSIngo Molnar unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 240ef95533SAlok Kataria EXPORT_SYMBOL(cpu_khz); 25f24ade3aSIngo Molnar 26f24ade3aSIngo Molnar unsigned int __read_mostly tsc_khz; 270ef95533SAlok Kataria EXPORT_SYMBOL(tsc_khz); 280ef95533SAlok Kataria 290ef95533SAlok Kataria /* 300ef95533SAlok Kataria * TSC can be unstable due to cpufreq or due to unsynced TSCs 310ef95533SAlok Kataria */ 32f24ade3aSIngo Molnar static int __read_mostly tsc_unstable; 330ef95533SAlok Kataria 340ef95533SAlok Kataria /* native_sched_clock() is called before tsc_init(), so 350ef95533SAlok Kataria we must start with the TSC soft disabled to prevent 360ef95533SAlok Kataria erroneous rdtsc usage on !cpu_has_tsc processors */ 37f24ade3aSIngo Molnar static int __read_mostly tsc_disabled = -1; 380ef95533SAlok Kataria 39395628efSAlok Kataria static int tsc_clocksource_reliable; 400ef95533SAlok Kataria /* 410ef95533SAlok Kataria * Scheduler clock - returns current time in nanosec units. 420ef95533SAlok Kataria */ 430ef95533SAlok Kataria u64 native_sched_clock(void) 440ef95533SAlok Kataria { 450ef95533SAlok Kataria u64 this_offset; 460ef95533SAlok Kataria 470ef95533SAlok Kataria /* 480ef95533SAlok Kataria * Fall back to jiffies if there's no TSC available: 490ef95533SAlok Kataria * ( But note that we still use it if the TSC is marked 500ef95533SAlok Kataria * unstable. We do this because unlike Time Of Day, 510ef95533SAlok Kataria * the scheduler clock tolerates small errors and it's 520ef95533SAlok Kataria * very important for it to be as fast as the platform 533ad2f3fbSDaniel Mack * can achieve it. ) 540ef95533SAlok Kataria */ 550ef95533SAlok Kataria if (unlikely(tsc_disabled)) { 560ef95533SAlok Kataria /* No locking but a rare wrong value is not a big deal: */ 570ef95533SAlok Kataria return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 580ef95533SAlok Kataria } 590ef95533SAlok Kataria 600ef95533SAlok Kataria /* read the Time Stamp Counter: */ 610ef95533SAlok Kataria rdtscll(this_offset); 620ef95533SAlok Kataria 630ef95533SAlok Kataria /* return the value in ns */ 647cbaef9cSIngo Molnar return __cycles_2_ns(this_offset); 650ef95533SAlok Kataria } 660ef95533SAlok Kataria 670ef95533SAlok Kataria /* We need to define a real function for sched_clock, to override the 680ef95533SAlok Kataria weak default version */ 690ef95533SAlok Kataria #ifdef CONFIG_PARAVIRT 700ef95533SAlok Kataria unsigned long long sched_clock(void) 710ef95533SAlok Kataria { 720ef95533SAlok Kataria return paravirt_sched_clock(); 730ef95533SAlok Kataria } 740ef95533SAlok Kataria #else 750ef95533SAlok Kataria unsigned long long 760ef95533SAlok Kataria sched_clock(void) __attribute__((alias("native_sched_clock"))); 770ef95533SAlok Kataria #endif 780ef95533SAlok Kataria 790ef95533SAlok Kataria int check_tsc_unstable(void) 800ef95533SAlok Kataria { 810ef95533SAlok Kataria return tsc_unstable; 820ef95533SAlok Kataria } 830ef95533SAlok Kataria EXPORT_SYMBOL_GPL(check_tsc_unstable); 840ef95533SAlok Kataria 850ef95533SAlok Kataria #ifdef CONFIG_X86_TSC 860ef95533SAlok Kataria int __init notsc_setup(char *str) 870ef95533SAlok Kataria { 880ef95533SAlok Kataria printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " 890ef95533SAlok Kataria "cannot disable TSC completely.\n"); 900ef95533SAlok Kataria tsc_disabled = 1; 910ef95533SAlok Kataria return 1; 920ef95533SAlok Kataria } 930ef95533SAlok Kataria #else 940ef95533SAlok Kataria /* 950ef95533SAlok Kataria * disable flag for tsc. Takes effect by clearing the TSC cpu flag 960ef95533SAlok Kataria * in cpu/common.c 970ef95533SAlok Kataria */ 980ef95533SAlok Kataria int __init notsc_setup(char *str) 990ef95533SAlok Kataria { 1000ef95533SAlok Kataria setup_clear_cpu_cap(X86_FEATURE_TSC); 1010ef95533SAlok Kataria return 1; 1020ef95533SAlok Kataria } 1030ef95533SAlok Kataria #endif 1040ef95533SAlok Kataria 1050ef95533SAlok Kataria __setup("notsc", notsc_setup); 106bfc0f594SAlok Kataria 107395628efSAlok Kataria static int __init tsc_setup(char *str) 108395628efSAlok Kataria { 109395628efSAlok Kataria if (!strcmp(str, "reliable")) 110395628efSAlok Kataria tsc_clocksource_reliable = 1; 111395628efSAlok Kataria return 1; 112395628efSAlok Kataria } 113395628efSAlok Kataria 114395628efSAlok Kataria __setup("tsc=", tsc_setup); 115395628efSAlok Kataria 116bfc0f594SAlok Kataria #define MAX_RETRIES 5 117bfc0f594SAlok Kataria #define SMI_TRESHOLD 50000 118bfc0f594SAlok Kataria 119bfc0f594SAlok Kataria /* 120bfc0f594SAlok Kataria * Read TSC and the reference counters. Take care of SMI disturbance 121bfc0f594SAlok Kataria */ 122827014beSThomas Gleixner static u64 tsc_read_refs(u64 *p, int hpet) 123bfc0f594SAlok Kataria { 124bfc0f594SAlok Kataria u64 t1, t2; 125bfc0f594SAlok Kataria int i; 126bfc0f594SAlok Kataria 127bfc0f594SAlok Kataria for (i = 0; i < MAX_RETRIES; i++) { 128bfc0f594SAlok Kataria t1 = get_cycles(); 129bfc0f594SAlok Kataria if (hpet) 130827014beSThomas Gleixner *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 131bfc0f594SAlok Kataria else 132827014beSThomas Gleixner *p = acpi_pm_read_early(); 133bfc0f594SAlok Kataria t2 = get_cycles(); 134bfc0f594SAlok Kataria if ((t2 - t1) < SMI_TRESHOLD) 135bfc0f594SAlok Kataria return t2; 136bfc0f594SAlok Kataria } 137bfc0f594SAlok Kataria return ULLONG_MAX; 138bfc0f594SAlok Kataria } 139bfc0f594SAlok Kataria 140ec0c15afSLinus Torvalds /* 141d683ef7aSThomas Gleixner * Calculate the TSC frequency from HPET reference 142d683ef7aSThomas Gleixner */ 143d683ef7aSThomas Gleixner static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 144d683ef7aSThomas Gleixner { 145d683ef7aSThomas Gleixner u64 tmp; 146d683ef7aSThomas Gleixner 147d683ef7aSThomas Gleixner if (hpet2 < hpet1) 148d683ef7aSThomas Gleixner hpet2 += 0x100000000ULL; 149d683ef7aSThomas Gleixner hpet2 -= hpet1; 150d683ef7aSThomas Gleixner tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 151d683ef7aSThomas Gleixner do_div(tmp, 1000000); 152d683ef7aSThomas Gleixner do_div(deltatsc, tmp); 153d683ef7aSThomas Gleixner 154d683ef7aSThomas Gleixner return (unsigned long) deltatsc; 155d683ef7aSThomas Gleixner } 156d683ef7aSThomas Gleixner 157d683ef7aSThomas Gleixner /* 158d683ef7aSThomas Gleixner * Calculate the TSC frequency from PMTimer reference 159d683ef7aSThomas Gleixner */ 160d683ef7aSThomas Gleixner static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 161d683ef7aSThomas Gleixner { 162d683ef7aSThomas Gleixner u64 tmp; 163d683ef7aSThomas Gleixner 164d683ef7aSThomas Gleixner if (!pm1 && !pm2) 165d683ef7aSThomas Gleixner return ULONG_MAX; 166d683ef7aSThomas Gleixner 167d683ef7aSThomas Gleixner if (pm2 < pm1) 168d683ef7aSThomas Gleixner pm2 += (u64)ACPI_PM_OVRRUN; 169d683ef7aSThomas Gleixner pm2 -= pm1; 170d683ef7aSThomas Gleixner tmp = pm2 * 1000000000LL; 171d683ef7aSThomas Gleixner do_div(tmp, PMTMR_TICKS_PER_SEC); 172d683ef7aSThomas Gleixner do_div(deltatsc, tmp); 173d683ef7aSThomas Gleixner 174d683ef7aSThomas Gleixner return (unsigned long) deltatsc; 175d683ef7aSThomas Gleixner } 176d683ef7aSThomas Gleixner 177a977c400SThomas Gleixner #define CAL_MS 10 178cce3e057SThomas Gleixner #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS)) 179a977c400SThomas Gleixner #define CAL_PIT_LOOPS 1000 180a977c400SThomas Gleixner 181a977c400SThomas Gleixner #define CAL2_MS 50 182a977c400SThomas Gleixner #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS)) 183a977c400SThomas Gleixner #define CAL2_PIT_LOOPS 5000 184a977c400SThomas Gleixner 185cce3e057SThomas Gleixner 186ec0c15afSLinus Torvalds /* 187ec0c15afSLinus Torvalds * Try to calibrate the TSC against the Programmable 188ec0c15afSLinus Torvalds * Interrupt Timer and return the frequency of the TSC 189ec0c15afSLinus Torvalds * in kHz. 190ec0c15afSLinus Torvalds * 191ec0c15afSLinus Torvalds * Return ULONG_MAX on failure to calibrate. 192ec0c15afSLinus Torvalds */ 193a977c400SThomas Gleixner static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 194ec0c15afSLinus Torvalds { 195ec0c15afSLinus Torvalds u64 tsc, t1, t2, delta; 196ec0c15afSLinus Torvalds unsigned long tscmin, tscmax; 197ec0c15afSLinus Torvalds int pitcnt; 198ec0c15afSLinus Torvalds 199ec0c15afSLinus Torvalds /* Set the Gate high, disable speaker */ 200ec0c15afSLinus Torvalds outb((inb(0x61) & ~0x02) | 0x01, 0x61); 201ec0c15afSLinus Torvalds 202ec0c15afSLinus Torvalds /* 203ec0c15afSLinus Torvalds * Setup CTC channel 2* for mode 0, (interrupt on terminal 204ec0c15afSLinus Torvalds * count mode), binary count. Set the latch register to 50ms 205ec0c15afSLinus Torvalds * (LSB then MSB) to begin countdown. 206ec0c15afSLinus Torvalds */ 207ec0c15afSLinus Torvalds outb(0xb0, 0x43); 208a977c400SThomas Gleixner outb(latch & 0xff, 0x42); 209a977c400SThomas Gleixner outb(latch >> 8, 0x42); 210ec0c15afSLinus Torvalds 211ec0c15afSLinus Torvalds tsc = t1 = t2 = get_cycles(); 212ec0c15afSLinus Torvalds 213ec0c15afSLinus Torvalds pitcnt = 0; 214ec0c15afSLinus Torvalds tscmax = 0; 215ec0c15afSLinus Torvalds tscmin = ULONG_MAX; 216ec0c15afSLinus Torvalds while ((inb(0x61) & 0x20) == 0) { 217ec0c15afSLinus Torvalds t2 = get_cycles(); 218ec0c15afSLinus Torvalds delta = t2 - tsc; 219ec0c15afSLinus Torvalds tsc = t2; 220ec0c15afSLinus Torvalds if ((unsigned long) delta < tscmin) 221ec0c15afSLinus Torvalds tscmin = (unsigned int) delta; 222ec0c15afSLinus Torvalds if ((unsigned long) delta > tscmax) 223ec0c15afSLinus Torvalds tscmax = (unsigned int) delta; 224ec0c15afSLinus Torvalds pitcnt++; 225ec0c15afSLinus Torvalds } 226ec0c15afSLinus Torvalds 227ec0c15afSLinus Torvalds /* 228ec0c15afSLinus Torvalds * Sanity checks: 229ec0c15afSLinus Torvalds * 230a977c400SThomas Gleixner * If we were not able to read the PIT more than loopmin 231ec0c15afSLinus Torvalds * times, then we have been hit by a massive SMI 232ec0c15afSLinus Torvalds * 233ec0c15afSLinus Torvalds * If the maximum is 10 times larger than the minimum, 234ec0c15afSLinus Torvalds * then we got hit by an SMI as well. 235ec0c15afSLinus Torvalds */ 236a977c400SThomas Gleixner if (pitcnt < loopmin || tscmax > 10 * tscmin) 237ec0c15afSLinus Torvalds return ULONG_MAX; 238ec0c15afSLinus Torvalds 239ec0c15afSLinus Torvalds /* Calculate the PIT value */ 240ec0c15afSLinus Torvalds delta = t2 - t1; 241a977c400SThomas Gleixner do_div(delta, ms); 242ec0c15afSLinus Torvalds return delta; 243ec0c15afSLinus Torvalds } 244ec0c15afSLinus Torvalds 2456ac40ed0SLinus Torvalds /* 2466ac40ed0SLinus Torvalds * This reads the current MSB of the PIT counter, and 2476ac40ed0SLinus Torvalds * checks if we are running on sufficiently fast and 2486ac40ed0SLinus Torvalds * non-virtualized hardware. 2496ac40ed0SLinus Torvalds * 2506ac40ed0SLinus Torvalds * Our expectations are: 2516ac40ed0SLinus Torvalds * 2526ac40ed0SLinus Torvalds * - the PIT is running at roughly 1.19MHz 2536ac40ed0SLinus Torvalds * 2546ac40ed0SLinus Torvalds * - each IO is going to take about 1us on real hardware, 2556ac40ed0SLinus Torvalds * but we allow it to be much faster (by a factor of 10) or 2566ac40ed0SLinus Torvalds * _slightly_ slower (ie we allow up to a 2us read+counter 2576ac40ed0SLinus Torvalds * update - anything else implies a unacceptably slow CPU 2586ac40ed0SLinus Torvalds * or PIT for the fast calibration to work. 2596ac40ed0SLinus Torvalds * 2606ac40ed0SLinus Torvalds * - with 256 PIT ticks to read the value, we have 214us to 2616ac40ed0SLinus Torvalds * see the same MSB (and overhead like doing a single TSC 2626ac40ed0SLinus Torvalds * read per MSB value etc). 2636ac40ed0SLinus Torvalds * 2646ac40ed0SLinus Torvalds * - We're doing 2 reads per loop (LSB, MSB), and we expect 2656ac40ed0SLinus Torvalds * them each to take about a microsecond on real hardware. 2666ac40ed0SLinus Torvalds * So we expect a count value of around 100. But we'll be 2676ac40ed0SLinus Torvalds * generous, and accept anything over 50. 2686ac40ed0SLinus Torvalds * 2696ac40ed0SLinus Torvalds * - if the PIT is stuck, and we see *many* more reads, we 2706ac40ed0SLinus Torvalds * return early (and the next caller of pit_expect_msb() 2716ac40ed0SLinus Torvalds * then consider it a failure when they don't see the 2726ac40ed0SLinus Torvalds * next expected value). 2736ac40ed0SLinus Torvalds * 2746ac40ed0SLinus Torvalds * These expectations mean that we know that we have seen the 2756ac40ed0SLinus Torvalds * transition from one expected value to another with a fairly 2766ac40ed0SLinus Torvalds * high accuracy, and we didn't miss any events. We can thus 2776ac40ed0SLinus Torvalds * use the TSC value at the transitions to calculate a pretty 2786ac40ed0SLinus Torvalds * good value for the TSC frequencty. 2796ac40ed0SLinus Torvalds */ 280b6e61eefSLinus Torvalds static inline int pit_verify_msb(unsigned char val) 281b6e61eefSLinus Torvalds { 282b6e61eefSLinus Torvalds /* Ignore LSB */ 283b6e61eefSLinus Torvalds inb(0x42); 284b6e61eefSLinus Torvalds return inb(0x42) == val; 285b6e61eefSLinus Torvalds } 286b6e61eefSLinus Torvalds 2879e8912e0SLinus Torvalds static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 2886ac40ed0SLinus Torvalds { 2899e8912e0SLinus Torvalds int count; 2909e8912e0SLinus Torvalds u64 tsc = 0; 2916ac40ed0SLinus Torvalds 2926ac40ed0SLinus Torvalds for (count = 0; count < 50000; count++) { 293b6e61eefSLinus Torvalds if (!pit_verify_msb(val)) 2946ac40ed0SLinus Torvalds break; 2959e8912e0SLinus Torvalds tsc = get_cycles(); 2966ac40ed0SLinus Torvalds } 2979e8912e0SLinus Torvalds *deltap = get_cycles() - tsc; 2989e8912e0SLinus Torvalds *tscp = tsc; 2999e8912e0SLinus Torvalds 3009e8912e0SLinus Torvalds /* 3019e8912e0SLinus Torvalds * We require _some_ success, but the quality control 3029e8912e0SLinus Torvalds * will be based on the error terms on the TSC values. 3039e8912e0SLinus Torvalds */ 3049e8912e0SLinus Torvalds return count > 5; 3056ac40ed0SLinus Torvalds } 3066ac40ed0SLinus Torvalds 3076ac40ed0SLinus Torvalds /* 3089e8912e0SLinus Torvalds * How many MSB values do we want to see? We aim for 3099e8912e0SLinus Torvalds * a maximum error rate of 500ppm (in practice the 3109e8912e0SLinus Torvalds * real error is much smaller), but refuse to spend 3119e8912e0SLinus Torvalds * more than 25ms on it. 3126ac40ed0SLinus Torvalds */ 3139e8912e0SLinus Torvalds #define MAX_QUICK_PIT_MS 25 3149e8912e0SLinus Torvalds #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 3156ac40ed0SLinus Torvalds 3166ac40ed0SLinus Torvalds static unsigned long quick_pit_calibrate(void) 3176ac40ed0SLinus Torvalds { 3189e8912e0SLinus Torvalds int i; 3199e8912e0SLinus Torvalds u64 tsc, delta; 3209e8912e0SLinus Torvalds unsigned long d1, d2; 3219e8912e0SLinus Torvalds 3226ac40ed0SLinus Torvalds /* Set the Gate high, disable speaker */ 3236ac40ed0SLinus Torvalds outb((inb(0x61) & ~0x02) | 0x01, 0x61); 3246ac40ed0SLinus Torvalds 3256ac40ed0SLinus Torvalds /* 3266ac40ed0SLinus Torvalds * Counter 2, mode 0 (one-shot), binary count 3276ac40ed0SLinus Torvalds * 3286ac40ed0SLinus Torvalds * NOTE! Mode 2 decrements by two (and then the 3296ac40ed0SLinus Torvalds * output is flipped each time, giving the same 3306ac40ed0SLinus Torvalds * final output frequency as a decrement-by-one), 3316ac40ed0SLinus Torvalds * so mode 0 is much better when looking at the 3326ac40ed0SLinus Torvalds * individual counts. 3336ac40ed0SLinus Torvalds */ 3346ac40ed0SLinus Torvalds outb(0xb0, 0x43); 3356ac40ed0SLinus Torvalds 3366ac40ed0SLinus Torvalds /* Start at 0xffff */ 3376ac40ed0SLinus Torvalds outb(0xff, 0x42); 3386ac40ed0SLinus Torvalds outb(0xff, 0x42); 3396ac40ed0SLinus Torvalds 340a6a80e1dSLinus Torvalds /* 341a6a80e1dSLinus Torvalds * The PIT starts counting at the next edge, so we 342a6a80e1dSLinus Torvalds * need to delay for a microsecond. The easiest way 343a6a80e1dSLinus Torvalds * to do that is to just read back the 16-bit counter 344a6a80e1dSLinus Torvalds * once from the PIT. 345a6a80e1dSLinus Torvalds */ 346b6e61eefSLinus Torvalds pit_verify_msb(0); 347a6a80e1dSLinus Torvalds 3489e8912e0SLinus Torvalds if (pit_expect_msb(0xff, &tsc, &d1)) { 3499e8912e0SLinus Torvalds for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 3509e8912e0SLinus Torvalds if (!pit_expect_msb(0xff-i, &delta, &d2)) 3519e8912e0SLinus Torvalds break; 3526ac40ed0SLinus Torvalds 3536ac40ed0SLinus Torvalds /* 3549e8912e0SLinus Torvalds * Iterate until the error is less than 500 ppm 3554156e9a8SIngo Molnar */ 3569e8912e0SLinus Torvalds delta -= tsc; 357b6e61eefSLinus Torvalds if (d1+d2 >= delta >> 11) 358b6e61eefSLinus Torvalds continue; 359b6e61eefSLinus Torvalds 360b6e61eefSLinus Torvalds /* 361b6e61eefSLinus Torvalds * Check the PIT one more time to verify that 362b6e61eefSLinus Torvalds * all TSC reads were stable wrt the PIT. 363b6e61eefSLinus Torvalds * 364b6e61eefSLinus Torvalds * This also guarantees serialization of the 365b6e61eefSLinus Torvalds * last cycle read ('d2') in pit_expect_msb. 366b6e61eefSLinus Torvalds */ 367b6e61eefSLinus Torvalds if (!pit_verify_msb(0xfe - i)) 368b6e61eefSLinus Torvalds break; 3699e8912e0SLinus Torvalds goto success; 3709e8912e0SLinus Torvalds } 3719e8912e0SLinus Torvalds } 3729e8912e0SLinus Torvalds printk("Fast TSC calibration failed\n"); 3739e8912e0SLinus Torvalds return 0; 3744156e9a8SIngo Molnar 3759e8912e0SLinus Torvalds success: 3764156e9a8SIngo Molnar /* 3776ac40ed0SLinus Torvalds * Ok, if we get here, then we've seen the 3789e8912e0SLinus Torvalds * MSB of the PIT decrement 'i' times, and the 3799e8912e0SLinus Torvalds * error has shrunk to less than 500 ppm. 3806ac40ed0SLinus Torvalds * 3816ac40ed0SLinus Torvalds * As a result, we can depend on there not being 3826ac40ed0SLinus Torvalds * any odd delays anywhere, and the TSC reads are 3839e8912e0SLinus Torvalds * reliable (within the error). We also adjust the 3849e8912e0SLinus Torvalds * delta to the middle of the error bars, just 3859e8912e0SLinus Torvalds * because it looks nicer. 3866ac40ed0SLinus Torvalds * 3876ac40ed0SLinus Torvalds * kHz = ticks / time-in-seconds / 1000; 3889e8912e0SLinus Torvalds * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 3899e8912e0SLinus Torvalds * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 3906ac40ed0SLinus Torvalds */ 3919e8912e0SLinus Torvalds delta += (long)(d2 - d1)/2; 3929e8912e0SLinus Torvalds delta *= PIT_TICK_RATE; 3939e8912e0SLinus Torvalds do_div(delta, i*256*1000); 3946ac40ed0SLinus Torvalds printk("Fast TSC calibration using PIT\n"); 3956ac40ed0SLinus Torvalds return delta; 3966ac40ed0SLinus Torvalds } 397ec0c15afSLinus Torvalds 398bfc0f594SAlok Kataria /** 399e93ef949SAlok Kataria * native_calibrate_tsc - calibrate the tsc on boot 400bfc0f594SAlok Kataria */ 401e93ef949SAlok Kataria unsigned long native_calibrate_tsc(void) 402bfc0f594SAlok Kataria { 403827014beSThomas Gleixner u64 tsc1, tsc2, delta, ref1, ref2; 404fbb16e24SThomas Gleixner unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 4052d826404SThomas Gleixner unsigned long flags, latch, ms, fast_calibrate; 406a977c400SThomas Gleixner int hpet = is_hpet_enabled(), i, loopmin; 407bfc0f594SAlok Kataria 408bfc0f594SAlok Kataria local_irq_save(flags); 4096ac40ed0SLinus Torvalds fast_calibrate = quick_pit_calibrate(); 410bfc0f594SAlok Kataria local_irq_restore(flags); 4116ac40ed0SLinus Torvalds if (fast_calibrate) 4126ac40ed0SLinus Torvalds return fast_calibrate; 413fbb16e24SThomas Gleixner 414fbb16e24SThomas Gleixner /* 415fbb16e24SThomas Gleixner * Run 5 calibration loops to get the lowest frequency value 416fbb16e24SThomas Gleixner * (the best estimate). We use two different calibration modes 417fbb16e24SThomas Gleixner * here: 418fbb16e24SThomas Gleixner * 419fbb16e24SThomas Gleixner * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 420fbb16e24SThomas Gleixner * load a timeout of 50ms. We read the time right after we 421fbb16e24SThomas Gleixner * started the timer and wait until the PIT count down reaches 422fbb16e24SThomas Gleixner * zero. In each wait loop iteration we read the TSC and check 423fbb16e24SThomas Gleixner * the delta to the previous read. We keep track of the min 424fbb16e24SThomas Gleixner * and max values of that delta. The delta is mostly defined 425fbb16e24SThomas Gleixner * by the IO time of the PIT access, so we can detect when a 426fbb16e24SThomas Gleixner * SMI/SMM disturbance happend between the two reads. If the 427fbb16e24SThomas Gleixner * maximum time is significantly larger than the minimum time, 428fbb16e24SThomas Gleixner * then we discard the result and have another try. 429fbb16e24SThomas Gleixner * 430fbb16e24SThomas Gleixner * 2) Reference counter. If available we use the HPET or the 431fbb16e24SThomas Gleixner * PMTIMER as a reference to check the sanity of that value. 432fbb16e24SThomas Gleixner * We use separate TSC readouts and check inside of the 433fbb16e24SThomas Gleixner * reference read for a SMI/SMM disturbance. We dicard 434fbb16e24SThomas Gleixner * disturbed values here as well. We do that around the PIT 435fbb16e24SThomas Gleixner * calibration delay loop as we have to wait for a certain 436fbb16e24SThomas Gleixner * amount of time anyway. 437fbb16e24SThomas Gleixner */ 438a977c400SThomas Gleixner 439a977c400SThomas Gleixner /* Preset PIT loop values */ 440a977c400SThomas Gleixner latch = CAL_LATCH; 441a977c400SThomas Gleixner ms = CAL_MS; 442a977c400SThomas Gleixner loopmin = CAL_PIT_LOOPS; 443a977c400SThomas Gleixner 444a977c400SThomas Gleixner for (i = 0; i < 3; i++) { 445ec0c15afSLinus Torvalds unsigned long tsc_pit_khz; 446bfc0f594SAlok Kataria 447fbb16e24SThomas Gleixner /* 448fbb16e24SThomas Gleixner * Read the start value and the reference count of 449ec0c15afSLinus Torvalds * hpet/pmtimer when available. Then do the PIT 450ec0c15afSLinus Torvalds * calibration, which will take at least 50ms, and 451ec0c15afSLinus Torvalds * read the end value. 452fbb16e24SThomas Gleixner */ 453ec0c15afSLinus Torvalds local_irq_save(flags); 454827014beSThomas Gleixner tsc1 = tsc_read_refs(&ref1, hpet); 455a977c400SThomas Gleixner tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 456827014beSThomas Gleixner tsc2 = tsc_read_refs(&ref2, hpet); 457bfc0f594SAlok Kataria local_irq_restore(flags); 458bfc0f594SAlok Kataria 459ec0c15afSLinus Torvalds /* Pick the lowest PIT TSC calibration so far */ 460ec0c15afSLinus Torvalds tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 461bfc0f594SAlok Kataria 462bfc0f594SAlok Kataria /* hpet or pmtimer available ? */ 463827014beSThomas Gleixner if (!hpet && !ref1 && !ref2) 464fbb16e24SThomas Gleixner continue; 465bfc0f594SAlok Kataria 466bfc0f594SAlok Kataria /* Check, whether the sampling was disturbed by an SMI */ 467fbb16e24SThomas Gleixner if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 468fbb16e24SThomas Gleixner continue; 469bfc0f594SAlok Kataria 470bfc0f594SAlok Kataria tsc2 = (tsc2 - tsc1) * 1000000LL; 471d683ef7aSThomas Gleixner if (hpet) 472827014beSThomas Gleixner tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 473d683ef7aSThomas Gleixner else 474827014beSThomas Gleixner tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 475bfc0f594SAlok Kataria 476fbb16e24SThomas Gleixner tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 477a977c400SThomas Gleixner 478a977c400SThomas Gleixner /* Check the reference deviation */ 479a977c400SThomas Gleixner delta = ((u64) tsc_pit_min) * 100; 480a977c400SThomas Gleixner do_div(delta, tsc_ref_min); 481a977c400SThomas Gleixner 482a977c400SThomas Gleixner /* 483a977c400SThomas Gleixner * If both calibration results are inside a 10% window 484a977c400SThomas Gleixner * then we can be sure, that the calibration 485a977c400SThomas Gleixner * succeeded. We break out of the loop right away. We 486a977c400SThomas Gleixner * use the reference value, as it is more precise. 487a977c400SThomas Gleixner */ 488a977c400SThomas Gleixner if (delta >= 90 && delta <= 110) { 489a977c400SThomas Gleixner printk(KERN_INFO 490a977c400SThomas Gleixner "TSC: PIT calibration matches %s. %d loops\n", 491a977c400SThomas Gleixner hpet ? "HPET" : "PMTIMER", i + 1); 492a977c400SThomas Gleixner return tsc_ref_min; 493bfc0f594SAlok Kataria } 494bfc0f594SAlok Kataria 495a977c400SThomas Gleixner /* 496a977c400SThomas Gleixner * Check whether PIT failed more than once. This 497a977c400SThomas Gleixner * happens in virtualized environments. We need to 498a977c400SThomas Gleixner * give the virtual PC a slightly longer timeframe for 499a977c400SThomas Gleixner * the HPET/PMTIMER to make the result precise. 500a977c400SThomas Gleixner */ 501a977c400SThomas Gleixner if (i == 1 && tsc_pit_min == ULONG_MAX) { 502a977c400SThomas Gleixner latch = CAL2_LATCH; 503a977c400SThomas Gleixner ms = CAL2_MS; 504a977c400SThomas Gleixner loopmin = CAL2_PIT_LOOPS; 505a977c400SThomas Gleixner } 506bfc0f594SAlok Kataria } 507bfc0f594SAlok Kataria 508fbb16e24SThomas Gleixner /* 509fbb16e24SThomas Gleixner * Now check the results. 510fbb16e24SThomas Gleixner */ 511fbb16e24SThomas Gleixner if (tsc_pit_min == ULONG_MAX) { 512fbb16e24SThomas Gleixner /* PIT gave no useful value */ 513de014d61SAlok N Kataria printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n"); 514fbb16e24SThomas Gleixner 515fbb16e24SThomas Gleixner /* We don't have an alternative source, disable TSC */ 516827014beSThomas Gleixner if (!hpet && !ref1 && !ref2) { 517fbb16e24SThomas Gleixner printk("TSC: No reference (HPET/PMTIMER) available\n"); 518fbb16e24SThomas Gleixner return 0; 519fbb16e24SThomas Gleixner } 520fbb16e24SThomas Gleixner 521fbb16e24SThomas Gleixner /* The alternative source failed as well, disable TSC */ 522fbb16e24SThomas Gleixner if (tsc_ref_min == ULONG_MAX) { 523fbb16e24SThomas Gleixner printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " 524a977c400SThomas Gleixner "failed.\n"); 525fbb16e24SThomas Gleixner return 0; 526fbb16e24SThomas Gleixner } 527fbb16e24SThomas Gleixner 528fbb16e24SThomas Gleixner /* Use the alternative source */ 529fbb16e24SThomas Gleixner printk(KERN_INFO "TSC: using %s reference calibration\n", 530fbb16e24SThomas Gleixner hpet ? "HPET" : "PMTIMER"); 531fbb16e24SThomas Gleixner 532fbb16e24SThomas Gleixner return tsc_ref_min; 533fbb16e24SThomas Gleixner } 534fbb16e24SThomas Gleixner 535fbb16e24SThomas Gleixner /* We don't have an alternative source, use the PIT calibration value */ 536827014beSThomas Gleixner if (!hpet && !ref1 && !ref2) { 537fbb16e24SThomas Gleixner printk(KERN_INFO "TSC: Using PIT calibration value\n"); 538fbb16e24SThomas Gleixner return tsc_pit_min; 539fbb16e24SThomas Gleixner } 540fbb16e24SThomas Gleixner 541fbb16e24SThomas Gleixner /* The alternative source failed, use the PIT calibration value */ 542fbb16e24SThomas Gleixner if (tsc_ref_min == ULONG_MAX) { 543a977c400SThomas Gleixner printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " 544a977c400SThomas Gleixner "Using PIT calibration\n"); 545fbb16e24SThomas Gleixner return tsc_pit_min; 546fbb16e24SThomas Gleixner } 547fbb16e24SThomas Gleixner 548fbb16e24SThomas Gleixner /* 549fbb16e24SThomas Gleixner * The calibration values differ too much. In doubt, we use 550fbb16e24SThomas Gleixner * the PIT value as we know that there are PMTIMERs around 551a977c400SThomas Gleixner * running at double speed. At least we let the user know: 552fbb16e24SThomas Gleixner */ 553a977c400SThomas Gleixner printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", 554a977c400SThomas Gleixner hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 555fbb16e24SThomas Gleixner printk(KERN_INFO "TSC: Using PIT calibration value\n"); 556fbb16e24SThomas Gleixner return tsc_pit_min; 557fbb16e24SThomas Gleixner } 558bfc0f594SAlok Kataria 559bfc0f594SAlok Kataria int recalibrate_cpu_khz(void) 560bfc0f594SAlok Kataria { 561bfc0f594SAlok Kataria #ifndef CONFIG_SMP 562bfc0f594SAlok Kataria unsigned long cpu_khz_old = cpu_khz; 563bfc0f594SAlok Kataria 564bfc0f594SAlok Kataria if (cpu_has_tsc) { 5652d826404SThomas Gleixner tsc_khz = x86_platform.calibrate_tsc(); 566e93ef949SAlok Kataria cpu_khz = tsc_khz; 567bfc0f594SAlok Kataria cpu_data(0).loops_per_jiffy = 568bfc0f594SAlok Kataria cpufreq_scale(cpu_data(0).loops_per_jiffy, 569bfc0f594SAlok Kataria cpu_khz_old, cpu_khz); 570bfc0f594SAlok Kataria return 0; 571bfc0f594SAlok Kataria } else 572bfc0f594SAlok Kataria return -ENODEV; 573bfc0f594SAlok Kataria #else 574bfc0f594SAlok Kataria return -ENODEV; 575bfc0f594SAlok Kataria #endif 576bfc0f594SAlok Kataria } 577bfc0f594SAlok Kataria 578bfc0f594SAlok Kataria EXPORT_SYMBOL(recalibrate_cpu_khz); 579bfc0f594SAlok Kataria 5802dbe06faSAlok Kataria 5812dbe06faSAlok Kataria /* Accelerators for sched_clock() 5822dbe06faSAlok Kataria * convert from cycles(64bits) => nanoseconds (64bits) 5832dbe06faSAlok Kataria * basic equation: 5842dbe06faSAlok Kataria * ns = cycles / (freq / ns_per_sec) 5852dbe06faSAlok Kataria * ns = cycles * (ns_per_sec / freq) 5862dbe06faSAlok Kataria * ns = cycles * (10^9 / (cpu_khz * 10^3)) 5872dbe06faSAlok Kataria * ns = cycles * (10^6 / cpu_khz) 5882dbe06faSAlok Kataria * 5892dbe06faSAlok Kataria * Then we use scaling math (suggested by george@mvista.com) to get: 5902dbe06faSAlok Kataria * ns = cycles * (10^6 * SC / cpu_khz) / SC 5912dbe06faSAlok Kataria * ns = cycles * cyc2ns_scale / SC 5922dbe06faSAlok Kataria * 5932dbe06faSAlok Kataria * And since SC is a constant power of two, we can convert the div 5942dbe06faSAlok Kataria * into a shift. 5952dbe06faSAlok Kataria * 5962dbe06faSAlok Kataria * We can use khz divisor instead of mhz to keep a better precision, since 5972dbe06faSAlok Kataria * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 5982dbe06faSAlok Kataria * (mathieu.desnoyers@polymtl.ca) 5992dbe06faSAlok Kataria * 6002dbe06faSAlok Kataria * -johnstul@us.ibm.com "math is hard, lets go shopping!" 6012dbe06faSAlok Kataria */ 6022dbe06faSAlok Kataria 6032dbe06faSAlok Kataria DEFINE_PER_CPU(unsigned long, cyc2ns); 60484599f8aSPeter Zijlstra DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); 6052dbe06faSAlok Kataria 6068fbbc4b4SAlok Kataria static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 6072dbe06faSAlok Kataria { 60884599f8aSPeter Zijlstra unsigned long long tsc_now, ns_now, *offset; 6092dbe06faSAlok Kataria unsigned long flags, *scale; 6102dbe06faSAlok Kataria 6112dbe06faSAlok Kataria local_irq_save(flags); 6122dbe06faSAlok Kataria sched_clock_idle_sleep_event(); 6132dbe06faSAlok Kataria 6142dbe06faSAlok Kataria scale = &per_cpu(cyc2ns, cpu); 61584599f8aSPeter Zijlstra offset = &per_cpu(cyc2ns_offset, cpu); 6162dbe06faSAlok Kataria 6172dbe06faSAlok Kataria rdtscll(tsc_now); 6182dbe06faSAlok Kataria ns_now = __cycles_2_ns(tsc_now); 6192dbe06faSAlok Kataria 62084599f8aSPeter Zijlstra if (cpu_khz) { 6212dbe06faSAlok Kataria *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; 62284599f8aSPeter Zijlstra *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR); 62384599f8aSPeter Zijlstra } 6242dbe06faSAlok Kataria 6252dbe06faSAlok Kataria sched_clock_idle_wakeup_event(0); 6262dbe06faSAlok Kataria local_irq_restore(flags); 6272dbe06faSAlok Kataria } 6282dbe06faSAlok Kataria 6292dbe06faSAlok Kataria #ifdef CONFIG_CPU_FREQ 6302dbe06faSAlok Kataria 6312dbe06faSAlok Kataria /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 6322dbe06faSAlok Kataria * changes. 6332dbe06faSAlok Kataria * 6342dbe06faSAlok Kataria * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 6352dbe06faSAlok Kataria * not that important because current Opteron setups do not support 6362dbe06faSAlok Kataria * scaling on SMP anyroads. 6372dbe06faSAlok Kataria * 6382dbe06faSAlok Kataria * Should fix up last_tsc too. Currently gettimeofday in the 6392dbe06faSAlok Kataria * first tick after the change will be slightly wrong. 6402dbe06faSAlok Kataria */ 6412dbe06faSAlok Kataria 6422dbe06faSAlok Kataria static unsigned int ref_freq; 6432dbe06faSAlok Kataria static unsigned long loops_per_jiffy_ref; 6442dbe06faSAlok Kataria static unsigned long tsc_khz_ref; 6452dbe06faSAlok Kataria 6462dbe06faSAlok Kataria static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 6472dbe06faSAlok Kataria void *data) 6482dbe06faSAlok Kataria { 6492dbe06faSAlok Kataria struct cpufreq_freqs *freq = data; 650931db6a3SDave Jones unsigned long *lpj; 6512dbe06faSAlok Kataria 6522dbe06faSAlok Kataria if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 6532dbe06faSAlok Kataria return 0; 6542dbe06faSAlok Kataria 6552dbe06faSAlok Kataria lpj = &boot_cpu_data.loops_per_jiffy; 656931db6a3SDave Jones #ifdef CONFIG_SMP 657931db6a3SDave Jones if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 658931db6a3SDave Jones lpj = &cpu_data(freq->cpu).loops_per_jiffy; 6592dbe06faSAlok Kataria #endif 6602dbe06faSAlok Kataria 6612dbe06faSAlok Kataria if (!ref_freq) { 6622dbe06faSAlok Kataria ref_freq = freq->old; 6632dbe06faSAlok Kataria loops_per_jiffy_ref = *lpj; 6642dbe06faSAlok Kataria tsc_khz_ref = tsc_khz; 6652dbe06faSAlok Kataria } 6662dbe06faSAlok Kataria if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 6672dbe06faSAlok Kataria (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 6682dbe06faSAlok Kataria (val == CPUFREQ_RESUMECHANGE)) { 6692dbe06faSAlok Kataria *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 6702dbe06faSAlok Kataria 6712dbe06faSAlok Kataria tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 6722dbe06faSAlok Kataria if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 6732dbe06faSAlok Kataria mark_tsc_unstable("cpufreq changes"); 6742dbe06faSAlok Kataria } 6752dbe06faSAlok Kataria 67652a8968cSPeter Zijlstra set_cyc2ns_scale(tsc_khz, freq->cpu); 6772dbe06faSAlok Kataria 6782dbe06faSAlok Kataria return 0; 6792dbe06faSAlok Kataria } 6802dbe06faSAlok Kataria 6812dbe06faSAlok Kataria static struct notifier_block time_cpufreq_notifier_block = { 6822dbe06faSAlok Kataria .notifier_call = time_cpufreq_notifier 6832dbe06faSAlok Kataria }; 6842dbe06faSAlok Kataria 6852dbe06faSAlok Kataria static int __init cpufreq_tsc(void) 6862dbe06faSAlok Kataria { 687060700b5SLinus Torvalds if (!cpu_has_tsc) 688060700b5SLinus Torvalds return 0; 689060700b5SLinus Torvalds if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 690060700b5SLinus Torvalds return 0; 6912dbe06faSAlok Kataria cpufreq_register_notifier(&time_cpufreq_notifier_block, 6922dbe06faSAlok Kataria CPUFREQ_TRANSITION_NOTIFIER); 6932dbe06faSAlok Kataria return 0; 6942dbe06faSAlok Kataria } 6952dbe06faSAlok Kataria 6962dbe06faSAlok Kataria core_initcall(cpufreq_tsc); 6972dbe06faSAlok Kataria 6982dbe06faSAlok Kataria #endif /* CONFIG_CPU_FREQ */ 6998fbbc4b4SAlok Kataria 7008fbbc4b4SAlok Kataria /* clocksource code */ 7018fbbc4b4SAlok Kataria 7028fbbc4b4SAlok Kataria static struct clocksource clocksource_tsc; 7038fbbc4b4SAlok Kataria 7048fbbc4b4SAlok Kataria /* 7058fbbc4b4SAlok Kataria * We compare the TSC to the cycle_last value in the clocksource 7068fbbc4b4SAlok Kataria * structure to avoid a nasty time-warp. This can be observed in a 7078fbbc4b4SAlok Kataria * very small window right after one CPU updated cycle_last under 7088fbbc4b4SAlok Kataria * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 7098fbbc4b4SAlok Kataria * is smaller than the cycle_last reference value due to a TSC which 7108fbbc4b4SAlok Kataria * is slighty behind. This delta is nowhere else observable, but in 7118fbbc4b4SAlok Kataria * that case it results in a forward time jump in the range of hours 7128fbbc4b4SAlok Kataria * due to the unsigned delta calculation of the time keeping core 7138fbbc4b4SAlok Kataria * code, which is necessary to support wrapping clocksources like pm 7148fbbc4b4SAlok Kataria * timer. 7158fbbc4b4SAlok Kataria */ 7168e19608eSMagnus Damm static cycle_t read_tsc(struct clocksource *cs) 7178fbbc4b4SAlok Kataria { 7188fbbc4b4SAlok Kataria cycle_t ret = (cycle_t)get_cycles(); 7198fbbc4b4SAlok Kataria 7208fbbc4b4SAlok Kataria return ret >= clocksource_tsc.cycle_last ? 7218fbbc4b4SAlok Kataria ret : clocksource_tsc.cycle_last; 7228fbbc4b4SAlok Kataria } 7238fbbc4b4SAlok Kataria 724431ceb83SThomas Gleixner #ifdef CONFIG_X86_64 7258fbbc4b4SAlok Kataria static cycle_t __vsyscall_fn vread_tsc(void) 7268fbbc4b4SAlok Kataria { 7277d96fd41SPetr Tesarik cycle_t ret; 7287d96fd41SPetr Tesarik 7297d96fd41SPetr Tesarik /* 7307d96fd41SPetr Tesarik * Surround the RDTSC by barriers, to make sure it's not 7317d96fd41SPetr Tesarik * speculated to outside the seqlock critical section and 7327d96fd41SPetr Tesarik * does not cause time warps: 7337d96fd41SPetr Tesarik */ 7347d96fd41SPetr Tesarik rdtsc_barrier(); 7357d96fd41SPetr Tesarik ret = (cycle_t)vget_cycles(); 7367d96fd41SPetr Tesarik rdtsc_barrier(); 7378fbbc4b4SAlok Kataria 7388fbbc4b4SAlok Kataria return ret >= __vsyscall_gtod_data.clock.cycle_last ? 7398fbbc4b4SAlok Kataria ret : __vsyscall_gtod_data.clock.cycle_last; 7408fbbc4b4SAlok Kataria } 741431ceb83SThomas Gleixner #endif 7428fbbc4b4SAlok Kataria 74317622339SMagnus Damm static void resume_tsc(struct clocksource *cs) 7441be39679SMartin Schwidefsky { 7451be39679SMartin Schwidefsky clocksource_tsc.cycle_last = 0; 7461be39679SMartin Schwidefsky } 7471be39679SMartin Schwidefsky 7488fbbc4b4SAlok Kataria static struct clocksource clocksource_tsc = { 7498fbbc4b4SAlok Kataria .name = "tsc", 7508fbbc4b4SAlok Kataria .rating = 300, 7518fbbc4b4SAlok Kataria .read = read_tsc, 7521be39679SMartin Schwidefsky .resume = resume_tsc, 7538fbbc4b4SAlok Kataria .mask = CLOCKSOURCE_MASK(64), 7548fbbc4b4SAlok Kataria .flags = CLOCK_SOURCE_IS_CONTINUOUS | 7558fbbc4b4SAlok Kataria CLOCK_SOURCE_MUST_VERIFY, 7568fbbc4b4SAlok Kataria #ifdef CONFIG_X86_64 7578fbbc4b4SAlok Kataria .vread = vread_tsc, 7588fbbc4b4SAlok Kataria #endif 7598fbbc4b4SAlok Kataria }; 7608fbbc4b4SAlok Kataria 7618fbbc4b4SAlok Kataria void mark_tsc_unstable(char *reason) 7628fbbc4b4SAlok Kataria { 7638fbbc4b4SAlok Kataria if (!tsc_unstable) { 7648fbbc4b4SAlok Kataria tsc_unstable = 1; 7656c56ccecSPallipadi, Venkatesh sched_clock_stable = 0; 7667285dd7fSThomas Gleixner printk(KERN_INFO "Marking TSC unstable due to %s\n", reason); 7678fbbc4b4SAlok Kataria /* Change only the rating, when not registered */ 7688fbbc4b4SAlok Kataria if (clocksource_tsc.mult) 7697285dd7fSThomas Gleixner clocksource_mark_unstable(&clocksource_tsc); 7707285dd7fSThomas Gleixner else { 7717285dd7fSThomas Gleixner clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 7728fbbc4b4SAlok Kataria clocksource_tsc.rating = 0; 7738fbbc4b4SAlok Kataria } 7748fbbc4b4SAlok Kataria } 7757285dd7fSThomas Gleixner } 7768fbbc4b4SAlok Kataria 7778fbbc4b4SAlok Kataria EXPORT_SYMBOL_GPL(mark_tsc_unstable); 7788fbbc4b4SAlok Kataria 7798fbbc4b4SAlok Kataria static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) 7808fbbc4b4SAlok Kataria { 7818fbbc4b4SAlok Kataria printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", 7828fbbc4b4SAlok Kataria d->ident); 7838fbbc4b4SAlok Kataria tsc_unstable = 1; 7848fbbc4b4SAlok Kataria return 0; 7858fbbc4b4SAlok Kataria } 7868fbbc4b4SAlok Kataria 7878fbbc4b4SAlok Kataria /* List of systems that have known TSC problems */ 7888fbbc4b4SAlok Kataria static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { 7898fbbc4b4SAlok Kataria { 7908fbbc4b4SAlok Kataria .callback = dmi_mark_tsc_unstable, 7918fbbc4b4SAlok Kataria .ident = "IBM Thinkpad 380XD", 7928fbbc4b4SAlok Kataria .matches = { 7938fbbc4b4SAlok Kataria DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), 7948fbbc4b4SAlok Kataria DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), 7958fbbc4b4SAlok Kataria }, 7968fbbc4b4SAlok Kataria }, 7978fbbc4b4SAlok Kataria {} 7988fbbc4b4SAlok Kataria }; 7998fbbc4b4SAlok Kataria 800395628efSAlok Kataria static void __init check_system_tsc_reliable(void) 801395628efSAlok Kataria { 8028fbbc4b4SAlok Kataria #ifdef CONFIG_MGEODE_LX 8038fbbc4b4SAlok Kataria /* RTSC counts during suspend */ 8048fbbc4b4SAlok Kataria #define RTSC_SUSP 0x100 8058fbbc4b4SAlok Kataria unsigned long res_low, res_high; 8068fbbc4b4SAlok Kataria 8078fbbc4b4SAlok Kataria rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 80800097c4fSThadeu Lima de Souza Cascardo /* Geode_LX - the OLPC CPU has a very reliable TSC */ 8098fbbc4b4SAlok Kataria if (res_low & RTSC_SUSP) 810395628efSAlok Kataria tsc_clocksource_reliable = 1; 8118fbbc4b4SAlok Kataria #endif 812395628efSAlok Kataria if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 813395628efSAlok Kataria tsc_clocksource_reliable = 1; 814395628efSAlok Kataria } 8158fbbc4b4SAlok Kataria 8168fbbc4b4SAlok Kataria /* 8178fbbc4b4SAlok Kataria * Make an educated guess if the TSC is trustworthy and synchronized 8188fbbc4b4SAlok Kataria * over all CPUs. 8198fbbc4b4SAlok Kataria */ 8208fbbc4b4SAlok Kataria __cpuinit int unsynchronized_tsc(void) 8218fbbc4b4SAlok Kataria { 8228fbbc4b4SAlok Kataria if (!cpu_has_tsc || tsc_unstable) 8238fbbc4b4SAlok Kataria return 1; 8248fbbc4b4SAlok Kataria 8253e5095d1SIngo Molnar #ifdef CONFIG_SMP 8268fbbc4b4SAlok Kataria if (apic_is_clustered_box()) 8278fbbc4b4SAlok Kataria return 1; 8288fbbc4b4SAlok Kataria #endif 8298fbbc4b4SAlok Kataria 8308fbbc4b4SAlok Kataria if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8318fbbc4b4SAlok Kataria return 0; 8328fbbc4b4SAlok Kataria /* 8338fbbc4b4SAlok Kataria * Intel systems are normally all synchronized. 8348fbbc4b4SAlok Kataria * Exceptions must mark TSC as unstable: 8358fbbc4b4SAlok Kataria */ 8368fbbc4b4SAlok Kataria if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 8378fbbc4b4SAlok Kataria /* assume multi socket systems are not synchronized: */ 8388fbbc4b4SAlok Kataria if (num_possible_cpus() > 1) 8398fbbc4b4SAlok Kataria tsc_unstable = 1; 8408fbbc4b4SAlok Kataria } 8418fbbc4b4SAlok Kataria 8428fbbc4b4SAlok Kataria return tsc_unstable; 8438fbbc4b4SAlok Kataria } 8448fbbc4b4SAlok Kataria 8458fbbc4b4SAlok Kataria static void __init init_tsc_clocksource(void) 8468fbbc4b4SAlok Kataria { 847395628efSAlok Kataria if (tsc_clocksource_reliable) 848395628efSAlok Kataria clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 8498fbbc4b4SAlok Kataria /* lower the rating if we already know its unstable: */ 8508fbbc4b4SAlok Kataria if (check_tsc_unstable()) { 8518fbbc4b4SAlok Kataria clocksource_tsc.rating = 0; 8528fbbc4b4SAlok Kataria clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 8538fbbc4b4SAlok Kataria } 854f12a15beSJohn Stultz clocksource_register_khz(&clocksource_tsc, tsc_khz); 8558fbbc4b4SAlok Kataria } 8568fbbc4b4SAlok Kataria 85708047c4fSThomas Gleixner #ifdef CONFIG_X86_64 85808047c4fSThomas Gleixner /* 85908047c4fSThomas Gleixner * calibrate_cpu is used on systems with fixed rate TSCs to determine 86008047c4fSThomas Gleixner * processor frequency 86108047c4fSThomas Gleixner */ 86208047c4fSThomas Gleixner #define TICK_COUNT 100000000 86308047c4fSThomas Gleixner static unsigned long __init calibrate_cpu(void) 86408047c4fSThomas Gleixner { 86508047c4fSThomas Gleixner int tsc_start, tsc_now; 86608047c4fSThomas Gleixner int i, no_ctr_free; 86708047c4fSThomas Gleixner unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0; 86808047c4fSThomas Gleixner unsigned long flags; 86908047c4fSThomas Gleixner 87008047c4fSThomas Gleixner for (i = 0; i < 4; i++) 87108047c4fSThomas Gleixner if (avail_to_resrv_perfctr_nmi_bit(i)) 87208047c4fSThomas Gleixner break; 87308047c4fSThomas Gleixner no_ctr_free = (i == 4); 87408047c4fSThomas Gleixner if (no_ctr_free) { 87508047c4fSThomas Gleixner WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... " 87608047c4fSThomas Gleixner "cpu_khz value may be incorrect.\n"); 87708047c4fSThomas Gleixner i = 3; 87808047c4fSThomas Gleixner rdmsrl(MSR_K7_EVNTSEL3, evntsel3); 87908047c4fSThomas Gleixner wrmsrl(MSR_K7_EVNTSEL3, 0); 88008047c4fSThomas Gleixner rdmsrl(MSR_K7_PERFCTR3, pmc3); 88108047c4fSThomas Gleixner } else { 88208047c4fSThomas Gleixner reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i); 88308047c4fSThomas Gleixner reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i); 88408047c4fSThomas Gleixner } 88508047c4fSThomas Gleixner local_irq_save(flags); 88608047c4fSThomas Gleixner /* start measuring cycles, incrementing from 0 */ 88708047c4fSThomas Gleixner wrmsrl(MSR_K7_PERFCTR0 + i, 0); 88808047c4fSThomas Gleixner wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76); 88908047c4fSThomas Gleixner rdtscl(tsc_start); 89008047c4fSThomas Gleixner do { 89108047c4fSThomas Gleixner rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now); 89208047c4fSThomas Gleixner tsc_now = get_cycles(); 89308047c4fSThomas Gleixner } while ((tsc_now - tsc_start) < TICK_COUNT); 89408047c4fSThomas Gleixner 89508047c4fSThomas Gleixner local_irq_restore(flags); 89608047c4fSThomas Gleixner if (no_ctr_free) { 89708047c4fSThomas Gleixner wrmsrl(MSR_K7_EVNTSEL3, 0); 89808047c4fSThomas Gleixner wrmsrl(MSR_K7_PERFCTR3, pmc3); 89908047c4fSThomas Gleixner wrmsrl(MSR_K7_EVNTSEL3, evntsel3); 90008047c4fSThomas Gleixner } else { 90108047c4fSThomas Gleixner release_perfctr_nmi(MSR_K7_PERFCTR0 + i); 90208047c4fSThomas Gleixner release_evntsel_nmi(MSR_K7_EVNTSEL0 + i); 90308047c4fSThomas Gleixner } 90408047c4fSThomas Gleixner 90508047c4fSThomas Gleixner return pmc_now * tsc_khz / (tsc_now - tsc_start); 90608047c4fSThomas Gleixner } 90708047c4fSThomas Gleixner #else 90808047c4fSThomas Gleixner static inline unsigned long calibrate_cpu(void) { return cpu_khz; } 90908047c4fSThomas Gleixner #endif 91008047c4fSThomas Gleixner 9118fbbc4b4SAlok Kataria void __init tsc_init(void) 9128fbbc4b4SAlok Kataria { 9138fbbc4b4SAlok Kataria u64 lpj; 9148fbbc4b4SAlok Kataria int cpu; 9158fbbc4b4SAlok Kataria 916845b3944SThomas Gleixner x86_init.timers.tsc_pre_init(); 917845b3944SThomas Gleixner 9188fbbc4b4SAlok Kataria if (!cpu_has_tsc) 9198fbbc4b4SAlok Kataria return; 9208fbbc4b4SAlok Kataria 9212d826404SThomas Gleixner tsc_khz = x86_platform.calibrate_tsc(); 922e93ef949SAlok Kataria cpu_khz = tsc_khz; 9238fbbc4b4SAlok Kataria 924e93ef949SAlok Kataria if (!tsc_khz) { 9258fbbc4b4SAlok Kataria mark_tsc_unstable("could not calculate TSC khz"); 9268fbbc4b4SAlok Kataria return; 9278fbbc4b4SAlok Kataria } 9288fbbc4b4SAlok Kataria 9298fbbc4b4SAlok Kataria if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && 9308fbbc4b4SAlok Kataria (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)) 9318fbbc4b4SAlok Kataria cpu_khz = calibrate_cpu(); 9328fbbc4b4SAlok Kataria 9338fbbc4b4SAlok Kataria printk("Detected %lu.%03lu MHz processor.\n", 9348fbbc4b4SAlok Kataria (unsigned long)cpu_khz / 1000, 9358fbbc4b4SAlok Kataria (unsigned long)cpu_khz % 1000); 9368fbbc4b4SAlok Kataria 9378fbbc4b4SAlok Kataria /* 9388fbbc4b4SAlok Kataria * Secondary CPUs do not run through tsc_init(), so set up 9398fbbc4b4SAlok Kataria * all the scale factors for all CPUs, assuming the same 9408fbbc4b4SAlok Kataria * speed as the bootup CPU. (cpufreq notifiers will fix this 9418fbbc4b4SAlok Kataria * up if their speed diverges) 9428fbbc4b4SAlok Kataria */ 9438fbbc4b4SAlok Kataria for_each_possible_cpu(cpu) 9448fbbc4b4SAlok Kataria set_cyc2ns_scale(cpu_khz, cpu); 9458fbbc4b4SAlok Kataria 9468fbbc4b4SAlok Kataria if (tsc_disabled > 0) 9478fbbc4b4SAlok Kataria return; 9488fbbc4b4SAlok Kataria 9498fbbc4b4SAlok Kataria /* now allow native_sched_clock() to use rdtsc */ 9508fbbc4b4SAlok Kataria tsc_disabled = 0; 9518fbbc4b4SAlok Kataria 95270de9a97SAlok Kataria lpj = ((u64)tsc_khz * 1000); 95370de9a97SAlok Kataria do_div(lpj, HZ); 95470de9a97SAlok Kataria lpj_fine = lpj; 95570de9a97SAlok Kataria 9568fbbc4b4SAlok Kataria use_tsc_delay(); 9578fbbc4b4SAlok Kataria /* Check and install the TSC clocksource */ 9588fbbc4b4SAlok Kataria dmi_check_system(bad_tsc_dmi_table); 9598fbbc4b4SAlok Kataria 9608fbbc4b4SAlok Kataria if (unsynchronized_tsc()) 9618fbbc4b4SAlok Kataria mark_tsc_unstable("TSCs unsynchronized"); 9628fbbc4b4SAlok Kataria 963395628efSAlok Kataria check_system_tsc_reliable(); 9648fbbc4b4SAlok Kataria init_tsc_clocksource(); 9658fbbc4b4SAlok Kataria } 9668fbbc4b4SAlok Kataria 967