xref: /openbmc/linux/arch/x86/kernel/tsc.c (revision 27c63405)
1c767a54bSJoe Perches #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2c767a54bSJoe Perches 
3bfc0f594SAlok Kataria #include <linux/kernel.h>
40ef95533SAlok Kataria #include <linux/sched.h>
50ef95533SAlok Kataria #include <linux/init.h>
60ef95533SAlok Kataria #include <linux/module.h>
70ef95533SAlok Kataria #include <linux/timer.h>
8bfc0f594SAlok Kataria #include <linux/acpi_pmtmr.h>
92dbe06faSAlok Kataria #include <linux/cpufreq.h>
108fbbc4b4SAlok Kataria #include <linux/delay.h>
118fbbc4b4SAlok Kataria #include <linux/clocksource.h>
128fbbc4b4SAlok Kataria #include <linux/percpu.h>
1308604bd9SArnd Bergmann #include <linux/timex.h>
1410b033d4SPeter Zijlstra #include <linux/static_key.h>
15bfc0f594SAlok Kataria 
16bfc0f594SAlok Kataria #include <asm/hpet.h>
178fbbc4b4SAlok Kataria #include <asm/timer.h>
188fbbc4b4SAlok Kataria #include <asm/vgtod.h>
198fbbc4b4SAlok Kataria #include <asm/time.h>
208fbbc4b4SAlok Kataria #include <asm/delay.h>
2188b094fbSAlok Kataria #include <asm/hypervisor.h>
2208047c4fSThomas Gleixner #include <asm/nmi.h>
232d826404SThomas Gleixner #include <asm/x86_init.h>
240ef95533SAlok Kataria 
25f24ade3aSIngo Molnar unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
260ef95533SAlok Kataria EXPORT_SYMBOL(cpu_khz);
27f24ade3aSIngo Molnar 
28f24ade3aSIngo Molnar unsigned int __read_mostly tsc_khz;
290ef95533SAlok Kataria EXPORT_SYMBOL(tsc_khz);
300ef95533SAlok Kataria 
310ef95533SAlok Kataria /*
320ef95533SAlok Kataria  * TSC can be unstable due to cpufreq or due to unsynced TSCs
330ef95533SAlok Kataria  */
34f24ade3aSIngo Molnar static int __read_mostly tsc_unstable;
350ef95533SAlok Kataria 
360ef95533SAlok Kataria /* native_sched_clock() is called before tsc_init(), so
370ef95533SAlok Kataria    we must start with the TSC soft disabled to prevent
380ef95533SAlok Kataria    erroneous rdtsc usage on !cpu_has_tsc processors */
39f24ade3aSIngo Molnar static int __read_mostly tsc_disabled = -1;
400ef95533SAlok Kataria 
4110b033d4SPeter Zijlstra static struct static_key __use_tsc = STATIC_KEY_INIT;
4210b033d4SPeter Zijlstra 
4328a00184SSuresh Siddha int tsc_clocksource_reliable;
4457c67da2SPeter Zijlstra 
4520d1c86aSPeter Zijlstra /*
4620d1c86aSPeter Zijlstra  * Use a ring-buffer like data structure, where a writer advances the head by
4720d1c86aSPeter Zijlstra  * writing a new data entry and a reader advances the tail when it observes a
4820d1c86aSPeter Zijlstra  * new entry.
4920d1c86aSPeter Zijlstra  *
5020d1c86aSPeter Zijlstra  * Writers are made to wait on readers until there's space to write a new
5120d1c86aSPeter Zijlstra  * entry.
5220d1c86aSPeter Zijlstra  *
5320d1c86aSPeter Zijlstra  * This means that we can always use an {offset, mul} pair to compute a ns
5420d1c86aSPeter Zijlstra  * value that is 'roughly' in the right direction, even if we're writing a new
5520d1c86aSPeter Zijlstra  * {offset, mul} pair during the clock read.
5620d1c86aSPeter Zijlstra  *
5720d1c86aSPeter Zijlstra  * The down-side is that we can no longer guarantee strict monotonicity anymore
5820d1c86aSPeter Zijlstra  * (assuming the TSC was that to begin with), because while we compute the
5920d1c86aSPeter Zijlstra  * intersection point of the two clock slopes and make sure the time is
6020d1c86aSPeter Zijlstra  * continuous at the point of switching; we can no longer guarantee a reader is
6120d1c86aSPeter Zijlstra  * strictly before or after the switch point.
6220d1c86aSPeter Zijlstra  *
6320d1c86aSPeter Zijlstra  * It does mean a reader no longer needs to disable IRQs in order to avoid
6420d1c86aSPeter Zijlstra  * CPU-Freq updates messing with his times, and similarly an NMI reader will
6520d1c86aSPeter Zijlstra  * no longer run the risk of hitting half-written state.
6620d1c86aSPeter Zijlstra  */
6720d1c86aSPeter Zijlstra 
6820d1c86aSPeter Zijlstra struct cyc2ns {
6920d1c86aSPeter Zijlstra 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
7020d1c86aSPeter Zijlstra 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
7120d1c86aSPeter Zijlstra 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
7220d1c86aSPeter Zijlstra }; /* exactly fits one cacheline */
7320d1c86aSPeter Zijlstra 
7420d1c86aSPeter Zijlstra static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
7520d1c86aSPeter Zijlstra 
7620d1c86aSPeter Zijlstra struct cyc2ns_data *cyc2ns_read_begin(void)
7720d1c86aSPeter Zijlstra {
7820d1c86aSPeter Zijlstra 	struct cyc2ns_data *head;
7920d1c86aSPeter Zijlstra 
8020d1c86aSPeter Zijlstra 	preempt_disable();
8120d1c86aSPeter Zijlstra 
8220d1c86aSPeter Zijlstra 	head = this_cpu_read(cyc2ns.head);
8320d1c86aSPeter Zijlstra 	/*
8420d1c86aSPeter Zijlstra 	 * Ensure we observe the entry when we observe the pointer to it.
8520d1c86aSPeter Zijlstra 	 * matches the wmb from cyc2ns_write_end().
8620d1c86aSPeter Zijlstra 	 */
8720d1c86aSPeter Zijlstra 	smp_read_barrier_depends();
8820d1c86aSPeter Zijlstra 	head->__count++;
8920d1c86aSPeter Zijlstra 	barrier();
9020d1c86aSPeter Zijlstra 
9120d1c86aSPeter Zijlstra 	return head;
9220d1c86aSPeter Zijlstra }
9320d1c86aSPeter Zijlstra 
9420d1c86aSPeter Zijlstra void cyc2ns_read_end(struct cyc2ns_data *head)
9520d1c86aSPeter Zijlstra {
9620d1c86aSPeter Zijlstra 	barrier();
9720d1c86aSPeter Zijlstra 	/*
9820d1c86aSPeter Zijlstra 	 * If we're the outer most nested read; update the tail pointer
9920d1c86aSPeter Zijlstra 	 * when we're done. This notifies possible pending writers
10020d1c86aSPeter Zijlstra 	 * that we've observed the head pointer and that the other
10120d1c86aSPeter Zijlstra 	 * entry is now free.
10220d1c86aSPeter Zijlstra 	 */
10320d1c86aSPeter Zijlstra 	if (!--head->__count) {
10420d1c86aSPeter Zijlstra 		/*
10520d1c86aSPeter Zijlstra 		 * x86-TSO does not reorder writes with older reads;
10620d1c86aSPeter Zijlstra 		 * therefore once this write becomes visible to another
10720d1c86aSPeter Zijlstra 		 * cpu, we must be finished reading the cyc2ns_data.
10820d1c86aSPeter Zijlstra 		 *
10920d1c86aSPeter Zijlstra 		 * matches with cyc2ns_write_begin().
11020d1c86aSPeter Zijlstra 		 */
11120d1c86aSPeter Zijlstra 		this_cpu_write(cyc2ns.tail, head);
11220d1c86aSPeter Zijlstra 	}
11320d1c86aSPeter Zijlstra 	preempt_enable();
11420d1c86aSPeter Zijlstra }
11520d1c86aSPeter Zijlstra 
11620d1c86aSPeter Zijlstra /*
11720d1c86aSPeter Zijlstra  * Begin writing a new @data entry for @cpu.
11820d1c86aSPeter Zijlstra  *
11920d1c86aSPeter Zijlstra  * Assumes some sort of write side lock; currently 'provided' by the assumption
12020d1c86aSPeter Zijlstra  * that cpufreq will call its notifiers sequentially.
12120d1c86aSPeter Zijlstra  */
12220d1c86aSPeter Zijlstra static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
12320d1c86aSPeter Zijlstra {
12420d1c86aSPeter Zijlstra 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
12520d1c86aSPeter Zijlstra 	struct cyc2ns_data *data = c2n->data;
12620d1c86aSPeter Zijlstra 
12720d1c86aSPeter Zijlstra 	if (data == c2n->head)
12820d1c86aSPeter Zijlstra 		data++;
12920d1c86aSPeter Zijlstra 
13020d1c86aSPeter Zijlstra 	/* XXX send an IPI to @cpu in order to guarantee a read? */
13120d1c86aSPeter Zijlstra 
13220d1c86aSPeter Zijlstra 	/*
13320d1c86aSPeter Zijlstra 	 * When we observe the tail write from cyc2ns_read_end(),
13420d1c86aSPeter Zijlstra 	 * the cpu must be done with that entry and its safe
13520d1c86aSPeter Zijlstra 	 * to start writing to it.
13620d1c86aSPeter Zijlstra 	 */
13720d1c86aSPeter Zijlstra 	while (c2n->tail == data)
13820d1c86aSPeter Zijlstra 		cpu_relax();
13920d1c86aSPeter Zijlstra 
14020d1c86aSPeter Zijlstra 	return data;
14120d1c86aSPeter Zijlstra }
14220d1c86aSPeter Zijlstra 
14320d1c86aSPeter Zijlstra static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
14420d1c86aSPeter Zijlstra {
14520d1c86aSPeter Zijlstra 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
14620d1c86aSPeter Zijlstra 
14720d1c86aSPeter Zijlstra 	/*
14820d1c86aSPeter Zijlstra 	 * Ensure the @data writes are visible before we publish the
14920d1c86aSPeter Zijlstra 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
15020d1c86aSPeter Zijlstra 	 */
15120d1c86aSPeter Zijlstra 	smp_wmb();
15220d1c86aSPeter Zijlstra 
15320d1c86aSPeter Zijlstra 	ACCESS_ONCE(c2n->head) = data;
15420d1c86aSPeter Zijlstra }
15520d1c86aSPeter Zijlstra 
15620d1c86aSPeter Zijlstra /*
15720d1c86aSPeter Zijlstra  * Accelerators for sched_clock()
15857c67da2SPeter Zijlstra  * convert from cycles(64bits) => nanoseconds (64bits)
15957c67da2SPeter Zijlstra  *  basic equation:
16057c67da2SPeter Zijlstra  *              ns = cycles / (freq / ns_per_sec)
16157c67da2SPeter Zijlstra  *              ns = cycles * (ns_per_sec / freq)
16257c67da2SPeter Zijlstra  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
16357c67da2SPeter Zijlstra  *              ns = cycles * (10^6 / cpu_khz)
16457c67da2SPeter Zijlstra  *
16557c67da2SPeter Zijlstra  *      Then we use scaling math (suggested by george@mvista.com) to get:
16657c67da2SPeter Zijlstra  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
16757c67da2SPeter Zijlstra  *              ns = cycles * cyc2ns_scale / SC
16857c67da2SPeter Zijlstra  *
16957c67da2SPeter Zijlstra  *      And since SC is a constant power of two, we can convert the div
17057c67da2SPeter Zijlstra  *  into a shift.
17157c67da2SPeter Zijlstra  *
17257c67da2SPeter Zijlstra  *  We can use khz divisor instead of mhz to keep a better precision, since
17357c67da2SPeter Zijlstra  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
17457c67da2SPeter Zijlstra  *  (mathieu.desnoyers@polymtl.ca)
17557c67da2SPeter Zijlstra  *
17657c67da2SPeter Zijlstra  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
17757c67da2SPeter Zijlstra  */
17857c67da2SPeter Zijlstra 
17957c67da2SPeter Zijlstra #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
18057c67da2SPeter Zijlstra 
18120d1c86aSPeter Zijlstra static void cyc2ns_data_init(struct cyc2ns_data *data)
18220d1c86aSPeter Zijlstra {
1835e3c1afdSPeter Zijlstra 	data->cyc2ns_mul = 0;
18420d1c86aSPeter Zijlstra 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
18520d1c86aSPeter Zijlstra 	data->cyc2ns_offset = 0;
18620d1c86aSPeter Zijlstra 	data->__count = 0;
18720d1c86aSPeter Zijlstra }
18820d1c86aSPeter Zijlstra 
18920d1c86aSPeter Zijlstra static void cyc2ns_init(int cpu)
19020d1c86aSPeter Zijlstra {
19120d1c86aSPeter Zijlstra 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
19220d1c86aSPeter Zijlstra 
19320d1c86aSPeter Zijlstra 	cyc2ns_data_init(&c2n->data[0]);
19420d1c86aSPeter Zijlstra 	cyc2ns_data_init(&c2n->data[1]);
19520d1c86aSPeter Zijlstra 
19620d1c86aSPeter Zijlstra 	c2n->head = c2n->data;
19720d1c86aSPeter Zijlstra 	c2n->tail = c2n->data;
19820d1c86aSPeter Zijlstra }
19920d1c86aSPeter Zijlstra 
20057c67da2SPeter Zijlstra static inline unsigned long long cycles_2_ns(unsigned long long cyc)
20157c67da2SPeter Zijlstra {
20220d1c86aSPeter Zijlstra 	struct cyc2ns_data *data, *tail;
20320d1c86aSPeter Zijlstra 	unsigned long long ns;
20420d1c86aSPeter Zijlstra 
20520d1c86aSPeter Zijlstra 	/*
20620d1c86aSPeter Zijlstra 	 * See cyc2ns_read_*() for details; replicated in order to avoid
20720d1c86aSPeter Zijlstra 	 * an extra few instructions that came with the abstraction.
20820d1c86aSPeter Zijlstra 	 * Notable, it allows us to only do the __count and tail update
20920d1c86aSPeter Zijlstra 	 * dance when its actually needed.
21020d1c86aSPeter Zijlstra 	 */
21120d1c86aSPeter Zijlstra 
212569d6557SSteven Rostedt 	preempt_disable_notrace();
21320d1c86aSPeter Zijlstra 	data = this_cpu_read(cyc2ns.head);
21420d1c86aSPeter Zijlstra 	tail = this_cpu_read(cyc2ns.tail);
21520d1c86aSPeter Zijlstra 
21620d1c86aSPeter Zijlstra 	if (likely(data == tail)) {
21720d1c86aSPeter Zijlstra 		ns = data->cyc2ns_offset;
21820d1c86aSPeter Zijlstra 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
21920d1c86aSPeter Zijlstra 	} else {
22020d1c86aSPeter Zijlstra 		data->__count++;
22120d1c86aSPeter Zijlstra 
22220d1c86aSPeter Zijlstra 		barrier();
22320d1c86aSPeter Zijlstra 
22420d1c86aSPeter Zijlstra 		ns = data->cyc2ns_offset;
22520d1c86aSPeter Zijlstra 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
22620d1c86aSPeter Zijlstra 
22720d1c86aSPeter Zijlstra 		barrier();
22820d1c86aSPeter Zijlstra 
22920d1c86aSPeter Zijlstra 		if (!--data->__count)
23020d1c86aSPeter Zijlstra 			this_cpu_write(cyc2ns.tail, data);
23120d1c86aSPeter Zijlstra 	}
232569d6557SSteven Rostedt 	preempt_enable_notrace();
23320d1c86aSPeter Zijlstra 
23457c67da2SPeter Zijlstra 	return ns;
23557c67da2SPeter Zijlstra }
23657c67da2SPeter Zijlstra 
23757c67da2SPeter Zijlstra static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
23857c67da2SPeter Zijlstra {
23920d1c86aSPeter Zijlstra 	unsigned long long tsc_now, ns_now;
24020d1c86aSPeter Zijlstra 	struct cyc2ns_data *data;
24120d1c86aSPeter Zijlstra 	unsigned long flags;
24257c67da2SPeter Zijlstra 
24357c67da2SPeter Zijlstra 	local_irq_save(flags);
24457c67da2SPeter Zijlstra 	sched_clock_idle_sleep_event();
24557c67da2SPeter Zijlstra 
24620d1c86aSPeter Zijlstra 	if (!cpu_khz)
24720d1c86aSPeter Zijlstra 		goto done;
24820d1c86aSPeter Zijlstra 
24920d1c86aSPeter Zijlstra 	data = cyc2ns_write_begin(cpu);
25057c67da2SPeter Zijlstra 
2514ea1636bSAndy Lutomirski 	tsc_now = rdtsc();
25257c67da2SPeter Zijlstra 	ns_now = cycles_2_ns(tsc_now);
25357c67da2SPeter Zijlstra 
25420d1c86aSPeter Zijlstra 	/*
25520d1c86aSPeter Zijlstra 	 * Compute a new multiplier as per the above comment and ensure our
25620d1c86aSPeter Zijlstra 	 * time function is continuous; see the comment near struct
25720d1c86aSPeter Zijlstra 	 * cyc2ns_data.
25820d1c86aSPeter Zijlstra 	 */
25989171579SMichal Nazarewicz 	data->cyc2ns_mul =
26089171579SMichal Nazarewicz 		DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
26189171579SMichal Nazarewicz 				  cpu_khz);
26220d1c86aSPeter Zijlstra 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
26320d1c86aSPeter Zijlstra 	data->cyc2ns_offset = ns_now -
26420d1c86aSPeter Zijlstra 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
26557c67da2SPeter Zijlstra 
26620d1c86aSPeter Zijlstra 	cyc2ns_write_end(cpu, data);
26720d1c86aSPeter Zijlstra 
26820d1c86aSPeter Zijlstra done:
26957c67da2SPeter Zijlstra 	sched_clock_idle_wakeup_event(0);
27057c67da2SPeter Zijlstra 	local_irq_restore(flags);
27157c67da2SPeter Zijlstra }
2720ef95533SAlok Kataria /*
2730ef95533SAlok Kataria  * Scheduler clock - returns current time in nanosec units.
2740ef95533SAlok Kataria  */
2750ef95533SAlok Kataria u64 native_sched_clock(void)
2760ef95533SAlok Kataria {
27720d1c86aSPeter Zijlstra 	u64 tsc_now;
2780ef95533SAlok Kataria 
2790ef95533SAlok Kataria 	/*
2800ef95533SAlok Kataria 	 * Fall back to jiffies if there's no TSC available:
2810ef95533SAlok Kataria 	 * ( But note that we still use it if the TSC is marked
2820ef95533SAlok Kataria 	 *   unstable. We do this because unlike Time Of Day,
2830ef95533SAlok Kataria 	 *   the scheduler clock tolerates small errors and it's
2840ef95533SAlok Kataria 	 *   very important for it to be as fast as the platform
2853ad2f3fbSDaniel Mack 	 *   can achieve it. )
2860ef95533SAlok Kataria 	 */
28710b033d4SPeter Zijlstra 	if (!static_key_false(&__use_tsc)) {
2880ef95533SAlok Kataria 		/* No locking but a rare wrong value is not a big deal: */
2890ef95533SAlok Kataria 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
2900ef95533SAlok Kataria 	}
2910ef95533SAlok Kataria 
2920ef95533SAlok Kataria 	/* read the Time Stamp Counter: */
2934ea1636bSAndy Lutomirski 	tsc_now = rdtsc();
2940ef95533SAlok Kataria 
2950ef95533SAlok Kataria 	/* return the value in ns */
29620d1c86aSPeter Zijlstra 	return cycles_2_ns(tsc_now);
2970ef95533SAlok Kataria }
2980ef95533SAlok Kataria 
2990ef95533SAlok Kataria /* We need to define a real function for sched_clock, to override the
3000ef95533SAlok Kataria    weak default version */
3010ef95533SAlok Kataria #ifdef CONFIG_PARAVIRT
3020ef95533SAlok Kataria unsigned long long sched_clock(void)
3030ef95533SAlok Kataria {
3040ef95533SAlok Kataria 	return paravirt_sched_clock();
3050ef95533SAlok Kataria }
3060ef95533SAlok Kataria #else
3070ef95533SAlok Kataria unsigned long long
3080ef95533SAlok Kataria sched_clock(void) __attribute__((alias("native_sched_clock")));
3090ef95533SAlok Kataria #endif
3100ef95533SAlok Kataria 
3110ef95533SAlok Kataria int check_tsc_unstable(void)
3120ef95533SAlok Kataria {
3130ef95533SAlok Kataria 	return tsc_unstable;
3140ef95533SAlok Kataria }
3150ef95533SAlok Kataria EXPORT_SYMBOL_GPL(check_tsc_unstable);
3160ef95533SAlok Kataria 
317c73deb6aSAdrian Hunter int check_tsc_disabled(void)
318c73deb6aSAdrian Hunter {
319c73deb6aSAdrian Hunter 	return tsc_disabled;
320c73deb6aSAdrian Hunter }
321c73deb6aSAdrian Hunter EXPORT_SYMBOL_GPL(check_tsc_disabled);
322c73deb6aSAdrian Hunter 
3230ef95533SAlok Kataria #ifdef CONFIG_X86_TSC
3240ef95533SAlok Kataria int __init notsc_setup(char *str)
3250ef95533SAlok Kataria {
326c767a54bSJoe Perches 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
3270ef95533SAlok Kataria 	tsc_disabled = 1;
3280ef95533SAlok Kataria 	return 1;
3290ef95533SAlok Kataria }
3300ef95533SAlok Kataria #else
3310ef95533SAlok Kataria /*
3320ef95533SAlok Kataria  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
3330ef95533SAlok Kataria  * in cpu/common.c
3340ef95533SAlok Kataria  */
3350ef95533SAlok Kataria int __init notsc_setup(char *str)
3360ef95533SAlok Kataria {
3370ef95533SAlok Kataria 	setup_clear_cpu_cap(X86_FEATURE_TSC);
3380ef95533SAlok Kataria 	return 1;
3390ef95533SAlok Kataria }
3400ef95533SAlok Kataria #endif
3410ef95533SAlok Kataria 
3420ef95533SAlok Kataria __setup("notsc", notsc_setup);
343bfc0f594SAlok Kataria 
344e82b8e4eSVenkatesh Pallipadi static int no_sched_irq_time;
345e82b8e4eSVenkatesh Pallipadi 
346395628efSAlok Kataria static int __init tsc_setup(char *str)
347395628efSAlok Kataria {
348395628efSAlok Kataria 	if (!strcmp(str, "reliable"))
349395628efSAlok Kataria 		tsc_clocksource_reliable = 1;
350e82b8e4eSVenkatesh Pallipadi 	if (!strncmp(str, "noirqtime", 9))
351e82b8e4eSVenkatesh Pallipadi 		no_sched_irq_time = 1;
352395628efSAlok Kataria 	return 1;
353395628efSAlok Kataria }
354395628efSAlok Kataria 
355395628efSAlok Kataria __setup("tsc=", tsc_setup);
356395628efSAlok Kataria 
357bfc0f594SAlok Kataria #define MAX_RETRIES     5
358bfc0f594SAlok Kataria #define SMI_TRESHOLD    50000
359bfc0f594SAlok Kataria 
360bfc0f594SAlok Kataria /*
361bfc0f594SAlok Kataria  * Read TSC and the reference counters. Take care of SMI disturbance
362bfc0f594SAlok Kataria  */
363827014beSThomas Gleixner static u64 tsc_read_refs(u64 *p, int hpet)
364bfc0f594SAlok Kataria {
365bfc0f594SAlok Kataria 	u64 t1, t2;
366bfc0f594SAlok Kataria 	int i;
367bfc0f594SAlok Kataria 
368bfc0f594SAlok Kataria 	for (i = 0; i < MAX_RETRIES; i++) {
369bfc0f594SAlok Kataria 		t1 = get_cycles();
370bfc0f594SAlok Kataria 		if (hpet)
371827014beSThomas Gleixner 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
372bfc0f594SAlok Kataria 		else
373827014beSThomas Gleixner 			*p = acpi_pm_read_early();
374bfc0f594SAlok Kataria 		t2 = get_cycles();
375bfc0f594SAlok Kataria 		if ((t2 - t1) < SMI_TRESHOLD)
376bfc0f594SAlok Kataria 			return t2;
377bfc0f594SAlok Kataria 	}
378bfc0f594SAlok Kataria 	return ULLONG_MAX;
379bfc0f594SAlok Kataria }
380bfc0f594SAlok Kataria 
381ec0c15afSLinus Torvalds /*
382d683ef7aSThomas Gleixner  * Calculate the TSC frequency from HPET reference
383d683ef7aSThomas Gleixner  */
384d683ef7aSThomas Gleixner static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
385d683ef7aSThomas Gleixner {
386d683ef7aSThomas Gleixner 	u64 tmp;
387d683ef7aSThomas Gleixner 
388d683ef7aSThomas Gleixner 	if (hpet2 < hpet1)
389d683ef7aSThomas Gleixner 		hpet2 += 0x100000000ULL;
390d683ef7aSThomas Gleixner 	hpet2 -= hpet1;
391d683ef7aSThomas Gleixner 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
392d683ef7aSThomas Gleixner 	do_div(tmp, 1000000);
393d683ef7aSThomas Gleixner 	do_div(deltatsc, tmp);
394d683ef7aSThomas Gleixner 
395d683ef7aSThomas Gleixner 	return (unsigned long) deltatsc;
396d683ef7aSThomas Gleixner }
397d683ef7aSThomas Gleixner 
398d683ef7aSThomas Gleixner /*
399d683ef7aSThomas Gleixner  * Calculate the TSC frequency from PMTimer reference
400d683ef7aSThomas Gleixner  */
401d683ef7aSThomas Gleixner static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
402d683ef7aSThomas Gleixner {
403d683ef7aSThomas Gleixner 	u64 tmp;
404d683ef7aSThomas Gleixner 
405d683ef7aSThomas Gleixner 	if (!pm1 && !pm2)
406d683ef7aSThomas Gleixner 		return ULONG_MAX;
407d683ef7aSThomas Gleixner 
408d683ef7aSThomas Gleixner 	if (pm2 < pm1)
409d683ef7aSThomas Gleixner 		pm2 += (u64)ACPI_PM_OVRRUN;
410d683ef7aSThomas Gleixner 	pm2 -= pm1;
411d683ef7aSThomas Gleixner 	tmp = pm2 * 1000000000LL;
412d683ef7aSThomas Gleixner 	do_div(tmp, PMTMR_TICKS_PER_SEC);
413d683ef7aSThomas Gleixner 	do_div(deltatsc, tmp);
414d683ef7aSThomas Gleixner 
415d683ef7aSThomas Gleixner 	return (unsigned long) deltatsc;
416d683ef7aSThomas Gleixner }
417d683ef7aSThomas Gleixner 
418a977c400SThomas Gleixner #define CAL_MS		10
419b7743970SDeepak Saxena #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
420a977c400SThomas Gleixner #define CAL_PIT_LOOPS	1000
421a977c400SThomas Gleixner 
422a977c400SThomas Gleixner #define CAL2_MS		50
423b7743970SDeepak Saxena #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
424a977c400SThomas Gleixner #define CAL2_PIT_LOOPS	5000
425a977c400SThomas Gleixner 
426cce3e057SThomas Gleixner 
427ec0c15afSLinus Torvalds /*
428ec0c15afSLinus Torvalds  * Try to calibrate the TSC against the Programmable
429ec0c15afSLinus Torvalds  * Interrupt Timer and return the frequency of the TSC
430ec0c15afSLinus Torvalds  * in kHz.
431ec0c15afSLinus Torvalds  *
432ec0c15afSLinus Torvalds  * Return ULONG_MAX on failure to calibrate.
433ec0c15afSLinus Torvalds  */
434a977c400SThomas Gleixner static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
435ec0c15afSLinus Torvalds {
436ec0c15afSLinus Torvalds 	u64 tsc, t1, t2, delta;
437ec0c15afSLinus Torvalds 	unsigned long tscmin, tscmax;
438ec0c15afSLinus Torvalds 	int pitcnt;
439ec0c15afSLinus Torvalds 
440ec0c15afSLinus Torvalds 	/* Set the Gate high, disable speaker */
441ec0c15afSLinus Torvalds 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
442ec0c15afSLinus Torvalds 
443ec0c15afSLinus Torvalds 	/*
444ec0c15afSLinus Torvalds 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
445ec0c15afSLinus Torvalds 	 * count mode), binary count. Set the latch register to 50ms
446ec0c15afSLinus Torvalds 	 * (LSB then MSB) to begin countdown.
447ec0c15afSLinus Torvalds 	 */
448ec0c15afSLinus Torvalds 	outb(0xb0, 0x43);
449a977c400SThomas Gleixner 	outb(latch & 0xff, 0x42);
450a977c400SThomas Gleixner 	outb(latch >> 8, 0x42);
451ec0c15afSLinus Torvalds 
452ec0c15afSLinus Torvalds 	tsc = t1 = t2 = get_cycles();
453ec0c15afSLinus Torvalds 
454ec0c15afSLinus Torvalds 	pitcnt = 0;
455ec0c15afSLinus Torvalds 	tscmax = 0;
456ec0c15afSLinus Torvalds 	tscmin = ULONG_MAX;
457ec0c15afSLinus Torvalds 	while ((inb(0x61) & 0x20) == 0) {
458ec0c15afSLinus Torvalds 		t2 = get_cycles();
459ec0c15afSLinus Torvalds 		delta = t2 - tsc;
460ec0c15afSLinus Torvalds 		tsc = t2;
461ec0c15afSLinus Torvalds 		if ((unsigned long) delta < tscmin)
462ec0c15afSLinus Torvalds 			tscmin = (unsigned int) delta;
463ec0c15afSLinus Torvalds 		if ((unsigned long) delta > tscmax)
464ec0c15afSLinus Torvalds 			tscmax = (unsigned int) delta;
465ec0c15afSLinus Torvalds 		pitcnt++;
466ec0c15afSLinus Torvalds 	}
467ec0c15afSLinus Torvalds 
468ec0c15afSLinus Torvalds 	/*
469ec0c15afSLinus Torvalds 	 * Sanity checks:
470ec0c15afSLinus Torvalds 	 *
471a977c400SThomas Gleixner 	 * If we were not able to read the PIT more than loopmin
472ec0c15afSLinus Torvalds 	 * times, then we have been hit by a massive SMI
473ec0c15afSLinus Torvalds 	 *
474ec0c15afSLinus Torvalds 	 * If the maximum is 10 times larger than the minimum,
475ec0c15afSLinus Torvalds 	 * then we got hit by an SMI as well.
476ec0c15afSLinus Torvalds 	 */
477a977c400SThomas Gleixner 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
478ec0c15afSLinus Torvalds 		return ULONG_MAX;
479ec0c15afSLinus Torvalds 
480ec0c15afSLinus Torvalds 	/* Calculate the PIT value */
481ec0c15afSLinus Torvalds 	delta = t2 - t1;
482a977c400SThomas Gleixner 	do_div(delta, ms);
483ec0c15afSLinus Torvalds 	return delta;
484ec0c15afSLinus Torvalds }
485ec0c15afSLinus Torvalds 
4866ac40ed0SLinus Torvalds /*
4876ac40ed0SLinus Torvalds  * This reads the current MSB of the PIT counter, and
4886ac40ed0SLinus Torvalds  * checks if we are running on sufficiently fast and
4896ac40ed0SLinus Torvalds  * non-virtualized hardware.
4906ac40ed0SLinus Torvalds  *
4916ac40ed0SLinus Torvalds  * Our expectations are:
4926ac40ed0SLinus Torvalds  *
4936ac40ed0SLinus Torvalds  *  - the PIT is running at roughly 1.19MHz
4946ac40ed0SLinus Torvalds  *
4956ac40ed0SLinus Torvalds  *  - each IO is going to take about 1us on real hardware,
4966ac40ed0SLinus Torvalds  *    but we allow it to be much faster (by a factor of 10) or
4976ac40ed0SLinus Torvalds  *    _slightly_ slower (ie we allow up to a 2us read+counter
4986ac40ed0SLinus Torvalds  *    update - anything else implies a unacceptably slow CPU
4996ac40ed0SLinus Torvalds  *    or PIT for the fast calibration to work.
5006ac40ed0SLinus Torvalds  *
5016ac40ed0SLinus Torvalds  *  - with 256 PIT ticks to read the value, we have 214us to
5026ac40ed0SLinus Torvalds  *    see the same MSB (and overhead like doing a single TSC
5036ac40ed0SLinus Torvalds  *    read per MSB value etc).
5046ac40ed0SLinus Torvalds  *
5056ac40ed0SLinus Torvalds  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
5066ac40ed0SLinus Torvalds  *    them each to take about a microsecond on real hardware.
5076ac40ed0SLinus Torvalds  *    So we expect a count value of around 100. But we'll be
5086ac40ed0SLinus Torvalds  *    generous, and accept anything over 50.
5096ac40ed0SLinus Torvalds  *
5106ac40ed0SLinus Torvalds  *  - if the PIT is stuck, and we see *many* more reads, we
5116ac40ed0SLinus Torvalds  *    return early (and the next caller of pit_expect_msb()
5126ac40ed0SLinus Torvalds  *    then consider it a failure when they don't see the
5136ac40ed0SLinus Torvalds  *    next expected value).
5146ac40ed0SLinus Torvalds  *
5156ac40ed0SLinus Torvalds  * These expectations mean that we know that we have seen the
5166ac40ed0SLinus Torvalds  * transition from one expected value to another with a fairly
5176ac40ed0SLinus Torvalds  * high accuracy, and we didn't miss any events. We can thus
5186ac40ed0SLinus Torvalds  * use the TSC value at the transitions to calculate a pretty
5196ac40ed0SLinus Torvalds  * good value for the TSC frequencty.
5206ac40ed0SLinus Torvalds  */
521b6e61eefSLinus Torvalds static inline int pit_verify_msb(unsigned char val)
522b6e61eefSLinus Torvalds {
523b6e61eefSLinus Torvalds 	/* Ignore LSB */
524b6e61eefSLinus Torvalds 	inb(0x42);
525b6e61eefSLinus Torvalds 	return inb(0x42) == val;
526b6e61eefSLinus Torvalds }
527b6e61eefSLinus Torvalds 
5289e8912e0SLinus Torvalds static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
5296ac40ed0SLinus Torvalds {
5309e8912e0SLinus Torvalds 	int count;
53168f30fbeSLinus Torvalds 	u64 tsc = 0, prev_tsc = 0;
5326ac40ed0SLinus Torvalds 
5336ac40ed0SLinus Torvalds 	for (count = 0; count < 50000; count++) {
534b6e61eefSLinus Torvalds 		if (!pit_verify_msb(val))
5356ac40ed0SLinus Torvalds 			break;
53668f30fbeSLinus Torvalds 		prev_tsc = tsc;
5379e8912e0SLinus Torvalds 		tsc = get_cycles();
5386ac40ed0SLinus Torvalds 	}
53968f30fbeSLinus Torvalds 	*deltap = get_cycles() - prev_tsc;
5409e8912e0SLinus Torvalds 	*tscp = tsc;
5419e8912e0SLinus Torvalds 
5429e8912e0SLinus Torvalds 	/*
5439e8912e0SLinus Torvalds 	 * We require _some_ success, but the quality control
5449e8912e0SLinus Torvalds 	 * will be based on the error terms on the TSC values.
5459e8912e0SLinus Torvalds 	 */
5469e8912e0SLinus Torvalds 	return count > 5;
5476ac40ed0SLinus Torvalds }
5486ac40ed0SLinus Torvalds 
5496ac40ed0SLinus Torvalds /*
5509e8912e0SLinus Torvalds  * How many MSB values do we want to see? We aim for
5519e8912e0SLinus Torvalds  * a maximum error rate of 500ppm (in practice the
5529e8912e0SLinus Torvalds  * real error is much smaller), but refuse to spend
55368f30fbeSLinus Torvalds  * more than 50ms on it.
5546ac40ed0SLinus Torvalds  */
55568f30fbeSLinus Torvalds #define MAX_QUICK_PIT_MS 50
5569e8912e0SLinus Torvalds #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
5576ac40ed0SLinus Torvalds 
5586ac40ed0SLinus Torvalds static unsigned long quick_pit_calibrate(void)
5596ac40ed0SLinus Torvalds {
5609e8912e0SLinus Torvalds 	int i;
5619e8912e0SLinus Torvalds 	u64 tsc, delta;
5629e8912e0SLinus Torvalds 	unsigned long d1, d2;
5639e8912e0SLinus Torvalds 
5646ac40ed0SLinus Torvalds 	/* Set the Gate high, disable speaker */
5656ac40ed0SLinus Torvalds 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
5666ac40ed0SLinus Torvalds 
5676ac40ed0SLinus Torvalds 	/*
5686ac40ed0SLinus Torvalds 	 * Counter 2, mode 0 (one-shot), binary count
5696ac40ed0SLinus Torvalds 	 *
5706ac40ed0SLinus Torvalds 	 * NOTE! Mode 2 decrements by two (and then the
5716ac40ed0SLinus Torvalds 	 * output is flipped each time, giving the same
5726ac40ed0SLinus Torvalds 	 * final output frequency as a decrement-by-one),
5736ac40ed0SLinus Torvalds 	 * so mode 0 is much better when looking at the
5746ac40ed0SLinus Torvalds 	 * individual counts.
5756ac40ed0SLinus Torvalds 	 */
5766ac40ed0SLinus Torvalds 	outb(0xb0, 0x43);
5776ac40ed0SLinus Torvalds 
5786ac40ed0SLinus Torvalds 	/* Start at 0xffff */
5796ac40ed0SLinus Torvalds 	outb(0xff, 0x42);
5806ac40ed0SLinus Torvalds 	outb(0xff, 0x42);
5816ac40ed0SLinus Torvalds 
582a6a80e1dSLinus Torvalds 	/*
583a6a80e1dSLinus Torvalds 	 * The PIT starts counting at the next edge, so we
584a6a80e1dSLinus Torvalds 	 * need to delay for a microsecond. The easiest way
585a6a80e1dSLinus Torvalds 	 * to do that is to just read back the 16-bit counter
586a6a80e1dSLinus Torvalds 	 * once from the PIT.
587a6a80e1dSLinus Torvalds 	 */
588b6e61eefSLinus Torvalds 	pit_verify_msb(0);
589a6a80e1dSLinus Torvalds 
5909e8912e0SLinus Torvalds 	if (pit_expect_msb(0xff, &tsc, &d1)) {
5919e8912e0SLinus Torvalds 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
5929e8912e0SLinus Torvalds 			if (!pit_expect_msb(0xff-i, &delta, &d2))
5939e8912e0SLinus Torvalds 				break;
5946ac40ed0SLinus Torvalds 
5956ac40ed0SLinus Torvalds 			/*
5969e8912e0SLinus Torvalds 			 * Iterate until the error is less than 500 ppm
5974156e9a8SIngo Molnar 			 */
5989e8912e0SLinus Torvalds 			delta -= tsc;
599b6e61eefSLinus Torvalds 			if (d1+d2 >= delta >> 11)
600b6e61eefSLinus Torvalds 				continue;
601b6e61eefSLinus Torvalds 
602b6e61eefSLinus Torvalds 			/*
603b6e61eefSLinus Torvalds 			 * Check the PIT one more time to verify that
604b6e61eefSLinus Torvalds 			 * all TSC reads were stable wrt the PIT.
605b6e61eefSLinus Torvalds 			 *
606b6e61eefSLinus Torvalds 			 * This also guarantees serialization of the
607b6e61eefSLinus Torvalds 			 * last cycle read ('d2') in pit_expect_msb.
608b6e61eefSLinus Torvalds 			 */
609b6e61eefSLinus Torvalds 			if (!pit_verify_msb(0xfe - i))
610b6e61eefSLinus Torvalds 				break;
6119e8912e0SLinus Torvalds 			goto success;
6129e8912e0SLinus Torvalds 		}
6139e8912e0SLinus Torvalds 	}
61452045217SAlexandre Demers 	pr_info("Fast TSC calibration failed\n");
6159e8912e0SLinus Torvalds 	return 0;
6164156e9a8SIngo Molnar 
6179e8912e0SLinus Torvalds success:
6184156e9a8SIngo Molnar 	/*
6196ac40ed0SLinus Torvalds 	 * Ok, if we get here, then we've seen the
6209e8912e0SLinus Torvalds 	 * MSB of the PIT decrement 'i' times, and the
6219e8912e0SLinus Torvalds 	 * error has shrunk to less than 500 ppm.
6226ac40ed0SLinus Torvalds 	 *
6236ac40ed0SLinus Torvalds 	 * As a result, we can depend on there not being
6246ac40ed0SLinus Torvalds 	 * any odd delays anywhere, and the TSC reads are
62568f30fbeSLinus Torvalds 	 * reliable (within the error).
6266ac40ed0SLinus Torvalds 	 *
6276ac40ed0SLinus Torvalds 	 * kHz = ticks / time-in-seconds / 1000;
6289e8912e0SLinus Torvalds 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
6299e8912e0SLinus Torvalds 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
6306ac40ed0SLinus Torvalds 	 */
6319e8912e0SLinus Torvalds 	delta *= PIT_TICK_RATE;
6329e8912e0SLinus Torvalds 	do_div(delta, i*256*1000);
633c767a54bSJoe Perches 	pr_info("Fast TSC calibration using PIT\n");
6346ac40ed0SLinus Torvalds 	return delta;
6356ac40ed0SLinus Torvalds }
636ec0c15afSLinus Torvalds 
637bfc0f594SAlok Kataria /**
638e93ef949SAlok Kataria  * native_calibrate_tsc - calibrate the tsc on boot
639bfc0f594SAlok Kataria  */
640e93ef949SAlok Kataria unsigned long native_calibrate_tsc(void)
641bfc0f594SAlok Kataria {
642827014beSThomas Gleixner 	u64 tsc1, tsc2, delta, ref1, ref2;
643fbb16e24SThomas Gleixner 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
6442d826404SThomas Gleixner 	unsigned long flags, latch, ms, fast_calibrate;
645a977c400SThomas Gleixner 	int hpet = is_hpet_enabled(), i, loopmin;
646bfc0f594SAlok Kataria 
6477da7c156SBin Gao 	/* Calibrate TSC using MSR for Intel Atom SoCs */
6487da7c156SBin Gao 	local_irq_save(flags);
6495f0e0309SThomas Gleixner 	fast_calibrate = try_msr_calibrate_tsc();
6507da7c156SBin Gao 	local_irq_restore(flags);
6515f0e0309SThomas Gleixner 	if (fast_calibrate)
6527da7c156SBin Gao 		return fast_calibrate;
6537da7c156SBin Gao 
654bfc0f594SAlok Kataria 	local_irq_save(flags);
6556ac40ed0SLinus Torvalds 	fast_calibrate = quick_pit_calibrate();
656bfc0f594SAlok Kataria 	local_irq_restore(flags);
6576ac40ed0SLinus Torvalds 	if (fast_calibrate)
6586ac40ed0SLinus Torvalds 		return fast_calibrate;
659fbb16e24SThomas Gleixner 
660fbb16e24SThomas Gleixner 	/*
661fbb16e24SThomas Gleixner 	 * Run 5 calibration loops to get the lowest frequency value
662fbb16e24SThomas Gleixner 	 * (the best estimate). We use two different calibration modes
663fbb16e24SThomas Gleixner 	 * here:
664fbb16e24SThomas Gleixner 	 *
665fbb16e24SThomas Gleixner 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
666fbb16e24SThomas Gleixner 	 * load a timeout of 50ms. We read the time right after we
667fbb16e24SThomas Gleixner 	 * started the timer and wait until the PIT count down reaches
668fbb16e24SThomas Gleixner 	 * zero. In each wait loop iteration we read the TSC and check
669fbb16e24SThomas Gleixner 	 * the delta to the previous read. We keep track of the min
670fbb16e24SThomas Gleixner 	 * and max values of that delta. The delta is mostly defined
671fbb16e24SThomas Gleixner 	 * by the IO time of the PIT access, so we can detect when a
6720d2eb44fSLucas De Marchi 	 * SMI/SMM disturbance happened between the two reads. If the
673fbb16e24SThomas Gleixner 	 * maximum time is significantly larger than the minimum time,
674fbb16e24SThomas Gleixner 	 * then we discard the result and have another try.
675fbb16e24SThomas Gleixner 	 *
676fbb16e24SThomas Gleixner 	 * 2) Reference counter. If available we use the HPET or the
677fbb16e24SThomas Gleixner 	 * PMTIMER as a reference to check the sanity of that value.
678fbb16e24SThomas Gleixner 	 * We use separate TSC readouts and check inside of the
679fbb16e24SThomas Gleixner 	 * reference read for a SMI/SMM disturbance. We dicard
680fbb16e24SThomas Gleixner 	 * disturbed values here as well. We do that around the PIT
681fbb16e24SThomas Gleixner 	 * calibration delay loop as we have to wait for a certain
682fbb16e24SThomas Gleixner 	 * amount of time anyway.
683fbb16e24SThomas Gleixner 	 */
684a977c400SThomas Gleixner 
685a977c400SThomas Gleixner 	/* Preset PIT loop values */
686a977c400SThomas Gleixner 	latch = CAL_LATCH;
687a977c400SThomas Gleixner 	ms = CAL_MS;
688a977c400SThomas Gleixner 	loopmin = CAL_PIT_LOOPS;
689a977c400SThomas Gleixner 
690a977c400SThomas Gleixner 	for (i = 0; i < 3; i++) {
691ec0c15afSLinus Torvalds 		unsigned long tsc_pit_khz;
692bfc0f594SAlok Kataria 
693fbb16e24SThomas Gleixner 		/*
694fbb16e24SThomas Gleixner 		 * Read the start value and the reference count of
695ec0c15afSLinus Torvalds 		 * hpet/pmtimer when available. Then do the PIT
696ec0c15afSLinus Torvalds 		 * calibration, which will take at least 50ms, and
697ec0c15afSLinus Torvalds 		 * read the end value.
698fbb16e24SThomas Gleixner 		 */
699ec0c15afSLinus Torvalds 		local_irq_save(flags);
700827014beSThomas Gleixner 		tsc1 = tsc_read_refs(&ref1, hpet);
701a977c400SThomas Gleixner 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
702827014beSThomas Gleixner 		tsc2 = tsc_read_refs(&ref2, hpet);
703bfc0f594SAlok Kataria 		local_irq_restore(flags);
704bfc0f594SAlok Kataria 
705ec0c15afSLinus Torvalds 		/* Pick the lowest PIT TSC calibration so far */
706ec0c15afSLinus Torvalds 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
707bfc0f594SAlok Kataria 
708bfc0f594SAlok Kataria 		/* hpet or pmtimer available ? */
70962627becSJohn Stultz 		if (ref1 == ref2)
710fbb16e24SThomas Gleixner 			continue;
711bfc0f594SAlok Kataria 
712bfc0f594SAlok Kataria 		/* Check, whether the sampling was disturbed by an SMI */
713fbb16e24SThomas Gleixner 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
714fbb16e24SThomas Gleixner 			continue;
715bfc0f594SAlok Kataria 
716bfc0f594SAlok Kataria 		tsc2 = (tsc2 - tsc1) * 1000000LL;
717d683ef7aSThomas Gleixner 		if (hpet)
718827014beSThomas Gleixner 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
719d683ef7aSThomas Gleixner 		else
720827014beSThomas Gleixner 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
721bfc0f594SAlok Kataria 
722fbb16e24SThomas Gleixner 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
723a977c400SThomas Gleixner 
724a977c400SThomas Gleixner 		/* Check the reference deviation */
725a977c400SThomas Gleixner 		delta = ((u64) tsc_pit_min) * 100;
726a977c400SThomas Gleixner 		do_div(delta, tsc_ref_min);
727a977c400SThomas Gleixner 
728a977c400SThomas Gleixner 		/*
729a977c400SThomas Gleixner 		 * If both calibration results are inside a 10% window
730a977c400SThomas Gleixner 		 * then we can be sure, that the calibration
731a977c400SThomas Gleixner 		 * succeeded. We break out of the loop right away. We
732a977c400SThomas Gleixner 		 * use the reference value, as it is more precise.
733a977c400SThomas Gleixner 		 */
734a977c400SThomas Gleixner 		if (delta >= 90 && delta <= 110) {
735c767a54bSJoe Perches 			pr_info("PIT calibration matches %s. %d loops\n",
736a977c400SThomas Gleixner 				hpet ? "HPET" : "PMTIMER", i + 1);
737a977c400SThomas Gleixner 			return tsc_ref_min;
738bfc0f594SAlok Kataria 		}
739bfc0f594SAlok Kataria 
740a977c400SThomas Gleixner 		/*
741a977c400SThomas Gleixner 		 * Check whether PIT failed more than once. This
742a977c400SThomas Gleixner 		 * happens in virtualized environments. We need to
743a977c400SThomas Gleixner 		 * give the virtual PC a slightly longer timeframe for
744a977c400SThomas Gleixner 		 * the HPET/PMTIMER to make the result precise.
745a977c400SThomas Gleixner 		 */
746a977c400SThomas Gleixner 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
747a977c400SThomas Gleixner 			latch = CAL2_LATCH;
748a977c400SThomas Gleixner 			ms = CAL2_MS;
749a977c400SThomas Gleixner 			loopmin = CAL2_PIT_LOOPS;
750a977c400SThomas Gleixner 		}
751bfc0f594SAlok Kataria 	}
752bfc0f594SAlok Kataria 
753fbb16e24SThomas Gleixner 	/*
754fbb16e24SThomas Gleixner 	 * Now check the results.
755fbb16e24SThomas Gleixner 	 */
756fbb16e24SThomas Gleixner 	if (tsc_pit_min == ULONG_MAX) {
757fbb16e24SThomas Gleixner 		/* PIT gave no useful value */
758c767a54bSJoe Perches 		pr_warn("Unable to calibrate against PIT\n");
759fbb16e24SThomas Gleixner 
760fbb16e24SThomas Gleixner 		/* We don't have an alternative source, disable TSC */
761827014beSThomas Gleixner 		if (!hpet && !ref1 && !ref2) {
762c767a54bSJoe Perches 			pr_notice("No reference (HPET/PMTIMER) available\n");
763fbb16e24SThomas Gleixner 			return 0;
764fbb16e24SThomas Gleixner 		}
765fbb16e24SThomas Gleixner 
766fbb16e24SThomas Gleixner 		/* The alternative source failed as well, disable TSC */
767fbb16e24SThomas Gleixner 		if (tsc_ref_min == ULONG_MAX) {
768c767a54bSJoe Perches 			pr_warn("HPET/PMTIMER calibration failed\n");
769fbb16e24SThomas Gleixner 			return 0;
770fbb16e24SThomas Gleixner 		}
771fbb16e24SThomas Gleixner 
772fbb16e24SThomas Gleixner 		/* Use the alternative source */
773c767a54bSJoe Perches 		pr_info("using %s reference calibration\n",
774fbb16e24SThomas Gleixner 			hpet ? "HPET" : "PMTIMER");
775fbb16e24SThomas Gleixner 
776fbb16e24SThomas Gleixner 		return tsc_ref_min;
777fbb16e24SThomas Gleixner 	}
778fbb16e24SThomas Gleixner 
779fbb16e24SThomas Gleixner 	/* We don't have an alternative source, use the PIT calibration value */
780827014beSThomas Gleixner 	if (!hpet && !ref1 && !ref2) {
781c767a54bSJoe Perches 		pr_info("Using PIT calibration value\n");
782fbb16e24SThomas Gleixner 		return tsc_pit_min;
783fbb16e24SThomas Gleixner 	}
784fbb16e24SThomas Gleixner 
785fbb16e24SThomas Gleixner 	/* The alternative source failed, use the PIT calibration value */
786fbb16e24SThomas Gleixner 	if (tsc_ref_min == ULONG_MAX) {
787c767a54bSJoe Perches 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
788fbb16e24SThomas Gleixner 		return tsc_pit_min;
789fbb16e24SThomas Gleixner 	}
790fbb16e24SThomas Gleixner 
791fbb16e24SThomas Gleixner 	/*
792fbb16e24SThomas Gleixner 	 * The calibration values differ too much. In doubt, we use
793fbb16e24SThomas Gleixner 	 * the PIT value as we know that there are PMTIMERs around
794a977c400SThomas Gleixner 	 * running at double speed. At least we let the user know:
795fbb16e24SThomas Gleixner 	 */
796c767a54bSJoe Perches 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
797a977c400SThomas Gleixner 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
798c767a54bSJoe Perches 	pr_info("Using PIT calibration value\n");
799fbb16e24SThomas Gleixner 	return tsc_pit_min;
800fbb16e24SThomas Gleixner }
801bfc0f594SAlok Kataria 
802bfc0f594SAlok Kataria int recalibrate_cpu_khz(void)
803bfc0f594SAlok Kataria {
804bfc0f594SAlok Kataria #ifndef CONFIG_SMP
805bfc0f594SAlok Kataria 	unsigned long cpu_khz_old = cpu_khz;
806bfc0f594SAlok Kataria 
807bfc0f594SAlok Kataria 	if (cpu_has_tsc) {
8082d826404SThomas Gleixner 		tsc_khz = x86_platform.calibrate_tsc();
809e93ef949SAlok Kataria 		cpu_khz = tsc_khz;
810bfc0f594SAlok Kataria 		cpu_data(0).loops_per_jiffy =
811bfc0f594SAlok Kataria 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
812bfc0f594SAlok Kataria 					cpu_khz_old, cpu_khz);
813bfc0f594SAlok Kataria 		return 0;
814bfc0f594SAlok Kataria 	} else
815bfc0f594SAlok Kataria 		return -ENODEV;
816bfc0f594SAlok Kataria #else
817bfc0f594SAlok Kataria 	return -ENODEV;
818bfc0f594SAlok Kataria #endif
819bfc0f594SAlok Kataria }
820bfc0f594SAlok Kataria 
821bfc0f594SAlok Kataria EXPORT_SYMBOL(recalibrate_cpu_khz);
822bfc0f594SAlok Kataria 
8232dbe06faSAlok Kataria 
824cd7240c0SSuresh Siddha static unsigned long long cyc2ns_suspend;
825cd7240c0SSuresh Siddha 
826b74f05d6SMarcelo Tosatti void tsc_save_sched_clock_state(void)
827cd7240c0SSuresh Siddha {
82835af99e6SPeter Zijlstra 	if (!sched_clock_stable())
829cd7240c0SSuresh Siddha 		return;
830cd7240c0SSuresh Siddha 
831cd7240c0SSuresh Siddha 	cyc2ns_suspend = sched_clock();
832cd7240c0SSuresh Siddha }
833cd7240c0SSuresh Siddha 
834cd7240c0SSuresh Siddha /*
835cd7240c0SSuresh Siddha  * Even on processors with invariant TSC, TSC gets reset in some the
836cd7240c0SSuresh Siddha  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
837cd7240c0SSuresh Siddha  * arbitrary value (still sync'd across cpu's) during resume from such sleep
838cd7240c0SSuresh Siddha  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
839cd7240c0SSuresh Siddha  * that sched_clock() continues from the point where it was left off during
840cd7240c0SSuresh Siddha  * suspend.
841cd7240c0SSuresh Siddha  */
842b74f05d6SMarcelo Tosatti void tsc_restore_sched_clock_state(void)
843cd7240c0SSuresh Siddha {
844cd7240c0SSuresh Siddha 	unsigned long long offset;
845cd7240c0SSuresh Siddha 	unsigned long flags;
846cd7240c0SSuresh Siddha 	int cpu;
847cd7240c0SSuresh Siddha 
84835af99e6SPeter Zijlstra 	if (!sched_clock_stable())
849cd7240c0SSuresh Siddha 		return;
850cd7240c0SSuresh Siddha 
851cd7240c0SSuresh Siddha 	local_irq_save(flags);
852cd7240c0SSuresh Siddha 
85320d1c86aSPeter Zijlstra 	/*
85420d1c86aSPeter Zijlstra 	 * We're comming out of suspend, there's no concurrency yet; don't
85520d1c86aSPeter Zijlstra 	 * bother being nice about the RCU stuff, just write to both
85620d1c86aSPeter Zijlstra 	 * data fields.
85720d1c86aSPeter Zijlstra 	 */
85820d1c86aSPeter Zijlstra 
85920d1c86aSPeter Zijlstra 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
86020d1c86aSPeter Zijlstra 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
86120d1c86aSPeter Zijlstra 
862cd7240c0SSuresh Siddha 	offset = cyc2ns_suspend - sched_clock();
863cd7240c0SSuresh Siddha 
86420d1c86aSPeter Zijlstra 	for_each_possible_cpu(cpu) {
86520d1c86aSPeter Zijlstra 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
86620d1c86aSPeter Zijlstra 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
86720d1c86aSPeter Zijlstra 	}
868cd7240c0SSuresh Siddha 
869cd7240c0SSuresh Siddha 	local_irq_restore(flags);
870cd7240c0SSuresh Siddha }
871cd7240c0SSuresh Siddha 
8722dbe06faSAlok Kataria #ifdef CONFIG_CPU_FREQ
8732dbe06faSAlok Kataria 
8742dbe06faSAlok Kataria /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
8752dbe06faSAlok Kataria  * changes.
8762dbe06faSAlok Kataria  *
8772dbe06faSAlok Kataria  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
8782dbe06faSAlok Kataria  * not that important because current Opteron setups do not support
8792dbe06faSAlok Kataria  * scaling on SMP anyroads.
8802dbe06faSAlok Kataria  *
8812dbe06faSAlok Kataria  * Should fix up last_tsc too. Currently gettimeofday in the
8822dbe06faSAlok Kataria  * first tick after the change will be slightly wrong.
8832dbe06faSAlok Kataria  */
8842dbe06faSAlok Kataria 
8852dbe06faSAlok Kataria static unsigned int  ref_freq;
8862dbe06faSAlok Kataria static unsigned long loops_per_jiffy_ref;
8872dbe06faSAlok Kataria static unsigned long tsc_khz_ref;
8882dbe06faSAlok Kataria 
8892dbe06faSAlok Kataria static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8902dbe06faSAlok Kataria 				void *data)
8912dbe06faSAlok Kataria {
8922dbe06faSAlok Kataria 	struct cpufreq_freqs *freq = data;
893931db6a3SDave Jones 	unsigned long *lpj;
8942dbe06faSAlok Kataria 
8952dbe06faSAlok Kataria 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
8962dbe06faSAlok Kataria 		return 0;
8972dbe06faSAlok Kataria 
8982dbe06faSAlok Kataria 	lpj = &boot_cpu_data.loops_per_jiffy;
899931db6a3SDave Jones #ifdef CONFIG_SMP
900931db6a3SDave Jones 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
901931db6a3SDave Jones 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
9022dbe06faSAlok Kataria #endif
9032dbe06faSAlok Kataria 
9042dbe06faSAlok Kataria 	if (!ref_freq) {
9052dbe06faSAlok Kataria 		ref_freq = freq->old;
9062dbe06faSAlok Kataria 		loops_per_jiffy_ref = *lpj;
9072dbe06faSAlok Kataria 		tsc_khz_ref = tsc_khz;
9082dbe06faSAlok Kataria 	}
9092dbe06faSAlok Kataria 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
9100b443eadSViresh Kumar 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
9112dbe06faSAlok Kataria 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
9122dbe06faSAlok Kataria 
9132dbe06faSAlok Kataria 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
9142dbe06faSAlok Kataria 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
9152dbe06faSAlok Kataria 			mark_tsc_unstable("cpufreq changes");
9162dbe06faSAlok Kataria 
91752a8968cSPeter Zijlstra 		set_cyc2ns_scale(tsc_khz, freq->cpu);
9183896c329SPeter Zijlstra 	}
9192dbe06faSAlok Kataria 
9202dbe06faSAlok Kataria 	return 0;
9212dbe06faSAlok Kataria }
9222dbe06faSAlok Kataria 
9232dbe06faSAlok Kataria static struct notifier_block time_cpufreq_notifier_block = {
9242dbe06faSAlok Kataria 	.notifier_call  = time_cpufreq_notifier
9252dbe06faSAlok Kataria };
9262dbe06faSAlok Kataria 
9272dbe06faSAlok Kataria static int __init cpufreq_tsc(void)
9282dbe06faSAlok Kataria {
929060700b5SLinus Torvalds 	if (!cpu_has_tsc)
930060700b5SLinus Torvalds 		return 0;
931060700b5SLinus Torvalds 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
932060700b5SLinus Torvalds 		return 0;
9332dbe06faSAlok Kataria 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
9342dbe06faSAlok Kataria 				CPUFREQ_TRANSITION_NOTIFIER);
9352dbe06faSAlok Kataria 	return 0;
9362dbe06faSAlok Kataria }
9372dbe06faSAlok Kataria 
9382dbe06faSAlok Kataria core_initcall(cpufreq_tsc);
9392dbe06faSAlok Kataria 
9402dbe06faSAlok Kataria #endif /* CONFIG_CPU_FREQ */
9418fbbc4b4SAlok Kataria 
9428fbbc4b4SAlok Kataria /* clocksource code */
9438fbbc4b4SAlok Kataria 
9448fbbc4b4SAlok Kataria static struct clocksource clocksource_tsc;
9458fbbc4b4SAlok Kataria 
9468fbbc4b4SAlok Kataria /*
94709ec5442SThomas Gleixner  * We used to compare the TSC to the cycle_last value in the clocksource
9488fbbc4b4SAlok Kataria  * structure to avoid a nasty time-warp. This can be observed in a
9498fbbc4b4SAlok Kataria  * very small window right after one CPU updated cycle_last under
9508fbbc4b4SAlok Kataria  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
9518fbbc4b4SAlok Kataria  * is smaller than the cycle_last reference value due to a TSC which
9528fbbc4b4SAlok Kataria  * is slighty behind. This delta is nowhere else observable, but in
9538fbbc4b4SAlok Kataria  * that case it results in a forward time jump in the range of hours
9548fbbc4b4SAlok Kataria  * due to the unsigned delta calculation of the time keeping core
9558fbbc4b4SAlok Kataria  * code, which is necessary to support wrapping clocksources like pm
9568fbbc4b4SAlok Kataria  * timer.
95709ec5442SThomas Gleixner  *
95809ec5442SThomas Gleixner  * This sanity check is now done in the core timekeeping code.
95909ec5442SThomas Gleixner  * checking the result of read_tsc() - cycle_last for being negative.
96009ec5442SThomas Gleixner  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
9618fbbc4b4SAlok Kataria  */
9628e19608eSMagnus Damm static cycle_t read_tsc(struct clocksource *cs)
9638fbbc4b4SAlok Kataria {
96427c63405SAndy Lutomirski 	return (cycle_t)rdtsc_ordered();
9658fbbc4b4SAlok Kataria }
9668fbbc4b4SAlok Kataria 
96709ec5442SThomas Gleixner /*
96809ec5442SThomas Gleixner  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
96909ec5442SThomas Gleixner  */
9708fbbc4b4SAlok Kataria static struct clocksource clocksource_tsc = {
9718fbbc4b4SAlok Kataria 	.name                   = "tsc",
9728fbbc4b4SAlok Kataria 	.rating                 = 300,
9738fbbc4b4SAlok Kataria 	.read                   = read_tsc,
9748fbbc4b4SAlok Kataria 	.mask                   = CLOCKSOURCE_MASK(64),
9758fbbc4b4SAlok Kataria 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
9768fbbc4b4SAlok Kataria 				  CLOCK_SOURCE_MUST_VERIFY,
97798d0ac38SAndy Lutomirski 	.archdata               = { .vclock_mode = VCLOCK_TSC },
9788fbbc4b4SAlok Kataria };
9798fbbc4b4SAlok Kataria 
9808fbbc4b4SAlok Kataria void mark_tsc_unstable(char *reason)
9818fbbc4b4SAlok Kataria {
9828fbbc4b4SAlok Kataria 	if (!tsc_unstable) {
9838fbbc4b4SAlok Kataria 		tsc_unstable = 1;
98435af99e6SPeter Zijlstra 		clear_sched_clock_stable();
985e82b8e4eSVenkatesh Pallipadi 		disable_sched_clock_irqtime();
986c767a54bSJoe Perches 		pr_info("Marking TSC unstable due to %s\n", reason);
9878fbbc4b4SAlok Kataria 		/* Change only the rating, when not registered */
9888fbbc4b4SAlok Kataria 		if (clocksource_tsc.mult)
9897285dd7fSThomas Gleixner 			clocksource_mark_unstable(&clocksource_tsc);
9907285dd7fSThomas Gleixner 		else {
9917285dd7fSThomas Gleixner 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
9928fbbc4b4SAlok Kataria 			clocksource_tsc.rating = 0;
9938fbbc4b4SAlok Kataria 		}
9948fbbc4b4SAlok Kataria 	}
9957285dd7fSThomas Gleixner }
9968fbbc4b4SAlok Kataria 
9978fbbc4b4SAlok Kataria EXPORT_SYMBOL_GPL(mark_tsc_unstable);
9988fbbc4b4SAlok Kataria 
999395628efSAlok Kataria static void __init check_system_tsc_reliable(void)
1000395628efSAlok Kataria {
10018fbbc4b4SAlok Kataria #ifdef CONFIG_MGEODE_LX
10028fbbc4b4SAlok Kataria 	/* RTSC counts during suspend */
10038fbbc4b4SAlok Kataria #define RTSC_SUSP 0x100
10048fbbc4b4SAlok Kataria 	unsigned long res_low, res_high;
10058fbbc4b4SAlok Kataria 
10068fbbc4b4SAlok Kataria 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
100700097c4fSThadeu Lima de Souza Cascardo 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
10088fbbc4b4SAlok Kataria 	if (res_low & RTSC_SUSP)
1009395628efSAlok Kataria 		tsc_clocksource_reliable = 1;
10108fbbc4b4SAlok Kataria #endif
1011395628efSAlok Kataria 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1012395628efSAlok Kataria 		tsc_clocksource_reliable = 1;
1013395628efSAlok Kataria }
10148fbbc4b4SAlok Kataria 
10158fbbc4b4SAlok Kataria /*
10168fbbc4b4SAlok Kataria  * Make an educated guess if the TSC is trustworthy and synchronized
10178fbbc4b4SAlok Kataria  * over all CPUs.
10188fbbc4b4SAlok Kataria  */
1019148f9bb8SPaul Gortmaker int unsynchronized_tsc(void)
10208fbbc4b4SAlok Kataria {
10218fbbc4b4SAlok Kataria 	if (!cpu_has_tsc || tsc_unstable)
10228fbbc4b4SAlok Kataria 		return 1;
10238fbbc4b4SAlok Kataria 
10243e5095d1SIngo Molnar #ifdef CONFIG_SMP
10258fbbc4b4SAlok Kataria 	if (apic_is_clustered_box())
10268fbbc4b4SAlok Kataria 		return 1;
10278fbbc4b4SAlok Kataria #endif
10288fbbc4b4SAlok Kataria 
10298fbbc4b4SAlok Kataria 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
10308fbbc4b4SAlok Kataria 		return 0;
1031d3b8f889Sjohn stultz 
1032d3b8f889Sjohn stultz 	if (tsc_clocksource_reliable)
1033d3b8f889Sjohn stultz 		return 0;
10348fbbc4b4SAlok Kataria 	/*
10358fbbc4b4SAlok Kataria 	 * Intel systems are normally all synchronized.
10368fbbc4b4SAlok Kataria 	 * Exceptions must mark TSC as unstable:
10378fbbc4b4SAlok Kataria 	 */
10388fbbc4b4SAlok Kataria 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
10398fbbc4b4SAlok Kataria 		/* assume multi socket systems are not synchronized: */
10408fbbc4b4SAlok Kataria 		if (num_possible_cpus() > 1)
1041d3b8f889Sjohn stultz 			return 1;
10428fbbc4b4SAlok Kataria 	}
10438fbbc4b4SAlok Kataria 
1044d3b8f889Sjohn stultz 	return 0;
10458fbbc4b4SAlok Kataria }
10468fbbc4b4SAlok Kataria 
104708ec0c58SJohn Stultz 
104808ec0c58SJohn Stultz static void tsc_refine_calibration_work(struct work_struct *work);
104908ec0c58SJohn Stultz static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
105008ec0c58SJohn Stultz /**
105108ec0c58SJohn Stultz  * tsc_refine_calibration_work - Further refine tsc freq calibration
105208ec0c58SJohn Stultz  * @work - ignored.
105308ec0c58SJohn Stultz  *
105408ec0c58SJohn Stultz  * This functions uses delayed work over a period of a
105508ec0c58SJohn Stultz  * second to further refine the TSC freq value. Since this is
105608ec0c58SJohn Stultz  * timer based, instead of loop based, we don't block the boot
105708ec0c58SJohn Stultz  * process while this longer calibration is done.
105808ec0c58SJohn Stultz  *
10590d2eb44fSLucas De Marchi  * If there are any calibration anomalies (too many SMIs, etc),
106008ec0c58SJohn Stultz  * or the refined calibration is off by 1% of the fast early
106108ec0c58SJohn Stultz  * calibration, we throw out the new calibration and use the
106208ec0c58SJohn Stultz  * early calibration.
106308ec0c58SJohn Stultz  */
106408ec0c58SJohn Stultz static void tsc_refine_calibration_work(struct work_struct *work)
106508ec0c58SJohn Stultz {
106608ec0c58SJohn Stultz 	static u64 tsc_start = -1, ref_start;
106708ec0c58SJohn Stultz 	static int hpet;
106808ec0c58SJohn Stultz 	u64 tsc_stop, ref_stop, delta;
106908ec0c58SJohn Stultz 	unsigned long freq;
107008ec0c58SJohn Stultz 
107108ec0c58SJohn Stultz 	/* Don't bother refining TSC on unstable systems */
107208ec0c58SJohn Stultz 	if (check_tsc_unstable())
107308ec0c58SJohn Stultz 		goto out;
107408ec0c58SJohn Stultz 
107508ec0c58SJohn Stultz 	/*
107608ec0c58SJohn Stultz 	 * Since the work is started early in boot, we may be
107708ec0c58SJohn Stultz 	 * delayed the first time we expire. So set the workqueue
107808ec0c58SJohn Stultz 	 * again once we know timers are working.
107908ec0c58SJohn Stultz 	 */
108008ec0c58SJohn Stultz 	if (tsc_start == -1) {
108108ec0c58SJohn Stultz 		/*
108208ec0c58SJohn Stultz 		 * Only set hpet once, to avoid mixing hardware
108308ec0c58SJohn Stultz 		 * if the hpet becomes enabled later.
108408ec0c58SJohn Stultz 		 */
108508ec0c58SJohn Stultz 		hpet = is_hpet_enabled();
108608ec0c58SJohn Stultz 		schedule_delayed_work(&tsc_irqwork, HZ);
108708ec0c58SJohn Stultz 		tsc_start = tsc_read_refs(&ref_start, hpet);
108808ec0c58SJohn Stultz 		return;
108908ec0c58SJohn Stultz 	}
109008ec0c58SJohn Stultz 
109108ec0c58SJohn Stultz 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
109208ec0c58SJohn Stultz 
109308ec0c58SJohn Stultz 	/* hpet or pmtimer available ? */
109462627becSJohn Stultz 	if (ref_start == ref_stop)
109508ec0c58SJohn Stultz 		goto out;
109608ec0c58SJohn Stultz 
109708ec0c58SJohn Stultz 	/* Check, whether the sampling was disturbed by an SMI */
109808ec0c58SJohn Stultz 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
109908ec0c58SJohn Stultz 		goto out;
110008ec0c58SJohn Stultz 
110108ec0c58SJohn Stultz 	delta = tsc_stop - tsc_start;
110208ec0c58SJohn Stultz 	delta *= 1000000LL;
110308ec0c58SJohn Stultz 	if (hpet)
110408ec0c58SJohn Stultz 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
110508ec0c58SJohn Stultz 	else
110608ec0c58SJohn Stultz 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
110708ec0c58SJohn Stultz 
110808ec0c58SJohn Stultz 	/* Make sure we're within 1% */
110908ec0c58SJohn Stultz 	if (abs(tsc_khz - freq) > tsc_khz/100)
111008ec0c58SJohn Stultz 		goto out;
111108ec0c58SJohn Stultz 
111208ec0c58SJohn Stultz 	tsc_khz = freq;
1113c767a54bSJoe Perches 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1114c767a54bSJoe Perches 		(unsigned long)tsc_khz / 1000,
111508ec0c58SJohn Stultz 		(unsigned long)tsc_khz % 1000);
111608ec0c58SJohn Stultz 
111708ec0c58SJohn Stultz out:
111808ec0c58SJohn Stultz 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
111908ec0c58SJohn Stultz }
112008ec0c58SJohn Stultz 
112108ec0c58SJohn Stultz 
112208ec0c58SJohn Stultz static int __init init_tsc_clocksource(void)
11238fbbc4b4SAlok Kataria {
112429fe359cSThomas Gleixner 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1125a8760ecaSThomas Gleixner 		return 0;
1126a8760ecaSThomas Gleixner 
1127395628efSAlok Kataria 	if (tsc_clocksource_reliable)
1128395628efSAlok Kataria 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
11298fbbc4b4SAlok Kataria 	/* lower the rating if we already know its unstable: */
11308fbbc4b4SAlok Kataria 	if (check_tsc_unstable()) {
11318fbbc4b4SAlok Kataria 		clocksource_tsc.rating = 0;
11328fbbc4b4SAlok Kataria 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
11338fbbc4b4SAlok Kataria 	}
113457779dc2SAlok Kataria 
113582f9c080SFeng Tang 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
113682f9c080SFeng Tang 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
113782f9c080SFeng Tang 
113857779dc2SAlok Kataria 	/*
113957779dc2SAlok Kataria 	 * Trust the results of the earlier calibration on systems
114057779dc2SAlok Kataria 	 * exporting a reliable TSC.
114157779dc2SAlok Kataria 	 */
114257779dc2SAlok Kataria 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
114357779dc2SAlok Kataria 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
114457779dc2SAlok Kataria 		return 0;
114557779dc2SAlok Kataria 	}
114657779dc2SAlok Kataria 
114708ec0c58SJohn Stultz 	schedule_delayed_work(&tsc_irqwork, 0);
114808ec0c58SJohn Stultz 	return 0;
11498fbbc4b4SAlok Kataria }
115008ec0c58SJohn Stultz /*
115108ec0c58SJohn Stultz  * We use device_initcall here, to ensure we run after the hpet
115208ec0c58SJohn Stultz  * is fully initialized, which may occur at fs_initcall time.
115308ec0c58SJohn Stultz  */
115408ec0c58SJohn Stultz device_initcall(init_tsc_clocksource);
11558fbbc4b4SAlok Kataria 
11568fbbc4b4SAlok Kataria void __init tsc_init(void)
11578fbbc4b4SAlok Kataria {
11588fbbc4b4SAlok Kataria 	u64 lpj;
11598fbbc4b4SAlok Kataria 	int cpu;
11608fbbc4b4SAlok Kataria 
1161845b3944SThomas Gleixner 	x86_init.timers.tsc_pre_init();
1162845b3944SThomas Gleixner 
1163b47dcbdcSAndy Lutomirski 	if (!cpu_has_tsc) {
1164b47dcbdcSAndy Lutomirski 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
11658fbbc4b4SAlok Kataria 		return;
1166b47dcbdcSAndy Lutomirski 	}
11678fbbc4b4SAlok Kataria 
11682d826404SThomas Gleixner 	tsc_khz = x86_platform.calibrate_tsc();
1169e93ef949SAlok Kataria 	cpu_khz = tsc_khz;
11708fbbc4b4SAlok Kataria 
1171e93ef949SAlok Kataria 	if (!tsc_khz) {
11728fbbc4b4SAlok Kataria 		mark_tsc_unstable("could not calculate TSC khz");
1173b47dcbdcSAndy Lutomirski 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
11748fbbc4b4SAlok Kataria 		return;
11758fbbc4b4SAlok Kataria 	}
11768fbbc4b4SAlok Kataria 
1177c767a54bSJoe Perches 	pr_info("Detected %lu.%03lu MHz processor\n",
11788fbbc4b4SAlok Kataria 		(unsigned long)cpu_khz / 1000,
11798fbbc4b4SAlok Kataria 		(unsigned long)cpu_khz % 1000);
11808fbbc4b4SAlok Kataria 
11818fbbc4b4SAlok Kataria 	/*
11828fbbc4b4SAlok Kataria 	 * Secondary CPUs do not run through tsc_init(), so set up
11838fbbc4b4SAlok Kataria 	 * all the scale factors for all CPUs, assuming the same
11848fbbc4b4SAlok Kataria 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
11858fbbc4b4SAlok Kataria 	 * up if their speed diverges)
11868fbbc4b4SAlok Kataria 	 */
118720d1c86aSPeter Zijlstra 	for_each_possible_cpu(cpu) {
118820d1c86aSPeter Zijlstra 		cyc2ns_init(cpu);
11898fbbc4b4SAlok Kataria 		set_cyc2ns_scale(cpu_khz, cpu);
119020d1c86aSPeter Zijlstra 	}
11918fbbc4b4SAlok Kataria 
11928fbbc4b4SAlok Kataria 	if (tsc_disabled > 0)
11938fbbc4b4SAlok Kataria 		return;
11948fbbc4b4SAlok Kataria 
11958fbbc4b4SAlok Kataria 	/* now allow native_sched_clock() to use rdtsc */
119610b033d4SPeter Zijlstra 
11978fbbc4b4SAlok Kataria 	tsc_disabled = 0;
119810b033d4SPeter Zijlstra 	static_key_slow_inc(&__use_tsc);
11998fbbc4b4SAlok Kataria 
1200e82b8e4eSVenkatesh Pallipadi 	if (!no_sched_irq_time)
1201e82b8e4eSVenkatesh Pallipadi 		enable_sched_clock_irqtime();
1202e82b8e4eSVenkatesh Pallipadi 
120370de9a97SAlok Kataria 	lpj = ((u64)tsc_khz * 1000);
120470de9a97SAlok Kataria 	do_div(lpj, HZ);
120570de9a97SAlok Kataria 	lpj_fine = lpj;
120670de9a97SAlok Kataria 
12078fbbc4b4SAlok Kataria 	use_tsc_delay();
12088fbbc4b4SAlok Kataria 
12098fbbc4b4SAlok Kataria 	if (unsynchronized_tsc())
12108fbbc4b4SAlok Kataria 		mark_tsc_unstable("TSCs unsynchronized");
12118fbbc4b4SAlok Kataria 
1212395628efSAlok Kataria 	check_system_tsc_reliable();
12138fbbc4b4SAlok Kataria }
12148fbbc4b4SAlok Kataria 
1215b565201cSJack Steiner #ifdef CONFIG_SMP
1216b565201cSJack Steiner /*
1217b565201cSJack Steiner  * If we have a constant TSC and are using the TSC for the delay loop,
1218b565201cSJack Steiner  * we can skip clock calibration if another cpu in the same socket has already
1219b565201cSJack Steiner  * been calibrated. This assumes that CONSTANT_TSC applies to all
1220b565201cSJack Steiner  * cpus in the socket - this should be a safe assumption.
1221b565201cSJack Steiner  */
1222148f9bb8SPaul Gortmaker unsigned long calibrate_delay_is_known(void)
1223b565201cSJack Steiner {
1224b565201cSJack Steiner 	int i, cpu = smp_processor_id();
1225b565201cSJack Steiner 
1226b565201cSJack Steiner 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1227b565201cSJack Steiner 		return 0;
1228b565201cSJack Steiner 
1229b565201cSJack Steiner 	for_each_online_cpu(i)
1230b565201cSJack Steiner 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1231b565201cSJack Steiner 			return cpu_data(i).loops_per_jiffy;
1232b565201cSJack Steiner 	return 0;
1233b565201cSJack Steiner }
1234b565201cSJack Steiner #endif
1235