xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 5e3c1afd)
1c767a54bSJoe Perches #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2c767a54bSJoe Perches 
3bfc0f594SAlok Kataria #include <linux/kernel.h>
40ef95533SAlok Kataria #include <linux/sched.h>
50ef95533SAlok Kataria #include <linux/init.h>
60ef95533SAlok Kataria #include <linux/module.h>
70ef95533SAlok Kataria #include <linux/timer.h>
8bfc0f594SAlok Kataria #include <linux/acpi_pmtmr.h>
92dbe06faSAlok Kataria #include <linux/cpufreq.h>
108fbbc4b4SAlok Kataria #include <linux/delay.h>
118fbbc4b4SAlok Kataria #include <linux/clocksource.h>
128fbbc4b4SAlok Kataria #include <linux/percpu.h>
1308604bd9SArnd Bergmann #include <linux/timex.h>
1410b033d4SPeter Zijlstra #include <linux/static_key.h>
15bfc0f594SAlok Kataria 
16bfc0f594SAlok Kataria #include <asm/hpet.h>
178fbbc4b4SAlok Kataria #include <asm/timer.h>
188fbbc4b4SAlok Kataria #include <asm/vgtod.h>
198fbbc4b4SAlok Kataria #include <asm/time.h>
208fbbc4b4SAlok Kataria #include <asm/delay.h>
2188b094fbSAlok Kataria #include <asm/hypervisor.h>
2208047c4fSThomas Gleixner #include <asm/nmi.h>
232d826404SThomas Gleixner #include <asm/x86_init.h>
240ef95533SAlok Kataria 
25f24ade3aSIngo Molnar unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
260ef95533SAlok Kataria EXPORT_SYMBOL(cpu_khz);
27f24ade3aSIngo Molnar 
28f24ade3aSIngo Molnar unsigned int __read_mostly tsc_khz;
290ef95533SAlok Kataria EXPORT_SYMBOL(tsc_khz);
300ef95533SAlok Kataria 
310ef95533SAlok Kataria /*
320ef95533SAlok Kataria  * TSC can be unstable due to cpufreq or due to unsynced TSCs
330ef95533SAlok Kataria  */
34f24ade3aSIngo Molnar static int __read_mostly tsc_unstable;
350ef95533SAlok Kataria 
360ef95533SAlok Kataria /* native_sched_clock() is called before tsc_init(), so
370ef95533SAlok Kataria    we must start with the TSC soft disabled to prevent
380ef95533SAlok Kataria    erroneous rdtsc usage on !cpu_has_tsc processors */
39f24ade3aSIngo Molnar static int __read_mostly tsc_disabled = -1;
400ef95533SAlok Kataria 
4110b033d4SPeter Zijlstra static struct static_key __use_tsc = STATIC_KEY_INIT;
4210b033d4SPeter Zijlstra 
4328a00184SSuresh Siddha int tsc_clocksource_reliable;
4457c67da2SPeter Zijlstra 
4520d1c86aSPeter Zijlstra /*
4620d1c86aSPeter Zijlstra  * Use a ring-buffer like data structure, where a writer advances the head by
4720d1c86aSPeter Zijlstra  * writing a new data entry and a reader advances the tail when it observes a
4820d1c86aSPeter Zijlstra  * new entry.
4920d1c86aSPeter Zijlstra  *
5020d1c86aSPeter Zijlstra  * Writers are made to wait on readers until there's space to write a new
5120d1c86aSPeter Zijlstra  * entry.
5220d1c86aSPeter Zijlstra  *
5320d1c86aSPeter Zijlstra  * This means that we can always use an {offset, mul} pair to compute a ns
5420d1c86aSPeter Zijlstra  * value that is 'roughly' in the right direction, even if we're writing a new
5520d1c86aSPeter Zijlstra  * {offset, mul} pair during the clock read.
5620d1c86aSPeter Zijlstra  *
5720d1c86aSPeter Zijlstra  * The down-side is that we can no longer guarantee strict monotonicity anymore
5820d1c86aSPeter Zijlstra  * (assuming the TSC was that to begin with), because while we compute the
5920d1c86aSPeter Zijlstra  * intersection point of the two clock slopes and make sure the time is
6020d1c86aSPeter Zijlstra  * continuous at the point of switching; we can no longer guarantee a reader is
6120d1c86aSPeter Zijlstra  * strictly before or after the switch point.
6220d1c86aSPeter Zijlstra  *
6320d1c86aSPeter Zijlstra  * It does mean a reader no longer needs to disable IRQs in order to avoid
6420d1c86aSPeter Zijlstra  * CPU-Freq updates messing with his times, and similarly an NMI reader will
6520d1c86aSPeter Zijlstra  * no longer run the risk of hitting half-written state.
6620d1c86aSPeter Zijlstra  */
6720d1c86aSPeter Zijlstra 
6820d1c86aSPeter Zijlstra struct cyc2ns {
6920d1c86aSPeter Zijlstra 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
7020d1c86aSPeter Zijlstra 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
7120d1c86aSPeter Zijlstra 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
7220d1c86aSPeter Zijlstra }; /* exactly fits one cacheline */
7320d1c86aSPeter Zijlstra 
7420d1c86aSPeter Zijlstra static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
7520d1c86aSPeter Zijlstra 
7620d1c86aSPeter Zijlstra struct cyc2ns_data *cyc2ns_read_begin(void)
7720d1c86aSPeter Zijlstra {
7820d1c86aSPeter Zijlstra 	struct cyc2ns_data *head;
7920d1c86aSPeter Zijlstra 
8020d1c86aSPeter Zijlstra 	preempt_disable();
8120d1c86aSPeter Zijlstra 
8220d1c86aSPeter Zijlstra 	head = this_cpu_read(cyc2ns.head);
8320d1c86aSPeter Zijlstra 	/*
8420d1c86aSPeter Zijlstra 	 * Ensure we observe the entry when we observe the pointer to it.
8520d1c86aSPeter Zijlstra 	 * matches the wmb from cyc2ns_write_end().
8620d1c86aSPeter Zijlstra 	 */
8720d1c86aSPeter Zijlstra 	smp_read_barrier_depends();
8820d1c86aSPeter Zijlstra 	head->__count++;
8920d1c86aSPeter Zijlstra 	barrier();
9020d1c86aSPeter Zijlstra 
9120d1c86aSPeter Zijlstra 	return head;
9220d1c86aSPeter Zijlstra }
9320d1c86aSPeter Zijlstra 
9420d1c86aSPeter Zijlstra void cyc2ns_read_end(struct cyc2ns_data *head)
9520d1c86aSPeter Zijlstra {
9620d1c86aSPeter Zijlstra 	barrier();
9720d1c86aSPeter Zijlstra 	/*
9820d1c86aSPeter Zijlstra 	 * If we're the outer most nested read; update the tail pointer
9920d1c86aSPeter Zijlstra 	 * when we're done. This notifies possible pending writers
10020d1c86aSPeter Zijlstra 	 * that we've observed the head pointer and that the other
10120d1c86aSPeter Zijlstra 	 * entry is now free.
10220d1c86aSPeter Zijlstra 	 */
10320d1c86aSPeter Zijlstra 	if (!--head->__count) {
10420d1c86aSPeter Zijlstra 		/*
10520d1c86aSPeter Zijlstra 		 * x86-TSO does not reorder writes with older reads;
10620d1c86aSPeter Zijlstra 		 * therefore once this write becomes visible to another
10720d1c86aSPeter Zijlstra 		 * cpu, we must be finished reading the cyc2ns_data.
10820d1c86aSPeter Zijlstra 		 *
10920d1c86aSPeter Zijlstra 		 * matches with cyc2ns_write_begin().
11020d1c86aSPeter Zijlstra 		 */
11120d1c86aSPeter Zijlstra 		this_cpu_write(cyc2ns.tail, head);
11220d1c86aSPeter Zijlstra 	}
11320d1c86aSPeter Zijlstra 	preempt_enable();
11420d1c86aSPeter Zijlstra }
11520d1c86aSPeter Zijlstra 
11620d1c86aSPeter Zijlstra /*
11720d1c86aSPeter Zijlstra  * Begin writing a new @data entry for @cpu.
11820d1c86aSPeter Zijlstra  *
11920d1c86aSPeter Zijlstra  * Assumes some sort of write side lock; currently 'provided' by the assumption
12020d1c86aSPeter Zijlstra  * that cpufreq will call its notifiers sequentially.
12120d1c86aSPeter Zijlstra  */
12220d1c86aSPeter Zijlstra static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
12320d1c86aSPeter Zijlstra {
12420d1c86aSPeter Zijlstra 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
12520d1c86aSPeter Zijlstra 	struct cyc2ns_data *data = c2n->data;
12620d1c86aSPeter Zijlstra 
12720d1c86aSPeter Zijlstra 	if (data == c2n->head)
12820d1c86aSPeter Zijlstra 		data++;
12920d1c86aSPeter Zijlstra 
13020d1c86aSPeter Zijlstra 	/* XXX send an IPI to @cpu in order to guarantee a read? */
13120d1c86aSPeter Zijlstra 
13220d1c86aSPeter Zijlstra 	/*
13320d1c86aSPeter Zijlstra 	 * When we observe the tail write from cyc2ns_read_end(),
13420d1c86aSPeter Zijlstra 	 * the cpu must be done with that entry and its safe
13520d1c86aSPeter Zijlstra 	 * to start writing to it.
13620d1c86aSPeter Zijlstra 	 */
13720d1c86aSPeter Zijlstra 	while (c2n->tail == data)
13820d1c86aSPeter Zijlstra 		cpu_relax();
13920d1c86aSPeter Zijlstra 
14020d1c86aSPeter Zijlstra 	return data;
14120d1c86aSPeter Zijlstra }
14220d1c86aSPeter Zijlstra 
14320d1c86aSPeter Zijlstra static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
14420d1c86aSPeter Zijlstra {
14520d1c86aSPeter Zijlstra 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
14620d1c86aSPeter Zijlstra 
14720d1c86aSPeter Zijlstra 	/*
14820d1c86aSPeter Zijlstra 	 * Ensure the @data writes are visible before we publish the
14920d1c86aSPeter Zijlstra 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
15020d1c86aSPeter Zijlstra 	 */
15120d1c86aSPeter Zijlstra 	smp_wmb();
15220d1c86aSPeter Zijlstra 
15320d1c86aSPeter Zijlstra 	ACCESS_ONCE(c2n->head) = data;
15420d1c86aSPeter Zijlstra }
15520d1c86aSPeter Zijlstra 
15620d1c86aSPeter Zijlstra /*
15720d1c86aSPeter Zijlstra  * Accelerators for sched_clock()
15857c67da2SPeter Zijlstra  * convert from cycles(64bits) => nanoseconds (64bits)
15957c67da2SPeter Zijlstra  *  basic equation:
16057c67da2SPeter Zijlstra  *              ns = cycles / (freq / ns_per_sec)
16157c67da2SPeter Zijlstra  *              ns = cycles * (ns_per_sec / freq)
16257c67da2SPeter Zijlstra  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
16357c67da2SPeter Zijlstra  *              ns = cycles * (10^6 / cpu_khz)
16457c67da2SPeter Zijlstra  *
16557c67da2SPeter Zijlstra  *      Then we use scaling math (suggested by george@mvista.com) to get:
16657c67da2SPeter Zijlstra  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
16757c67da2SPeter Zijlstra  *              ns = cycles * cyc2ns_scale / SC
16857c67da2SPeter Zijlstra  *
16957c67da2SPeter Zijlstra  *      And since SC is a constant power of two, we can convert the div
17057c67da2SPeter Zijlstra  *  into a shift.
17157c67da2SPeter Zijlstra  *
17257c67da2SPeter Zijlstra  *  We can use khz divisor instead of mhz to keep a better precision, since
17357c67da2SPeter Zijlstra  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
17457c67da2SPeter Zijlstra  *  (mathieu.desnoyers@polymtl.ca)
17557c67da2SPeter Zijlstra  *
17657c67da2SPeter Zijlstra  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
17757c67da2SPeter Zijlstra  */
17857c67da2SPeter Zijlstra 
17957c67da2SPeter Zijlstra #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
18057c67da2SPeter Zijlstra 
18120d1c86aSPeter Zijlstra static void cyc2ns_data_init(struct cyc2ns_data *data)
18220d1c86aSPeter Zijlstra {
1835e3c1afdSPeter Zijlstra 	data->cyc2ns_mul = 0;
18420d1c86aSPeter Zijlstra 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
18520d1c86aSPeter Zijlstra 	data->cyc2ns_offset = 0;
18620d1c86aSPeter Zijlstra 	data->__count = 0;
18720d1c86aSPeter Zijlstra }
18820d1c86aSPeter Zijlstra 
18920d1c86aSPeter Zijlstra static void cyc2ns_init(int cpu)
19020d1c86aSPeter Zijlstra {
19120d1c86aSPeter Zijlstra 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
19220d1c86aSPeter Zijlstra 
19320d1c86aSPeter Zijlstra 	cyc2ns_data_init(&c2n->data[0]);
19420d1c86aSPeter Zijlstra 	cyc2ns_data_init(&c2n->data[1]);
19520d1c86aSPeter Zijlstra 
19620d1c86aSPeter Zijlstra 	c2n->head = c2n->data;
19720d1c86aSPeter Zijlstra 	c2n->tail = c2n->data;
19820d1c86aSPeter Zijlstra }
19920d1c86aSPeter Zijlstra 
20057c67da2SPeter Zijlstra static inline unsigned long long cycles_2_ns(unsigned long long cyc)
20157c67da2SPeter Zijlstra {
20220d1c86aSPeter Zijlstra 	struct cyc2ns_data *data, *tail;
20320d1c86aSPeter Zijlstra 	unsigned long long ns;
20420d1c86aSPeter Zijlstra 
20520d1c86aSPeter Zijlstra 	/*
20620d1c86aSPeter Zijlstra 	 * See cyc2ns_read_*() for details; replicated in order to avoid
20720d1c86aSPeter Zijlstra 	 * an extra few instructions that came with the abstraction.
20820d1c86aSPeter Zijlstra 	 * Notable, it allows us to only do the __count and tail update
20920d1c86aSPeter Zijlstra 	 * dance when its actually needed.
21020d1c86aSPeter Zijlstra 	 */
21120d1c86aSPeter Zijlstra 
21220d1c86aSPeter Zijlstra 	preempt_disable();
21320d1c86aSPeter Zijlstra 	data = this_cpu_read(cyc2ns.head);
21420d1c86aSPeter Zijlstra 	tail = this_cpu_read(cyc2ns.tail);
21520d1c86aSPeter Zijlstra 
21620d1c86aSPeter Zijlstra 	if (likely(data == tail)) {
21720d1c86aSPeter Zijlstra 		ns = data->cyc2ns_offset;
21820d1c86aSPeter Zijlstra 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
21920d1c86aSPeter Zijlstra 	} else {
22020d1c86aSPeter Zijlstra 		data->__count++;
22120d1c86aSPeter Zijlstra 
22220d1c86aSPeter Zijlstra 		barrier();
22320d1c86aSPeter Zijlstra 
22420d1c86aSPeter Zijlstra 		ns = data->cyc2ns_offset;
22520d1c86aSPeter Zijlstra 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
22620d1c86aSPeter Zijlstra 
22720d1c86aSPeter Zijlstra 		barrier();
22820d1c86aSPeter Zijlstra 
22920d1c86aSPeter Zijlstra 		if (!--data->__count)
23020d1c86aSPeter Zijlstra 			this_cpu_write(cyc2ns.tail, data);
23120d1c86aSPeter Zijlstra 	}
23220d1c86aSPeter Zijlstra 	preempt_enable();
23320d1c86aSPeter Zijlstra 
23457c67da2SPeter Zijlstra 	return ns;
23557c67da2SPeter Zijlstra }
23657c67da2SPeter Zijlstra 
23720d1c86aSPeter Zijlstra /* XXX surely we already have this someplace in the kernel?! */
23820d1c86aSPeter Zijlstra #define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d))
23920d1c86aSPeter Zijlstra 
24057c67da2SPeter Zijlstra static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
24157c67da2SPeter Zijlstra {
24220d1c86aSPeter Zijlstra 	unsigned long long tsc_now, ns_now;
24320d1c86aSPeter Zijlstra 	struct cyc2ns_data *data;
24420d1c86aSPeter Zijlstra 	unsigned long flags;
24557c67da2SPeter Zijlstra 
24657c67da2SPeter Zijlstra 	local_irq_save(flags);
24757c67da2SPeter Zijlstra 	sched_clock_idle_sleep_event();
24857c67da2SPeter Zijlstra 
24920d1c86aSPeter Zijlstra 	if (!cpu_khz)
25020d1c86aSPeter Zijlstra 		goto done;
25120d1c86aSPeter Zijlstra 
25220d1c86aSPeter Zijlstra 	data = cyc2ns_write_begin(cpu);
25357c67da2SPeter Zijlstra 
25457c67da2SPeter Zijlstra 	rdtscll(tsc_now);
25557c67da2SPeter Zijlstra 	ns_now = cycles_2_ns(tsc_now);
25657c67da2SPeter Zijlstra 
25720d1c86aSPeter Zijlstra 	/*
25820d1c86aSPeter Zijlstra 	 * Compute a new multiplier as per the above comment and ensure our
25920d1c86aSPeter Zijlstra 	 * time function is continuous; see the comment near struct
26020d1c86aSPeter Zijlstra 	 * cyc2ns_data.
26120d1c86aSPeter Zijlstra 	 */
26220d1c86aSPeter Zijlstra 	data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz);
26320d1c86aSPeter Zijlstra 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
26420d1c86aSPeter Zijlstra 	data->cyc2ns_offset = ns_now -
26520d1c86aSPeter Zijlstra 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
26657c67da2SPeter Zijlstra 
26720d1c86aSPeter Zijlstra 	cyc2ns_write_end(cpu, data);
26820d1c86aSPeter Zijlstra 
26920d1c86aSPeter Zijlstra done:
27057c67da2SPeter Zijlstra 	sched_clock_idle_wakeup_event(0);
27157c67da2SPeter Zijlstra 	local_irq_restore(flags);
27257c67da2SPeter Zijlstra }
2730ef95533SAlok Kataria /*
2740ef95533SAlok Kataria  * Scheduler clock - returns current time in nanosec units.
2750ef95533SAlok Kataria  */
2760ef95533SAlok Kataria u64 native_sched_clock(void)
2770ef95533SAlok Kataria {
27820d1c86aSPeter Zijlstra 	u64 tsc_now;
2790ef95533SAlok Kataria 
2800ef95533SAlok Kataria 	/*
2810ef95533SAlok Kataria 	 * Fall back to jiffies if there's no TSC available:
2820ef95533SAlok Kataria 	 * ( But note that we still use it if the TSC is marked
2830ef95533SAlok Kataria 	 *   unstable. We do this because unlike Time Of Day,
2840ef95533SAlok Kataria 	 *   the scheduler clock tolerates small errors and it's
2850ef95533SAlok Kataria 	 *   very important for it to be as fast as the platform
2863ad2f3fbSDaniel Mack 	 *   can achieve it. )
2870ef95533SAlok Kataria 	 */
28810b033d4SPeter Zijlstra 	if (!static_key_false(&__use_tsc)) {
2890ef95533SAlok Kataria 		/* No locking but a rare wrong value is not a big deal: */
2900ef95533SAlok Kataria 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
2910ef95533SAlok Kataria 	}
2920ef95533SAlok Kataria 
2930ef95533SAlok Kataria 	/* read the Time Stamp Counter: */
29420d1c86aSPeter Zijlstra 	rdtscll(tsc_now);
2950ef95533SAlok Kataria 
2960ef95533SAlok Kataria 	/* return the value in ns */
29720d1c86aSPeter Zijlstra 	return cycles_2_ns(tsc_now);
2980ef95533SAlok Kataria }
2990ef95533SAlok Kataria 
3000ef95533SAlok Kataria /* We need to define a real function for sched_clock, to override the
3010ef95533SAlok Kataria    weak default version */
3020ef95533SAlok Kataria #ifdef CONFIG_PARAVIRT
3030ef95533SAlok Kataria unsigned long long sched_clock(void)
3040ef95533SAlok Kataria {
3050ef95533SAlok Kataria 	return paravirt_sched_clock();
3060ef95533SAlok Kataria }
3070ef95533SAlok Kataria #else
3080ef95533SAlok Kataria unsigned long long
3090ef95533SAlok Kataria sched_clock(void) __attribute__((alias("native_sched_clock")));
3100ef95533SAlok Kataria #endif
3110ef95533SAlok Kataria 
312ce37f400SDavid Vrabel unsigned long long native_read_tsc(void)
313ce37f400SDavid Vrabel {
314ce37f400SDavid Vrabel 	return __native_read_tsc();
315ce37f400SDavid Vrabel }
316ce37f400SDavid Vrabel EXPORT_SYMBOL(native_read_tsc);
317ce37f400SDavid Vrabel 
3180ef95533SAlok Kataria int check_tsc_unstable(void)
3190ef95533SAlok Kataria {
3200ef95533SAlok Kataria 	return tsc_unstable;
3210ef95533SAlok Kataria }
3220ef95533SAlok Kataria EXPORT_SYMBOL_GPL(check_tsc_unstable);
3230ef95533SAlok Kataria 
324c73deb6aSAdrian Hunter int check_tsc_disabled(void)
325c73deb6aSAdrian Hunter {
326c73deb6aSAdrian Hunter 	return tsc_disabled;
327c73deb6aSAdrian Hunter }
328c73deb6aSAdrian Hunter EXPORT_SYMBOL_GPL(check_tsc_disabled);
329c73deb6aSAdrian Hunter 
3300ef95533SAlok Kataria #ifdef CONFIG_X86_TSC
3310ef95533SAlok Kataria int __init notsc_setup(char *str)
3320ef95533SAlok Kataria {
333c767a54bSJoe Perches 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
3340ef95533SAlok Kataria 	tsc_disabled = 1;
3350ef95533SAlok Kataria 	return 1;
3360ef95533SAlok Kataria }
3370ef95533SAlok Kataria #else
3380ef95533SAlok Kataria /*
3390ef95533SAlok Kataria  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
3400ef95533SAlok Kataria  * in cpu/common.c
3410ef95533SAlok Kataria  */
3420ef95533SAlok Kataria int __init notsc_setup(char *str)
3430ef95533SAlok Kataria {
3440ef95533SAlok Kataria 	setup_clear_cpu_cap(X86_FEATURE_TSC);
3450ef95533SAlok Kataria 	return 1;
3460ef95533SAlok Kataria }
3470ef95533SAlok Kataria #endif
3480ef95533SAlok Kataria 
3490ef95533SAlok Kataria __setup("notsc", notsc_setup);
350bfc0f594SAlok Kataria 
351e82b8e4eSVenkatesh Pallipadi static int no_sched_irq_time;
352e82b8e4eSVenkatesh Pallipadi 
353395628efSAlok Kataria static int __init tsc_setup(char *str)
354395628efSAlok Kataria {
355395628efSAlok Kataria 	if (!strcmp(str, "reliable"))
356395628efSAlok Kataria 		tsc_clocksource_reliable = 1;
357e82b8e4eSVenkatesh Pallipadi 	if (!strncmp(str, "noirqtime", 9))
358e82b8e4eSVenkatesh Pallipadi 		no_sched_irq_time = 1;
359395628efSAlok Kataria 	return 1;
360395628efSAlok Kataria }
361395628efSAlok Kataria 
362395628efSAlok Kataria __setup("tsc=", tsc_setup);
363395628efSAlok Kataria 
364bfc0f594SAlok Kataria #define MAX_RETRIES     5
365bfc0f594SAlok Kataria #define SMI_TRESHOLD    50000
366bfc0f594SAlok Kataria 
367bfc0f594SAlok Kataria /*
368bfc0f594SAlok Kataria  * Read TSC and the reference counters. Take care of SMI disturbance
369bfc0f594SAlok Kataria  */
370827014beSThomas Gleixner static u64 tsc_read_refs(u64 *p, int hpet)
371bfc0f594SAlok Kataria {
372bfc0f594SAlok Kataria 	u64 t1, t2;
373bfc0f594SAlok Kataria 	int i;
374bfc0f594SAlok Kataria 
375bfc0f594SAlok Kataria 	for (i = 0; i < MAX_RETRIES; i++) {
376bfc0f594SAlok Kataria 		t1 = get_cycles();
377bfc0f594SAlok Kataria 		if (hpet)
378827014beSThomas Gleixner 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
379bfc0f594SAlok Kataria 		else
380827014beSThomas Gleixner 			*p = acpi_pm_read_early();
381bfc0f594SAlok Kataria 		t2 = get_cycles();
382bfc0f594SAlok Kataria 		if ((t2 - t1) < SMI_TRESHOLD)
383bfc0f594SAlok Kataria 			return t2;
384bfc0f594SAlok Kataria 	}
385bfc0f594SAlok Kataria 	return ULLONG_MAX;
386bfc0f594SAlok Kataria }
387bfc0f594SAlok Kataria 
388ec0c15afSLinus Torvalds /*
389d683ef7aSThomas Gleixner  * Calculate the TSC frequency from HPET reference
390d683ef7aSThomas Gleixner  */
391d683ef7aSThomas Gleixner static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
392d683ef7aSThomas Gleixner {
393d683ef7aSThomas Gleixner 	u64 tmp;
394d683ef7aSThomas Gleixner 
395d683ef7aSThomas Gleixner 	if (hpet2 < hpet1)
396d683ef7aSThomas Gleixner 		hpet2 += 0x100000000ULL;
397d683ef7aSThomas Gleixner 	hpet2 -= hpet1;
398d683ef7aSThomas Gleixner 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
399d683ef7aSThomas Gleixner 	do_div(tmp, 1000000);
400d683ef7aSThomas Gleixner 	do_div(deltatsc, tmp);
401d683ef7aSThomas Gleixner 
402d683ef7aSThomas Gleixner 	return (unsigned long) deltatsc;
403d683ef7aSThomas Gleixner }
404d683ef7aSThomas Gleixner 
405d683ef7aSThomas Gleixner /*
406d683ef7aSThomas Gleixner  * Calculate the TSC frequency from PMTimer reference
407d683ef7aSThomas Gleixner  */
408d683ef7aSThomas Gleixner static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
409d683ef7aSThomas Gleixner {
410d683ef7aSThomas Gleixner 	u64 tmp;
411d683ef7aSThomas Gleixner 
412d683ef7aSThomas Gleixner 	if (!pm1 && !pm2)
413d683ef7aSThomas Gleixner 		return ULONG_MAX;
414d683ef7aSThomas Gleixner 
415d683ef7aSThomas Gleixner 	if (pm2 < pm1)
416d683ef7aSThomas Gleixner 		pm2 += (u64)ACPI_PM_OVRRUN;
417d683ef7aSThomas Gleixner 	pm2 -= pm1;
418d683ef7aSThomas Gleixner 	tmp = pm2 * 1000000000LL;
419d683ef7aSThomas Gleixner 	do_div(tmp, PMTMR_TICKS_PER_SEC);
420d683ef7aSThomas Gleixner 	do_div(deltatsc, tmp);
421d683ef7aSThomas Gleixner 
422d683ef7aSThomas Gleixner 	return (unsigned long) deltatsc;
423d683ef7aSThomas Gleixner }
424d683ef7aSThomas Gleixner 
425a977c400SThomas Gleixner #define CAL_MS		10
426b7743970SDeepak Saxena #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
427a977c400SThomas Gleixner #define CAL_PIT_LOOPS	1000
428a977c400SThomas Gleixner 
429a977c400SThomas Gleixner #define CAL2_MS		50
430b7743970SDeepak Saxena #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
431a977c400SThomas Gleixner #define CAL2_PIT_LOOPS	5000
432a977c400SThomas Gleixner 
433cce3e057SThomas Gleixner 
434ec0c15afSLinus Torvalds /*
435ec0c15afSLinus Torvalds  * Try to calibrate the TSC against the Programmable
436ec0c15afSLinus Torvalds  * Interrupt Timer and return the frequency of the TSC
437ec0c15afSLinus Torvalds  * in kHz.
438ec0c15afSLinus Torvalds  *
439ec0c15afSLinus Torvalds  * Return ULONG_MAX on failure to calibrate.
440ec0c15afSLinus Torvalds  */
441a977c400SThomas Gleixner static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
442ec0c15afSLinus Torvalds {
443ec0c15afSLinus Torvalds 	u64 tsc, t1, t2, delta;
444ec0c15afSLinus Torvalds 	unsigned long tscmin, tscmax;
445ec0c15afSLinus Torvalds 	int pitcnt;
446ec0c15afSLinus Torvalds 
447ec0c15afSLinus Torvalds 	/* Set the Gate high, disable speaker */
448ec0c15afSLinus Torvalds 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
449ec0c15afSLinus Torvalds 
450ec0c15afSLinus Torvalds 	/*
451ec0c15afSLinus Torvalds 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
452ec0c15afSLinus Torvalds 	 * count mode), binary count. Set the latch register to 50ms
453ec0c15afSLinus Torvalds 	 * (LSB then MSB) to begin countdown.
454ec0c15afSLinus Torvalds 	 */
455ec0c15afSLinus Torvalds 	outb(0xb0, 0x43);
456a977c400SThomas Gleixner 	outb(latch & 0xff, 0x42);
457a977c400SThomas Gleixner 	outb(latch >> 8, 0x42);
458ec0c15afSLinus Torvalds 
459ec0c15afSLinus Torvalds 	tsc = t1 = t2 = get_cycles();
460ec0c15afSLinus Torvalds 
461ec0c15afSLinus Torvalds 	pitcnt = 0;
462ec0c15afSLinus Torvalds 	tscmax = 0;
463ec0c15afSLinus Torvalds 	tscmin = ULONG_MAX;
464ec0c15afSLinus Torvalds 	while ((inb(0x61) & 0x20) == 0) {
465ec0c15afSLinus Torvalds 		t2 = get_cycles();
466ec0c15afSLinus Torvalds 		delta = t2 - tsc;
467ec0c15afSLinus Torvalds 		tsc = t2;
468ec0c15afSLinus Torvalds 		if ((unsigned long) delta < tscmin)
469ec0c15afSLinus Torvalds 			tscmin = (unsigned int) delta;
470ec0c15afSLinus Torvalds 		if ((unsigned long) delta > tscmax)
471ec0c15afSLinus Torvalds 			tscmax = (unsigned int) delta;
472ec0c15afSLinus Torvalds 		pitcnt++;
473ec0c15afSLinus Torvalds 	}
474ec0c15afSLinus Torvalds 
475ec0c15afSLinus Torvalds 	/*
476ec0c15afSLinus Torvalds 	 * Sanity checks:
477ec0c15afSLinus Torvalds 	 *
478a977c400SThomas Gleixner 	 * If we were not able to read the PIT more than loopmin
479ec0c15afSLinus Torvalds 	 * times, then we have been hit by a massive SMI
480ec0c15afSLinus Torvalds 	 *
481ec0c15afSLinus Torvalds 	 * If the maximum is 10 times larger than the minimum,
482ec0c15afSLinus Torvalds 	 * then we got hit by an SMI as well.
483ec0c15afSLinus Torvalds 	 */
484a977c400SThomas Gleixner 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
485ec0c15afSLinus Torvalds 		return ULONG_MAX;
486ec0c15afSLinus Torvalds 
487ec0c15afSLinus Torvalds 	/* Calculate the PIT value */
488ec0c15afSLinus Torvalds 	delta = t2 - t1;
489a977c400SThomas Gleixner 	do_div(delta, ms);
490ec0c15afSLinus Torvalds 	return delta;
491ec0c15afSLinus Torvalds }
492ec0c15afSLinus Torvalds 
4936ac40ed0SLinus Torvalds /*
4946ac40ed0SLinus Torvalds  * This reads the current MSB of the PIT counter, and
4956ac40ed0SLinus Torvalds  * checks if we are running on sufficiently fast and
4966ac40ed0SLinus Torvalds  * non-virtualized hardware.
4976ac40ed0SLinus Torvalds  *
4986ac40ed0SLinus Torvalds  * Our expectations are:
4996ac40ed0SLinus Torvalds  *
5006ac40ed0SLinus Torvalds  *  - the PIT is running at roughly 1.19MHz
5016ac40ed0SLinus Torvalds  *
5026ac40ed0SLinus Torvalds  *  - each IO is going to take about 1us on real hardware,
5036ac40ed0SLinus Torvalds  *    but we allow it to be much faster (by a factor of 10) or
5046ac40ed0SLinus Torvalds  *    _slightly_ slower (ie we allow up to a 2us read+counter
5056ac40ed0SLinus Torvalds  *    update - anything else implies a unacceptably slow CPU
5066ac40ed0SLinus Torvalds  *    or PIT for the fast calibration to work.
5076ac40ed0SLinus Torvalds  *
5086ac40ed0SLinus Torvalds  *  - with 256 PIT ticks to read the value, we have 214us to
5096ac40ed0SLinus Torvalds  *    see the same MSB (and overhead like doing a single TSC
5106ac40ed0SLinus Torvalds  *    read per MSB value etc).
5116ac40ed0SLinus Torvalds  *
5126ac40ed0SLinus Torvalds  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
5136ac40ed0SLinus Torvalds  *    them each to take about a microsecond on real hardware.
5146ac40ed0SLinus Torvalds  *    So we expect a count value of around 100. But we'll be
5156ac40ed0SLinus Torvalds  *    generous, and accept anything over 50.
5166ac40ed0SLinus Torvalds  *
5176ac40ed0SLinus Torvalds  *  - if the PIT is stuck, and we see *many* more reads, we
5186ac40ed0SLinus Torvalds  *    return early (and the next caller of pit_expect_msb()
5196ac40ed0SLinus Torvalds  *    then consider it a failure when they don't see the
5206ac40ed0SLinus Torvalds  *    next expected value).
5216ac40ed0SLinus Torvalds  *
5226ac40ed0SLinus Torvalds  * These expectations mean that we know that we have seen the
5236ac40ed0SLinus Torvalds  * transition from one expected value to another with a fairly
5246ac40ed0SLinus Torvalds  * high accuracy, and we didn't miss any events. We can thus
5256ac40ed0SLinus Torvalds  * use the TSC value at the transitions to calculate a pretty
5266ac40ed0SLinus Torvalds  * good value for the TSC frequencty.
5276ac40ed0SLinus Torvalds  */
528b6e61eefSLinus Torvalds static inline int pit_verify_msb(unsigned char val)
529b6e61eefSLinus Torvalds {
530b6e61eefSLinus Torvalds 	/* Ignore LSB */
531b6e61eefSLinus Torvalds 	inb(0x42);
532b6e61eefSLinus Torvalds 	return inb(0x42) == val;
533b6e61eefSLinus Torvalds }
534b6e61eefSLinus Torvalds 
5359e8912e0SLinus Torvalds static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
5366ac40ed0SLinus Torvalds {
5379e8912e0SLinus Torvalds 	int count;
53868f30fbeSLinus Torvalds 	u64 tsc = 0, prev_tsc = 0;
5396ac40ed0SLinus Torvalds 
5406ac40ed0SLinus Torvalds 	for (count = 0; count < 50000; count++) {
541b6e61eefSLinus Torvalds 		if (!pit_verify_msb(val))
5426ac40ed0SLinus Torvalds 			break;
54368f30fbeSLinus Torvalds 		prev_tsc = tsc;
5449e8912e0SLinus Torvalds 		tsc = get_cycles();
5456ac40ed0SLinus Torvalds 	}
54668f30fbeSLinus Torvalds 	*deltap = get_cycles() - prev_tsc;
5479e8912e0SLinus Torvalds 	*tscp = tsc;
5489e8912e0SLinus Torvalds 
5499e8912e0SLinus Torvalds 	/*
5509e8912e0SLinus Torvalds 	 * We require _some_ success, but the quality control
5519e8912e0SLinus Torvalds 	 * will be based on the error terms on the TSC values.
5529e8912e0SLinus Torvalds 	 */
5539e8912e0SLinus Torvalds 	return count > 5;
5546ac40ed0SLinus Torvalds }
5556ac40ed0SLinus Torvalds 
5566ac40ed0SLinus Torvalds /*
5579e8912e0SLinus Torvalds  * How many MSB values do we want to see? We aim for
5589e8912e0SLinus Torvalds  * a maximum error rate of 500ppm (in practice the
5599e8912e0SLinus Torvalds  * real error is much smaller), but refuse to spend
56068f30fbeSLinus Torvalds  * more than 50ms on it.
5616ac40ed0SLinus Torvalds  */
56268f30fbeSLinus Torvalds #define MAX_QUICK_PIT_MS 50
5639e8912e0SLinus Torvalds #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
5646ac40ed0SLinus Torvalds 
5656ac40ed0SLinus Torvalds static unsigned long quick_pit_calibrate(void)
5666ac40ed0SLinus Torvalds {
5679e8912e0SLinus Torvalds 	int i;
5689e8912e0SLinus Torvalds 	u64 tsc, delta;
5699e8912e0SLinus Torvalds 	unsigned long d1, d2;
5709e8912e0SLinus Torvalds 
5716ac40ed0SLinus Torvalds 	/* Set the Gate high, disable speaker */
5726ac40ed0SLinus Torvalds 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
5736ac40ed0SLinus Torvalds 
5746ac40ed0SLinus Torvalds 	/*
5756ac40ed0SLinus Torvalds 	 * Counter 2, mode 0 (one-shot), binary count
5766ac40ed0SLinus Torvalds 	 *
5776ac40ed0SLinus Torvalds 	 * NOTE! Mode 2 decrements by two (and then the
5786ac40ed0SLinus Torvalds 	 * output is flipped each time, giving the same
5796ac40ed0SLinus Torvalds 	 * final output frequency as a decrement-by-one),
5806ac40ed0SLinus Torvalds 	 * so mode 0 is much better when looking at the
5816ac40ed0SLinus Torvalds 	 * individual counts.
5826ac40ed0SLinus Torvalds 	 */
5836ac40ed0SLinus Torvalds 	outb(0xb0, 0x43);
5846ac40ed0SLinus Torvalds 
5856ac40ed0SLinus Torvalds 	/* Start at 0xffff */
5866ac40ed0SLinus Torvalds 	outb(0xff, 0x42);
5876ac40ed0SLinus Torvalds 	outb(0xff, 0x42);
5886ac40ed0SLinus Torvalds 
589a6a80e1dSLinus Torvalds 	/*
590a6a80e1dSLinus Torvalds 	 * The PIT starts counting at the next edge, so we
591a6a80e1dSLinus Torvalds 	 * need to delay for a microsecond. The easiest way
592a6a80e1dSLinus Torvalds 	 * to do that is to just read back the 16-bit counter
593a6a80e1dSLinus Torvalds 	 * once from the PIT.
594a6a80e1dSLinus Torvalds 	 */
595b6e61eefSLinus Torvalds 	pit_verify_msb(0);
596a6a80e1dSLinus Torvalds 
5979e8912e0SLinus Torvalds 	if (pit_expect_msb(0xff, &tsc, &d1)) {
5989e8912e0SLinus Torvalds 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
5999e8912e0SLinus Torvalds 			if (!pit_expect_msb(0xff-i, &delta, &d2))
6009e8912e0SLinus Torvalds 				break;
6016ac40ed0SLinus Torvalds 
6026ac40ed0SLinus Torvalds 			/*
6039e8912e0SLinus Torvalds 			 * Iterate until the error is less than 500 ppm
6044156e9a8SIngo Molnar 			 */
6059e8912e0SLinus Torvalds 			delta -= tsc;
606b6e61eefSLinus Torvalds 			if (d1+d2 >= delta >> 11)
607b6e61eefSLinus Torvalds 				continue;
608b6e61eefSLinus Torvalds 
609b6e61eefSLinus Torvalds 			/*
610b6e61eefSLinus Torvalds 			 * Check the PIT one more time to verify that
611b6e61eefSLinus Torvalds 			 * all TSC reads were stable wrt the PIT.
612b6e61eefSLinus Torvalds 			 *
613b6e61eefSLinus Torvalds 			 * This also guarantees serialization of the
614b6e61eefSLinus Torvalds 			 * last cycle read ('d2') in pit_expect_msb.
615b6e61eefSLinus Torvalds 			 */
616b6e61eefSLinus Torvalds 			if (!pit_verify_msb(0xfe - i))
617b6e61eefSLinus Torvalds 				break;
6189e8912e0SLinus Torvalds 			goto success;
6199e8912e0SLinus Torvalds 		}
6209e8912e0SLinus Torvalds 	}
621c767a54bSJoe Perches 	pr_err("Fast TSC calibration failed\n");
6229e8912e0SLinus Torvalds 	return 0;
6234156e9a8SIngo Molnar 
6249e8912e0SLinus Torvalds success:
6254156e9a8SIngo Molnar 	/*
6266ac40ed0SLinus Torvalds 	 * Ok, if we get here, then we've seen the
6279e8912e0SLinus Torvalds 	 * MSB of the PIT decrement 'i' times, and the
6289e8912e0SLinus Torvalds 	 * error has shrunk to less than 500 ppm.
6296ac40ed0SLinus Torvalds 	 *
6306ac40ed0SLinus Torvalds 	 * As a result, we can depend on there not being
6316ac40ed0SLinus Torvalds 	 * any odd delays anywhere, and the TSC reads are
63268f30fbeSLinus Torvalds 	 * reliable (within the error).
6336ac40ed0SLinus Torvalds 	 *
6346ac40ed0SLinus Torvalds 	 * kHz = ticks / time-in-seconds / 1000;
6359e8912e0SLinus Torvalds 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
6369e8912e0SLinus Torvalds 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
6376ac40ed0SLinus Torvalds 	 */
6389e8912e0SLinus Torvalds 	delta *= PIT_TICK_RATE;
6399e8912e0SLinus Torvalds 	do_div(delta, i*256*1000);
640c767a54bSJoe Perches 	pr_info("Fast TSC calibration using PIT\n");
6416ac40ed0SLinus Torvalds 	return delta;
6426ac40ed0SLinus Torvalds }
643ec0c15afSLinus Torvalds 
644bfc0f594SAlok Kataria /**
645e93ef949SAlok Kataria  * native_calibrate_tsc - calibrate the tsc on boot
646bfc0f594SAlok Kataria  */
647e93ef949SAlok Kataria unsigned long native_calibrate_tsc(void)
648bfc0f594SAlok Kataria {
649827014beSThomas Gleixner 	u64 tsc1, tsc2, delta, ref1, ref2;
650fbb16e24SThomas Gleixner 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
6512d826404SThomas Gleixner 	unsigned long flags, latch, ms, fast_calibrate;
652a977c400SThomas Gleixner 	int hpet = is_hpet_enabled(), i, loopmin;
653bfc0f594SAlok Kataria 
6547da7c156SBin Gao 	/* Calibrate TSC using MSR for Intel Atom SoCs */
6557da7c156SBin Gao 	local_irq_save(flags);
6567da7c156SBin Gao 	i = try_msr_calibrate_tsc(&fast_calibrate);
6577da7c156SBin Gao 	local_irq_restore(flags);
6587da7c156SBin Gao 	if (i >= 0) {
6597da7c156SBin Gao 		if (i == 0)
6607da7c156SBin Gao 			pr_warn("Fast TSC calibration using MSR failed\n");
6617da7c156SBin Gao 		return fast_calibrate;
6627da7c156SBin Gao 	}
6637da7c156SBin Gao 
664bfc0f594SAlok Kataria 	local_irq_save(flags);
6656ac40ed0SLinus Torvalds 	fast_calibrate = quick_pit_calibrate();
666bfc0f594SAlok Kataria 	local_irq_restore(flags);
6676ac40ed0SLinus Torvalds 	if (fast_calibrate)
6686ac40ed0SLinus Torvalds 		return fast_calibrate;
669fbb16e24SThomas Gleixner 
670fbb16e24SThomas Gleixner 	/*
671fbb16e24SThomas Gleixner 	 * Run 5 calibration loops to get the lowest frequency value
672fbb16e24SThomas Gleixner 	 * (the best estimate). We use two different calibration modes
673fbb16e24SThomas Gleixner 	 * here:
674fbb16e24SThomas Gleixner 	 *
675fbb16e24SThomas Gleixner 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
676fbb16e24SThomas Gleixner 	 * load a timeout of 50ms. We read the time right after we
677fbb16e24SThomas Gleixner 	 * started the timer and wait until the PIT count down reaches
678fbb16e24SThomas Gleixner 	 * zero. In each wait loop iteration we read the TSC and check
679fbb16e24SThomas Gleixner 	 * the delta to the previous read. We keep track of the min
680fbb16e24SThomas Gleixner 	 * and max values of that delta. The delta is mostly defined
681fbb16e24SThomas Gleixner 	 * by the IO time of the PIT access, so we can detect when a
6820d2eb44fSLucas De Marchi 	 * SMI/SMM disturbance happened between the two reads. If the
683fbb16e24SThomas Gleixner 	 * maximum time is significantly larger than the minimum time,
684fbb16e24SThomas Gleixner 	 * then we discard the result and have another try.
685fbb16e24SThomas Gleixner 	 *
686fbb16e24SThomas Gleixner 	 * 2) Reference counter. If available we use the HPET or the
687fbb16e24SThomas Gleixner 	 * PMTIMER as a reference to check the sanity of that value.
688fbb16e24SThomas Gleixner 	 * We use separate TSC readouts and check inside of the
689fbb16e24SThomas Gleixner 	 * reference read for a SMI/SMM disturbance. We dicard
690fbb16e24SThomas Gleixner 	 * disturbed values here as well. We do that around the PIT
691fbb16e24SThomas Gleixner 	 * calibration delay loop as we have to wait for a certain
692fbb16e24SThomas Gleixner 	 * amount of time anyway.
693fbb16e24SThomas Gleixner 	 */
694a977c400SThomas Gleixner 
695a977c400SThomas Gleixner 	/* Preset PIT loop values */
696a977c400SThomas Gleixner 	latch = CAL_LATCH;
697a977c400SThomas Gleixner 	ms = CAL_MS;
698a977c400SThomas Gleixner 	loopmin = CAL_PIT_LOOPS;
699a977c400SThomas Gleixner 
700a977c400SThomas Gleixner 	for (i = 0; i < 3; i++) {
701ec0c15afSLinus Torvalds 		unsigned long tsc_pit_khz;
702bfc0f594SAlok Kataria 
703fbb16e24SThomas Gleixner 		/*
704fbb16e24SThomas Gleixner 		 * Read the start value and the reference count of
705ec0c15afSLinus Torvalds 		 * hpet/pmtimer when available. Then do the PIT
706ec0c15afSLinus Torvalds 		 * calibration, which will take at least 50ms, and
707ec0c15afSLinus Torvalds 		 * read the end value.
708fbb16e24SThomas Gleixner 		 */
709ec0c15afSLinus Torvalds 		local_irq_save(flags);
710827014beSThomas Gleixner 		tsc1 = tsc_read_refs(&ref1, hpet);
711a977c400SThomas Gleixner 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
712827014beSThomas Gleixner 		tsc2 = tsc_read_refs(&ref2, hpet);
713bfc0f594SAlok Kataria 		local_irq_restore(flags);
714bfc0f594SAlok Kataria 
715ec0c15afSLinus Torvalds 		/* Pick the lowest PIT TSC calibration so far */
716ec0c15afSLinus Torvalds 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
717bfc0f594SAlok Kataria 
718bfc0f594SAlok Kataria 		/* hpet or pmtimer available ? */
71962627becSJohn Stultz 		if (ref1 == ref2)
720fbb16e24SThomas Gleixner 			continue;
721bfc0f594SAlok Kataria 
722bfc0f594SAlok Kataria 		/* Check, whether the sampling was disturbed by an SMI */
723fbb16e24SThomas Gleixner 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
724fbb16e24SThomas Gleixner 			continue;
725bfc0f594SAlok Kataria 
726bfc0f594SAlok Kataria 		tsc2 = (tsc2 - tsc1) * 1000000LL;
727d683ef7aSThomas Gleixner 		if (hpet)
728827014beSThomas Gleixner 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
729d683ef7aSThomas Gleixner 		else
730827014beSThomas Gleixner 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
731bfc0f594SAlok Kataria 
732fbb16e24SThomas Gleixner 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
733a977c400SThomas Gleixner 
734a977c400SThomas Gleixner 		/* Check the reference deviation */
735a977c400SThomas Gleixner 		delta = ((u64) tsc_pit_min) * 100;
736a977c400SThomas Gleixner 		do_div(delta, tsc_ref_min);
737a977c400SThomas Gleixner 
738a977c400SThomas Gleixner 		/*
739a977c400SThomas Gleixner 		 * If both calibration results are inside a 10% window
740a977c400SThomas Gleixner 		 * then we can be sure, that the calibration
741a977c400SThomas Gleixner 		 * succeeded. We break out of the loop right away. We
742a977c400SThomas Gleixner 		 * use the reference value, as it is more precise.
743a977c400SThomas Gleixner 		 */
744a977c400SThomas Gleixner 		if (delta >= 90 && delta <= 110) {
745c767a54bSJoe Perches 			pr_info("PIT calibration matches %s. %d loops\n",
746a977c400SThomas Gleixner 				hpet ? "HPET" : "PMTIMER", i + 1);
747a977c400SThomas Gleixner 			return tsc_ref_min;
748bfc0f594SAlok Kataria 		}
749bfc0f594SAlok Kataria 
750a977c400SThomas Gleixner 		/*
751a977c400SThomas Gleixner 		 * Check whether PIT failed more than once. This
752a977c400SThomas Gleixner 		 * happens in virtualized environments. We need to
753a977c400SThomas Gleixner 		 * give the virtual PC a slightly longer timeframe for
754a977c400SThomas Gleixner 		 * the HPET/PMTIMER to make the result precise.
755a977c400SThomas Gleixner 		 */
756a977c400SThomas Gleixner 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
757a977c400SThomas Gleixner 			latch = CAL2_LATCH;
758a977c400SThomas Gleixner 			ms = CAL2_MS;
759a977c400SThomas Gleixner 			loopmin = CAL2_PIT_LOOPS;
760a977c400SThomas Gleixner 		}
761bfc0f594SAlok Kataria 	}
762bfc0f594SAlok Kataria 
763fbb16e24SThomas Gleixner 	/*
764fbb16e24SThomas Gleixner 	 * Now check the results.
765fbb16e24SThomas Gleixner 	 */
766fbb16e24SThomas Gleixner 	if (tsc_pit_min == ULONG_MAX) {
767fbb16e24SThomas Gleixner 		/* PIT gave no useful value */
768c767a54bSJoe Perches 		pr_warn("Unable to calibrate against PIT\n");
769fbb16e24SThomas Gleixner 
770fbb16e24SThomas Gleixner 		/* We don't have an alternative source, disable TSC */
771827014beSThomas Gleixner 		if (!hpet && !ref1 && !ref2) {
772c767a54bSJoe Perches 			pr_notice("No reference (HPET/PMTIMER) available\n");
773fbb16e24SThomas Gleixner 			return 0;
774fbb16e24SThomas Gleixner 		}
775fbb16e24SThomas Gleixner 
776fbb16e24SThomas Gleixner 		/* The alternative source failed as well, disable TSC */
777fbb16e24SThomas Gleixner 		if (tsc_ref_min == ULONG_MAX) {
778c767a54bSJoe Perches 			pr_warn("HPET/PMTIMER calibration failed\n");
779fbb16e24SThomas Gleixner 			return 0;
780fbb16e24SThomas Gleixner 		}
781fbb16e24SThomas Gleixner 
782fbb16e24SThomas Gleixner 		/* Use the alternative source */
783c767a54bSJoe Perches 		pr_info("using %s reference calibration\n",
784fbb16e24SThomas Gleixner 			hpet ? "HPET" : "PMTIMER");
785fbb16e24SThomas Gleixner 
786fbb16e24SThomas Gleixner 		return tsc_ref_min;
787fbb16e24SThomas Gleixner 	}
788fbb16e24SThomas Gleixner 
789fbb16e24SThomas Gleixner 	/* We don't have an alternative source, use the PIT calibration value */
790827014beSThomas Gleixner 	if (!hpet && !ref1 && !ref2) {
791c767a54bSJoe Perches 		pr_info("Using PIT calibration value\n");
792fbb16e24SThomas Gleixner 		return tsc_pit_min;
793fbb16e24SThomas Gleixner 	}
794fbb16e24SThomas Gleixner 
795fbb16e24SThomas Gleixner 	/* The alternative source failed, use the PIT calibration value */
796fbb16e24SThomas Gleixner 	if (tsc_ref_min == ULONG_MAX) {
797c767a54bSJoe Perches 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
798fbb16e24SThomas Gleixner 		return tsc_pit_min;
799fbb16e24SThomas Gleixner 	}
800fbb16e24SThomas Gleixner 
801fbb16e24SThomas Gleixner 	/*
802fbb16e24SThomas Gleixner 	 * The calibration values differ too much. In doubt, we use
803fbb16e24SThomas Gleixner 	 * the PIT value as we know that there are PMTIMERs around
804a977c400SThomas Gleixner 	 * running at double speed. At least we let the user know:
805fbb16e24SThomas Gleixner 	 */
806c767a54bSJoe Perches 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
807a977c400SThomas Gleixner 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
808c767a54bSJoe Perches 	pr_info("Using PIT calibration value\n");
809fbb16e24SThomas Gleixner 	return tsc_pit_min;
810fbb16e24SThomas Gleixner }
811bfc0f594SAlok Kataria 
812bfc0f594SAlok Kataria int recalibrate_cpu_khz(void)
813bfc0f594SAlok Kataria {
814bfc0f594SAlok Kataria #ifndef CONFIG_SMP
815bfc0f594SAlok Kataria 	unsigned long cpu_khz_old = cpu_khz;
816bfc0f594SAlok Kataria 
817bfc0f594SAlok Kataria 	if (cpu_has_tsc) {
8182d826404SThomas Gleixner 		tsc_khz = x86_platform.calibrate_tsc();
819e93ef949SAlok Kataria 		cpu_khz = tsc_khz;
820bfc0f594SAlok Kataria 		cpu_data(0).loops_per_jiffy =
821bfc0f594SAlok Kataria 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
822bfc0f594SAlok Kataria 					cpu_khz_old, cpu_khz);
823bfc0f594SAlok Kataria 		return 0;
824bfc0f594SAlok Kataria 	} else
825bfc0f594SAlok Kataria 		return -ENODEV;
826bfc0f594SAlok Kataria #else
827bfc0f594SAlok Kataria 	return -ENODEV;
828bfc0f594SAlok Kataria #endif
829bfc0f594SAlok Kataria }
830bfc0f594SAlok Kataria 
831bfc0f594SAlok Kataria EXPORT_SYMBOL(recalibrate_cpu_khz);
832bfc0f594SAlok Kataria 
8332dbe06faSAlok Kataria 
834cd7240c0SSuresh Siddha static unsigned long long cyc2ns_suspend;
835cd7240c0SSuresh Siddha 
836b74f05d6SMarcelo Tosatti void tsc_save_sched_clock_state(void)
837cd7240c0SSuresh Siddha {
83835af99e6SPeter Zijlstra 	if (!sched_clock_stable())
839cd7240c0SSuresh Siddha 		return;
840cd7240c0SSuresh Siddha 
841cd7240c0SSuresh Siddha 	cyc2ns_suspend = sched_clock();
842cd7240c0SSuresh Siddha }
843cd7240c0SSuresh Siddha 
844cd7240c0SSuresh Siddha /*
845cd7240c0SSuresh Siddha  * Even on processors with invariant TSC, TSC gets reset in some the
846cd7240c0SSuresh Siddha  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
847cd7240c0SSuresh Siddha  * arbitrary value (still sync'd across cpu's) during resume from such sleep
848cd7240c0SSuresh Siddha  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
849cd7240c0SSuresh Siddha  * that sched_clock() continues from the point where it was left off during
850cd7240c0SSuresh Siddha  * suspend.
851cd7240c0SSuresh Siddha  */
852b74f05d6SMarcelo Tosatti void tsc_restore_sched_clock_state(void)
853cd7240c0SSuresh Siddha {
854cd7240c0SSuresh Siddha 	unsigned long long offset;
855cd7240c0SSuresh Siddha 	unsigned long flags;
856cd7240c0SSuresh Siddha 	int cpu;
857cd7240c0SSuresh Siddha 
85835af99e6SPeter Zijlstra 	if (!sched_clock_stable())
859cd7240c0SSuresh Siddha 		return;
860cd7240c0SSuresh Siddha 
861cd7240c0SSuresh Siddha 	local_irq_save(flags);
862cd7240c0SSuresh Siddha 
86320d1c86aSPeter Zijlstra 	/*
86420d1c86aSPeter Zijlstra 	 * We're comming out of suspend, there's no concurrency yet; don't
86520d1c86aSPeter Zijlstra 	 * bother being nice about the RCU stuff, just write to both
86620d1c86aSPeter Zijlstra 	 * data fields.
86720d1c86aSPeter Zijlstra 	 */
86820d1c86aSPeter Zijlstra 
86920d1c86aSPeter Zijlstra 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
87020d1c86aSPeter Zijlstra 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
87120d1c86aSPeter Zijlstra 
872cd7240c0SSuresh Siddha 	offset = cyc2ns_suspend - sched_clock();
873cd7240c0SSuresh Siddha 
87420d1c86aSPeter Zijlstra 	for_each_possible_cpu(cpu) {
87520d1c86aSPeter Zijlstra 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
87620d1c86aSPeter Zijlstra 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
87720d1c86aSPeter Zijlstra 	}
878cd7240c0SSuresh Siddha 
879cd7240c0SSuresh Siddha 	local_irq_restore(flags);
880cd7240c0SSuresh Siddha }
881cd7240c0SSuresh Siddha 
8822dbe06faSAlok Kataria #ifdef CONFIG_CPU_FREQ
8832dbe06faSAlok Kataria 
8842dbe06faSAlok Kataria /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
8852dbe06faSAlok Kataria  * changes.
8862dbe06faSAlok Kataria  *
8872dbe06faSAlok Kataria  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
8882dbe06faSAlok Kataria  * not that important because current Opteron setups do not support
8892dbe06faSAlok Kataria  * scaling on SMP anyroads.
8902dbe06faSAlok Kataria  *
8912dbe06faSAlok Kataria  * Should fix up last_tsc too. Currently gettimeofday in the
8922dbe06faSAlok Kataria  * first tick after the change will be slightly wrong.
8932dbe06faSAlok Kataria  */
8942dbe06faSAlok Kataria 
8952dbe06faSAlok Kataria static unsigned int  ref_freq;
8962dbe06faSAlok Kataria static unsigned long loops_per_jiffy_ref;
8972dbe06faSAlok Kataria static unsigned long tsc_khz_ref;
8982dbe06faSAlok Kataria 
8992dbe06faSAlok Kataria static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9002dbe06faSAlok Kataria 				void *data)
9012dbe06faSAlok Kataria {
9022dbe06faSAlok Kataria 	struct cpufreq_freqs *freq = data;
903931db6a3SDave Jones 	unsigned long *lpj;
9042dbe06faSAlok Kataria 
9052dbe06faSAlok Kataria 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
9062dbe06faSAlok Kataria 		return 0;
9072dbe06faSAlok Kataria 
9082dbe06faSAlok Kataria 	lpj = &boot_cpu_data.loops_per_jiffy;
909931db6a3SDave Jones #ifdef CONFIG_SMP
910931db6a3SDave Jones 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
911931db6a3SDave Jones 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
9122dbe06faSAlok Kataria #endif
9132dbe06faSAlok Kataria 
9142dbe06faSAlok Kataria 	if (!ref_freq) {
9152dbe06faSAlok Kataria 		ref_freq = freq->old;
9162dbe06faSAlok Kataria 		loops_per_jiffy_ref = *lpj;
9172dbe06faSAlok Kataria 		tsc_khz_ref = tsc_khz;
9182dbe06faSAlok Kataria 	}
9192dbe06faSAlok Kataria 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
9202dbe06faSAlok Kataria 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
9212dbe06faSAlok Kataria 			(val == CPUFREQ_RESUMECHANGE)) {
9222dbe06faSAlok Kataria 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
9232dbe06faSAlok Kataria 
9242dbe06faSAlok Kataria 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
9252dbe06faSAlok Kataria 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
9262dbe06faSAlok Kataria 			mark_tsc_unstable("cpufreq changes");
9272dbe06faSAlok Kataria 	}
9282dbe06faSAlok Kataria 
92952a8968cSPeter Zijlstra 	set_cyc2ns_scale(tsc_khz, freq->cpu);
9302dbe06faSAlok Kataria 
9312dbe06faSAlok Kataria 	return 0;
9322dbe06faSAlok Kataria }
9332dbe06faSAlok Kataria 
9342dbe06faSAlok Kataria static struct notifier_block time_cpufreq_notifier_block = {
9352dbe06faSAlok Kataria 	.notifier_call  = time_cpufreq_notifier
9362dbe06faSAlok Kataria };
9372dbe06faSAlok Kataria 
9382dbe06faSAlok Kataria static int __init cpufreq_tsc(void)
9392dbe06faSAlok Kataria {
940060700b5SLinus Torvalds 	if (!cpu_has_tsc)
941060700b5SLinus Torvalds 		return 0;
942060700b5SLinus Torvalds 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
943060700b5SLinus Torvalds 		return 0;
9442dbe06faSAlok Kataria 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
9452dbe06faSAlok Kataria 				CPUFREQ_TRANSITION_NOTIFIER);
9462dbe06faSAlok Kataria 	return 0;
9472dbe06faSAlok Kataria }
9482dbe06faSAlok Kataria 
9492dbe06faSAlok Kataria core_initcall(cpufreq_tsc);
9502dbe06faSAlok Kataria 
9512dbe06faSAlok Kataria #endif /* CONFIG_CPU_FREQ */
9528fbbc4b4SAlok Kataria 
9538fbbc4b4SAlok Kataria /* clocksource code */
9548fbbc4b4SAlok Kataria 
9558fbbc4b4SAlok Kataria static struct clocksource clocksource_tsc;
9568fbbc4b4SAlok Kataria 
9578fbbc4b4SAlok Kataria /*
9588fbbc4b4SAlok Kataria  * We compare the TSC to the cycle_last value in the clocksource
9598fbbc4b4SAlok Kataria  * structure to avoid a nasty time-warp. This can be observed in a
9608fbbc4b4SAlok Kataria  * very small window right after one CPU updated cycle_last under
9618fbbc4b4SAlok Kataria  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
9628fbbc4b4SAlok Kataria  * is smaller than the cycle_last reference value due to a TSC which
9638fbbc4b4SAlok Kataria  * is slighty behind. This delta is nowhere else observable, but in
9648fbbc4b4SAlok Kataria  * that case it results in a forward time jump in the range of hours
9658fbbc4b4SAlok Kataria  * due to the unsigned delta calculation of the time keeping core
9668fbbc4b4SAlok Kataria  * code, which is necessary to support wrapping clocksources like pm
9678fbbc4b4SAlok Kataria  * timer.
9688fbbc4b4SAlok Kataria  */
9698e19608eSMagnus Damm static cycle_t read_tsc(struct clocksource *cs)
9708fbbc4b4SAlok Kataria {
9718fbbc4b4SAlok Kataria 	cycle_t ret = (cycle_t)get_cycles();
9728fbbc4b4SAlok Kataria 
9738fbbc4b4SAlok Kataria 	return ret >= clocksource_tsc.cycle_last ?
9748fbbc4b4SAlok Kataria 		ret : clocksource_tsc.cycle_last;
9758fbbc4b4SAlok Kataria }
9768fbbc4b4SAlok Kataria 
97717622339SMagnus Damm static void resume_tsc(struct clocksource *cs)
9781be39679SMartin Schwidefsky {
97982f9c080SFeng Tang 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
9801be39679SMartin Schwidefsky 		clocksource_tsc.cycle_last = 0;
9811be39679SMartin Schwidefsky }
9821be39679SMartin Schwidefsky 
9838fbbc4b4SAlok Kataria static struct clocksource clocksource_tsc = {
9848fbbc4b4SAlok Kataria 	.name                   = "tsc",
9858fbbc4b4SAlok Kataria 	.rating                 = 300,
9868fbbc4b4SAlok Kataria 	.read                   = read_tsc,
9871be39679SMartin Schwidefsky 	.resume			= resume_tsc,
9888fbbc4b4SAlok Kataria 	.mask                   = CLOCKSOURCE_MASK(64),
9898fbbc4b4SAlok Kataria 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
9908fbbc4b4SAlok Kataria 				  CLOCK_SOURCE_MUST_VERIFY,
9918fbbc4b4SAlok Kataria #ifdef CONFIG_X86_64
99298d0ac38SAndy Lutomirski 	.archdata               = { .vclock_mode = VCLOCK_TSC },
9938fbbc4b4SAlok Kataria #endif
9948fbbc4b4SAlok Kataria };
9958fbbc4b4SAlok Kataria 
9968fbbc4b4SAlok Kataria void mark_tsc_unstable(char *reason)
9978fbbc4b4SAlok Kataria {
9988fbbc4b4SAlok Kataria 	if (!tsc_unstable) {
9998fbbc4b4SAlok Kataria 		tsc_unstable = 1;
100035af99e6SPeter Zijlstra 		clear_sched_clock_stable();
1001e82b8e4eSVenkatesh Pallipadi 		disable_sched_clock_irqtime();
1002c767a54bSJoe Perches 		pr_info("Marking TSC unstable due to %s\n", reason);
10038fbbc4b4SAlok Kataria 		/* Change only the rating, when not registered */
10048fbbc4b4SAlok Kataria 		if (clocksource_tsc.mult)
10057285dd7fSThomas Gleixner 			clocksource_mark_unstable(&clocksource_tsc);
10067285dd7fSThomas Gleixner 		else {
10077285dd7fSThomas Gleixner 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
10088fbbc4b4SAlok Kataria 			clocksource_tsc.rating = 0;
10098fbbc4b4SAlok Kataria 		}
10108fbbc4b4SAlok Kataria 	}
10117285dd7fSThomas Gleixner }
10128fbbc4b4SAlok Kataria 
10138fbbc4b4SAlok Kataria EXPORT_SYMBOL_GPL(mark_tsc_unstable);
10148fbbc4b4SAlok Kataria 
1015395628efSAlok Kataria static void __init check_system_tsc_reliable(void)
1016395628efSAlok Kataria {
10178fbbc4b4SAlok Kataria #ifdef CONFIG_MGEODE_LX
10188fbbc4b4SAlok Kataria 	/* RTSC counts during suspend */
10198fbbc4b4SAlok Kataria #define RTSC_SUSP 0x100
10208fbbc4b4SAlok Kataria 	unsigned long res_low, res_high;
10218fbbc4b4SAlok Kataria 
10228fbbc4b4SAlok Kataria 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
102300097c4fSThadeu Lima de Souza Cascardo 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
10248fbbc4b4SAlok Kataria 	if (res_low & RTSC_SUSP)
1025395628efSAlok Kataria 		tsc_clocksource_reliable = 1;
10268fbbc4b4SAlok Kataria #endif
1027395628efSAlok Kataria 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1028395628efSAlok Kataria 		tsc_clocksource_reliable = 1;
1029395628efSAlok Kataria }
10308fbbc4b4SAlok Kataria 
10318fbbc4b4SAlok Kataria /*
10328fbbc4b4SAlok Kataria  * Make an educated guess if the TSC is trustworthy and synchronized
10338fbbc4b4SAlok Kataria  * over all CPUs.
10348fbbc4b4SAlok Kataria  */
1035148f9bb8SPaul Gortmaker int unsynchronized_tsc(void)
10368fbbc4b4SAlok Kataria {
10378fbbc4b4SAlok Kataria 	if (!cpu_has_tsc || tsc_unstable)
10388fbbc4b4SAlok Kataria 		return 1;
10398fbbc4b4SAlok Kataria 
10403e5095d1SIngo Molnar #ifdef CONFIG_SMP
10418fbbc4b4SAlok Kataria 	if (apic_is_clustered_box())
10428fbbc4b4SAlok Kataria 		return 1;
10438fbbc4b4SAlok Kataria #endif
10448fbbc4b4SAlok Kataria 
10458fbbc4b4SAlok Kataria 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
10468fbbc4b4SAlok Kataria 		return 0;
1047d3b8f889Sjohn stultz 
1048d3b8f889Sjohn stultz 	if (tsc_clocksource_reliable)
1049d3b8f889Sjohn stultz 		return 0;
10508fbbc4b4SAlok Kataria 	/*
10518fbbc4b4SAlok Kataria 	 * Intel systems are normally all synchronized.
10528fbbc4b4SAlok Kataria 	 * Exceptions must mark TSC as unstable:
10538fbbc4b4SAlok Kataria 	 */
10548fbbc4b4SAlok Kataria 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
10558fbbc4b4SAlok Kataria 		/* assume multi socket systems are not synchronized: */
10568fbbc4b4SAlok Kataria 		if (num_possible_cpus() > 1)
1057d3b8f889Sjohn stultz 			return 1;
10588fbbc4b4SAlok Kataria 	}
10598fbbc4b4SAlok Kataria 
1060d3b8f889Sjohn stultz 	return 0;
10618fbbc4b4SAlok Kataria }
10628fbbc4b4SAlok Kataria 
106308ec0c58SJohn Stultz 
106408ec0c58SJohn Stultz static void tsc_refine_calibration_work(struct work_struct *work);
106508ec0c58SJohn Stultz static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
106608ec0c58SJohn Stultz /**
106708ec0c58SJohn Stultz  * tsc_refine_calibration_work - Further refine tsc freq calibration
106808ec0c58SJohn Stultz  * @work - ignored.
106908ec0c58SJohn Stultz  *
107008ec0c58SJohn Stultz  * This functions uses delayed work over a period of a
107108ec0c58SJohn Stultz  * second to further refine the TSC freq value. Since this is
107208ec0c58SJohn Stultz  * timer based, instead of loop based, we don't block the boot
107308ec0c58SJohn Stultz  * process while this longer calibration is done.
107408ec0c58SJohn Stultz  *
10750d2eb44fSLucas De Marchi  * If there are any calibration anomalies (too many SMIs, etc),
107608ec0c58SJohn Stultz  * or the refined calibration is off by 1% of the fast early
107708ec0c58SJohn Stultz  * calibration, we throw out the new calibration and use the
107808ec0c58SJohn Stultz  * early calibration.
107908ec0c58SJohn Stultz  */
108008ec0c58SJohn Stultz static void tsc_refine_calibration_work(struct work_struct *work)
108108ec0c58SJohn Stultz {
108208ec0c58SJohn Stultz 	static u64 tsc_start = -1, ref_start;
108308ec0c58SJohn Stultz 	static int hpet;
108408ec0c58SJohn Stultz 	u64 tsc_stop, ref_stop, delta;
108508ec0c58SJohn Stultz 	unsigned long freq;
108608ec0c58SJohn Stultz 
108708ec0c58SJohn Stultz 	/* Don't bother refining TSC on unstable systems */
108808ec0c58SJohn Stultz 	if (check_tsc_unstable())
108908ec0c58SJohn Stultz 		goto out;
109008ec0c58SJohn Stultz 
109108ec0c58SJohn Stultz 	/*
109208ec0c58SJohn Stultz 	 * Since the work is started early in boot, we may be
109308ec0c58SJohn Stultz 	 * delayed the first time we expire. So set the workqueue
109408ec0c58SJohn Stultz 	 * again once we know timers are working.
109508ec0c58SJohn Stultz 	 */
109608ec0c58SJohn Stultz 	if (tsc_start == -1) {
109708ec0c58SJohn Stultz 		/*
109808ec0c58SJohn Stultz 		 * Only set hpet once, to avoid mixing hardware
109908ec0c58SJohn Stultz 		 * if the hpet becomes enabled later.
110008ec0c58SJohn Stultz 		 */
110108ec0c58SJohn Stultz 		hpet = is_hpet_enabled();
110208ec0c58SJohn Stultz 		schedule_delayed_work(&tsc_irqwork, HZ);
110308ec0c58SJohn Stultz 		tsc_start = tsc_read_refs(&ref_start, hpet);
110408ec0c58SJohn Stultz 		return;
110508ec0c58SJohn Stultz 	}
110608ec0c58SJohn Stultz 
110708ec0c58SJohn Stultz 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
110808ec0c58SJohn Stultz 
110908ec0c58SJohn Stultz 	/* hpet or pmtimer available ? */
111062627becSJohn Stultz 	if (ref_start == ref_stop)
111108ec0c58SJohn Stultz 		goto out;
111208ec0c58SJohn Stultz 
111308ec0c58SJohn Stultz 	/* Check, whether the sampling was disturbed by an SMI */
111408ec0c58SJohn Stultz 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
111508ec0c58SJohn Stultz 		goto out;
111608ec0c58SJohn Stultz 
111708ec0c58SJohn Stultz 	delta = tsc_stop - tsc_start;
111808ec0c58SJohn Stultz 	delta *= 1000000LL;
111908ec0c58SJohn Stultz 	if (hpet)
112008ec0c58SJohn Stultz 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
112108ec0c58SJohn Stultz 	else
112208ec0c58SJohn Stultz 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
112308ec0c58SJohn Stultz 
112408ec0c58SJohn Stultz 	/* Make sure we're within 1% */
112508ec0c58SJohn Stultz 	if (abs(tsc_khz - freq) > tsc_khz/100)
112608ec0c58SJohn Stultz 		goto out;
112708ec0c58SJohn Stultz 
112808ec0c58SJohn Stultz 	tsc_khz = freq;
1129c767a54bSJoe Perches 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1130c767a54bSJoe Perches 		(unsigned long)tsc_khz / 1000,
113108ec0c58SJohn Stultz 		(unsigned long)tsc_khz % 1000);
113208ec0c58SJohn Stultz 
113308ec0c58SJohn Stultz out:
113408ec0c58SJohn Stultz 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
113508ec0c58SJohn Stultz }
113608ec0c58SJohn Stultz 
113708ec0c58SJohn Stultz 
113808ec0c58SJohn Stultz static int __init init_tsc_clocksource(void)
11398fbbc4b4SAlok Kataria {
114029fe359cSThomas Gleixner 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1141a8760ecaSThomas Gleixner 		return 0;
1142a8760ecaSThomas Gleixner 
1143395628efSAlok Kataria 	if (tsc_clocksource_reliable)
1144395628efSAlok Kataria 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
11458fbbc4b4SAlok Kataria 	/* lower the rating if we already know its unstable: */
11468fbbc4b4SAlok Kataria 	if (check_tsc_unstable()) {
11478fbbc4b4SAlok Kataria 		clocksource_tsc.rating = 0;
11488fbbc4b4SAlok Kataria 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
11498fbbc4b4SAlok Kataria 	}
115057779dc2SAlok Kataria 
115182f9c080SFeng Tang 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
115282f9c080SFeng Tang 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
115382f9c080SFeng Tang 
115457779dc2SAlok Kataria 	/*
115557779dc2SAlok Kataria 	 * Trust the results of the earlier calibration on systems
115657779dc2SAlok Kataria 	 * exporting a reliable TSC.
115757779dc2SAlok Kataria 	 */
115857779dc2SAlok Kataria 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
115957779dc2SAlok Kataria 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
116057779dc2SAlok Kataria 		return 0;
116157779dc2SAlok Kataria 	}
116257779dc2SAlok Kataria 
116308ec0c58SJohn Stultz 	schedule_delayed_work(&tsc_irqwork, 0);
116408ec0c58SJohn Stultz 	return 0;
11658fbbc4b4SAlok Kataria }
116608ec0c58SJohn Stultz /*
116708ec0c58SJohn Stultz  * We use device_initcall here, to ensure we run after the hpet
116808ec0c58SJohn Stultz  * is fully initialized, which may occur at fs_initcall time.
116908ec0c58SJohn Stultz  */
117008ec0c58SJohn Stultz device_initcall(init_tsc_clocksource);
11718fbbc4b4SAlok Kataria 
11728fbbc4b4SAlok Kataria void __init tsc_init(void)
11738fbbc4b4SAlok Kataria {
11748fbbc4b4SAlok Kataria 	u64 lpj;
11758fbbc4b4SAlok Kataria 	int cpu;
11768fbbc4b4SAlok Kataria 
1177845b3944SThomas Gleixner 	x86_init.timers.tsc_pre_init();
1178845b3944SThomas Gleixner 
11798fbbc4b4SAlok Kataria 	if (!cpu_has_tsc)
11808fbbc4b4SAlok Kataria 		return;
11818fbbc4b4SAlok Kataria 
11822d826404SThomas Gleixner 	tsc_khz = x86_platform.calibrate_tsc();
1183e93ef949SAlok Kataria 	cpu_khz = tsc_khz;
11848fbbc4b4SAlok Kataria 
1185e93ef949SAlok Kataria 	if (!tsc_khz) {
11868fbbc4b4SAlok Kataria 		mark_tsc_unstable("could not calculate TSC khz");
11878fbbc4b4SAlok Kataria 		return;
11888fbbc4b4SAlok Kataria 	}
11898fbbc4b4SAlok Kataria 
1190c767a54bSJoe Perches 	pr_info("Detected %lu.%03lu MHz processor\n",
11918fbbc4b4SAlok Kataria 		(unsigned long)cpu_khz / 1000,
11928fbbc4b4SAlok Kataria 		(unsigned long)cpu_khz % 1000);
11938fbbc4b4SAlok Kataria 
11948fbbc4b4SAlok Kataria 	/*
11958fbbc4b4SAlok Kataria 	 * Secondary CPUs do not run through tsc_init(), so set up
11968fbbc4b4SAlok Kataria 	 * all the scale factors for all CPUs, assuming the same
11978fbbc4b4SAlok Kataria 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
11988fbbc4b4SAlok Kataria 	 * up if their speed diverges)
11998fbbc4b4SAlok Kataria 	 */
120020d1c86aSPeter Zijlstra 	for_each_possible_cpu(cpu) {
120120d1c86aSPeter Zijlstra 		cyc2ns_init(cpu);
12028fbbc4b4SAlok Kataria 		set_cyc2ns_scale(cpu_khz, cpu);
120320d1c86aSPeter Zijlstra 	}
12048fbbc4b4SAlok Kataria 
12058fbbc4b4SAlok Kataria 	if (tsc_disabled > 0)
12068fbbc4b4SAlok Kataria 		return;
12078fbbc4b4SAlok Kataria 
12088fbbc4b4SAlok Kataria 	/* now allow native_sched_clock() to use rdtsc */
120910b033d4SPeter Zijlstra 
12108fbbc4b4SAlok Kataria 	tsc_disabled = 0;
121110b033d4SPeter Zijlstra 	static_key_slow_inc(&__use_tsc);
12128fbbc4b4SAlok Kataria 
1213e82b8e4eSVenkatesh Pallipadi 	if (!no_sched_irq_time)
1214e82b8e4eSVenkatesh Pallipadi 		enable_sched_clock_irqtime();
1215e82b8e4eSVenkatesh Pallipadi 
121670de9a97SAlok Kataria 	lpj = ((u64)tsc_khz * 1000);
121770de9a97SAlok Kataria 	do_div(lpj, HZ);
121870de9a97SAlok Kataria 	lpj_fine = lpj;
121970de9a97SAlok Kataria 
12208fbbc4b4SAlok Kataria 	use_tsc_delay();
12218fbbc4b4SAlok Kataria 
12228fbbc4b4SAlok Kataria 	if (unsynchronized_tsc())
12238fbbc4b4SAlok Kataria 		mark_tsc_unstable("TSCs unsynchronized");
12248fbbc4b4SAlok Kataria 
1225395628efSAlok Kataria 	check_system_tsc_reliable();
12268fbbc4b4SAlok Kataria }
12278fbbc4b4SAlok Kataria 
1228b565201cSJack Steiner #ifdef CONFIG_SMP
1229b565201cSJack Steiner /*
1230b565201cSJack Steiner  * If we have a constant TSC and are using the TSC for the delay loop,
1231b565201cSJack Steiner  * we can skip clock calibration if another cpu in the same socket has already
1232b565201cSJack Steiner  * been calibrated. This assumes that CONSTANT_TSC applies to all
1233b565201cSJack Steiner  * cpus in the socket - this should be a safe assumption.
1234b565201cSJack Steiner  */
1235148f9bb8SPaul Gortmaker unsigned long calibrate_delay_is_known(void)
1236b565201cSJack Steiner {
1237b565201cSJack Steiner 	int i, cpu = smp_processor_id();
1238b565201cSJack Steiner 
1239b565201cSJack Steiner 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1240b565201cSJack Steiner 		return 0;
1241b565201cSJack Steiner 
1242b565201cSJack Steiner 	for_each_online_cpu(i)
1243b565201cSJack Steiner 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1244b565201cSJack Steiner 			return cpu_data(i).loops_per_jiffy;
1245b565201cSJack Steiner 	return 0;
1246b565201cSJack Steiner }
1247b565201cSJack Steiner #endif
1248