1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <linux/hardirq.h> 41 #include <linux/atomic.h> 42 43 #include <asm/stacktrace.h> 44 #include <asm/processor.h> 45 #include <asm/debugreg.h> 46 #include <asm/text-patching.h> 47 #include <asm/ftrace.h> 48 #include <asm/traps.h> 49 #include <asm/desc.h> 50 #include <asm/fpu/internal.h> 51 #include <asm/cpu.h> 52 #include <asm/cpu_entry_area.h> 53 #include <asm/mce.h> 54 #include <asm/fixmap.h> 55 #include <asm/mach_traps.h> 56 #include <asm/alternative.h> 57 #include <asm/fpu/xstate.h> 58 #include <asm/vm86.h> 59 #include <asm/umip.h> 60 #include <asm/insn.h> 61 #include <asm/insn-eval.h> 62 63 #ifdef CONFIG_X86_64 64 #include <asm/x86_init.h> 65 #include <asm/pgalloc.h> 66 #include <asm/proto.h> 67 #else 68 #include <asm/processor-flags.h> 69 #include <asm/setup.h> 70 #include <asm/proto.h> 71 #endif 72 73 DECLARE_BITMAP(system_vectors, NR_VECTORS); 74 75 static inline void cond_local_irq_enable(struct pt_regs *regs) 76 { 77 if (regs->flags & X86_EFLAGS_IF) 78 local_irq_enable(); 79 } 80 81 static inline void cond_local_irq_disable(struct pt_regs *regs) 82 { 83 if (regs->flags & X86_EFLAGS_IF) 84 local_irq_disable(); 85 } 86 87 int is_valid_bugaddr(unsigned long addr) 88 { 89 unsigned short ud; 90 91 if (addr < TASK_SIZE_MAX) 92 return 0; 93 94 if (probe_kernel_address((unsigned short *)addr, ud)) 95 return 0; 96 97 return ud == INSN_UD0 || ud == INSN_UD2; 98 } 99 100 static nokprobe_inline int 101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 102 struct pt_regs *regs, long error_code) 103 { 104 if (v8086_mode(regs)) { 105 /* 106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 107 * On nmi (interrupt 2), do_trap should not be called. 108 */ 109 if (trapnr < X86_TRAP_UD) { 110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 111 error_code, trapnr)) 112 return 0; 113 } 114 } else if (!user_mode(regs)) { 115 if (fixup_exception(regs, trapnr, error_code, 0)) 116 return 0; 117 118 tsk->thread.error_code = error_code; 119 tsk->thread.trap_nr = trapnr; 120 die(str, regs, error_code); 121 } 122 123 /* 124 * We want error_code and trap_nr set for userspace faults and 125 * kernelspace faults which result in die(), but not 126 * kernelspace faults which are fixed up. die() gives the 127 * process no chance to handle the signal and notice the 128 * kernel fault information, so that won't result in polluting 129 * the information about previously queued, but not yet 130 * delivered, faults. See also exc_general_protection below. 131 */ 132 tsk->thread.error_code = error_code; 133 tsk->thread.trap_nr = trapnr; 134 135 return -1; 136 } 137 138 static void show_signal(struct task_struct *tsk, int signr, 139 const char *type, const char *desc, 140 struct pt_regs *regs, long error_code) 141 { 142 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 143 printk_ratelimit()) { 144 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 145 tsk->comm, task_pid_nr(tsk), type, desc, 146 regs->ip, regs->sp, error_code); 147 print_vma_addr(KERN_CONT " in ", regs->ip); 148 pr_cont("\n"); 149 } 150 } 151 152 static void 153 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 154 long error_code, int sicode, void __user *addr) 155 { 156 struct task_struct *tsk = current; 157 158 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 159 return; 160 161 show_signal(tsk, signr, "trap ", str, regs, error_code); 162 163 if (!sicode) 164 force_sig(signr); 165 else 166 force_sig_fault(signr, sicode, addr); 167 } 168 NOKPROBE_SYMBOL(do_trap); 169 170 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 171 unsigned long trapnr, int signr, int sicode, void __user *addr) 172 { 173 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 174 175 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 176 NOTIFY_STOP) { 177 cond_local_irq_enable(regs); 178 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 179 cond_local_irq_disable(regs); 180 } 181 } 182 183 /* 184 * Posix requires to provide the address of the faulting instruction for 185 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 186 * 187 * This address is usually regs->ip, but when an uprobe moved the code out 188 * of line then regs->ip points to the XOL code which would confuse 189 * anything which analyzes the fault address vs. the unmodified binary. If 190 * a trap happened in XOL code then uprobe maps regs->ip back to the 191 * original instruction address. 192 */ 193 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 194 { 195 return (void __user *)uprobe_get_trap_addr(regs); 196 } 197 198 DEFINE_IDTENTRY(exc_divide_error) 199 { 200 do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE, 201 FPE_INTDIV, error_get_trap_addr(regs)); 202 } 203 204 DEFINE_IDTENTRY(exc_overflow) 205 { 206 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 207 } 208 209 #ifdef CONFIG_X86_F00F_BUG 210 void handle_invalid_op(struct pt_regs *regs) 211 #else 212 static inline void handle_invalid_op(struct pt_regs *regs) 213 #endif 214 { 215 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 216 ILL_ILLOPN, error_get_trap_addr(regs)); 217 } 218 219 DEFINE_IDTENTRY_RAW(exc_invalid_op) 220 { 221 bool rcu_exit; 222 223 /* 224 * Handle BUG/WARN like NMIs instead of like normal idtentries: 225 * if we bugged/warned in a bad RCU context, for example, the last 226 * thing we want is to BUG/WARN again in the idtentry code, ad 227 * infinitum. 228 */ 229 if (!user_mode(regs) && is_valid_bugaddr(regs->ip)) { 230 enum bug_trap_type type; 231 232 nmi_enter(); 233 instrumentation_begin(); 234 trace_hardirqs_off_finish(); 235 type = report_bug(regs->ip, regs); 236 if (regs->flags & X86_EFLAGS_IF) 237 trace_hardirqs_on_prepare(); 238 instrumentation_end(); 239 nmi_exit(); 240 241 if (type == BUG_TRAP_TYPE_WARN) { 242 /* Skip the ud2. */ 243 regs->ip += LEN_UD2; 244 return; 245 } 246 247 /* 248 * Else, if this was a BUG and report_bug returns or if this 249 * was just a normal #UD, we want to continue onward and 250 * crash. 251 */ 252 } 253 254 rcu_exit = idtentry_enter_cond_rcu(regs); 255 instrumentation_begin(); 256 handle_invalid_op(regs); 257 instrumentation_end(); 258 idtentry_exit_cond_rcu(regs, rcu_exit); 259 } 260 261 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 262 { 263 do_error_trap(regs, 0, "coprocessor segment overrun", 264 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 265 } 266 267 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 268 { 269 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 270 0, NULL); 271 } 272 273 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 274 { 275 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 276 SIGBUS, 0, NULL); 277 } 278 279 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 280 { 281 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 282 0, NULL); 283 } 284 285 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 286 { 287 char *str = "alignment check"; 288 289 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 290 return; 291 292 if (!user_mode(regs)) 293 die("Split lock detected\n", regs, error_code); 294 295 local_irq_enable(); 296 297 if (handle_user_split_lock(regs, error_code)) 298 return; 299 300 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 301 error_code, BUS_ADRALN, NULL); 302 } 303 304 #ifdef CONFIG_VMAP_STACK 305 __visible void __noreturn handle_stack_overflow(const char *message, 306 struct pt_regs *regs, 307 unsigned long fault_address) 308 { 309 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 310 (void *)fault_address, current->stack, 311 (char *)current->stack + THREAD_SIZE - 1); 312 die(message, regs, 0); 313 314 /* Be absolutely certain we don't return. */ 315 panic("%s", message); 316 } 317 #endif 318 319 /* 320 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 321 * 322 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 323 * SDM's warnings about double faults being unrecoverable, returning works as 324 * expected. Presumably what the SDM actually means is that the CPU may get 325 * the register state wrong on entry, so returning could be a bad idea. 326 * 327 * Various CPU engineers have promised that double faults due to an IRET fault 328 * while the stack is read-only are, in fact, recoverable. 329 * 330 * On x86_32, this is entered through a task gate, and regs are synthesized 331 * from the TSS. Returning is, in principle, okay, but changes to regs will 332 * be lost. If, for some reason, we need to return to a context with modified 333 * regs, the shim code could be adjusted to synchronize the registers. 334 * 335 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 336 * to be read before doing anything else. 337 */ 338 DEFINE_IDTENTRY_DF(exc_double_fault) 339 { 340 static const char str[] = "double fault"; 341 struct task_struct *tsk = current; 342 343 #ifdef CONFIG_VMAP_STACK 344 unsigned long address = read_cr2(); 345 #endif 346 347 #ifdef CONFIG_X86_ESPFIX64 348 extern unsigned char native_irq_return_iret[]; 349 350 /* 351 * If IRET takes a non-IST fault on the espfix64 stack, then we 352 * end up promoting it to a doublefault. In that case, take 353 * advantage of the fact that we're not using the normal (TSS.sp0) 354 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 355 * and then modify our own IRET frame so that, when we return, 356 * we land directly at the #GP(0) vector with the stack already 357 * set up according to its expectations. 358 * 359 * The net result is that our #GP handler will think that we 360 * entered from usermode with the bad user context. 361 * 362 * No need for nmi_enter() here because we don't use RCU. 363 */ 364 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 365 regs->cs == __KERNEL_CS && 366 regs->ip == (unsigned long)native_irq_return_iret) 367 { 368 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 369 unsigned long *p = (unsigned long *)regs->sp; 370 371 /* 372 * regs->sp points to the failing IRET frame on the 373 * ESPFIX64 stack. Copy it to the entry stack. This fills 374 * in gpregs->ss through gpregs->ip. 375 * 376 */ 377 gpregs->ip = p[0]; 378 gpregs->cs = p[1]; 379 gpregs->flags = p[2]; 380 gpregs->sp = p[3]; 381 gpregs->ss = p[4]; 382 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 383 384 /* 385 * Adjust our frame so that we return straight to the #GP 386 * vector with the expected RSP value. This is safe because 387 * we won't enable interupts or schedule before we invoke 388 * general_protection, so nothing will clobber the stack 389 * frame we just set up. 390 * 391 * We will enter general_protection with kernel GSBASE, 392 * which is what the stub expects, given that the faulting 393 * RIP will be the IRET instruction. 394 */ 395 regs->ip = (unsigned long)asm_exc_general_protection; 396 regs->sp = (unsigned long)&gpregs->orig_ax; 397 398 return; 399 } 400 #endif 401 402 nmi_enter(); 403 instrumentation_begin(); 404 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 405 406 tsk->thread.error_code = error_code; 407 tsk->thread.trap_nr = X86_TRAP_DF; 408 409 #ifdef CONFIG_VMAP_STACK 410 /* 411 * If we overflow the stack into a guard page, the CPU will fail 412 * to deliver #PF and will send #DF instead. Similarly, if we 413 * take any non-IST exception while too close to the bottom of 414 * the stack, the processor will get a page fault while 415 * delivering the exception and will generate a double fault. 416 * 417 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 418 * Page-Fault Exception (#PF): 419 * 420 * Processors update CR2 whenever a page fault is detected. If a 421 * second page fault occurs while an earlier page fault is being 422 * delivered, the faulting linear address of the second fault will 423 * overwrite the contents of CR2 (replacing the previous 424 * address). These updates to CR2 occur even if the page fault 425 * results in a double fault or occurs during the delivery of a 426 * double fault. 427 * 428 * The logic below has a small possibility of incorrectly diagnosing 429 * some errors as stack overflows. For example, if the IDT or GDT 430 * gets corrupted such that #GP delivery fails due to a bad descriptor 431 * causing #GP and we hit this condition while CR2 coincidentally 432 * points to the stack guard page, we'll think we overflowed the 433 * stack. Given that we're going to panic one way or another 434 * if this happens, this isn't necessarily worth fixing. 435 * 436 * If necessary, we could improve the test by only diagnosing 437 * a stack overflow if the saved RSP points within 47 bytes of 438 * the bottom of the stack: if RSP == tsk_stack + 48 and we 439 * take an exception, the stack is already aligned and there 440 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 441 * possible error code, so a stack overflow would *not* double 442 * fault. With any less space left, exception delivery could 443 * fail, and, as a practical matter, we've overflowed the 444 * stack even if the actual trigger for the double fault was 445 * something else. 446 */ 447 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) { 448 handle_stack_overflow("kernel stack overflow (double-fault)", 449 regs, address); 450 } 451 #endif 452 453 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 454 die("double fault", regs, error_code); 455 panic("Machine halted."); 456 instrumentation_end(); 457 } 458 459 DEFINE_IDTENTRY(exc_bounds) 460 { 461 if (notify_die(DIE_TRAP, "bounds", regs, 0, 462 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 463 return; 464 cond_local_irq_enable(regs); 465 466 if (!user_mode(regs)) 467 die("bounds", regs, 0); 468 469 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 470 471 cond_local_irq_disable(regs); 472 } 473 474 enum kernel_gp_hint { 475 GP_NO_HINT, 476 GP_NON_CANONICAL, 477 GP_CANONICAL 478 }; 479 480 /* 481 * When an uncaught #GP occurs, try to determine the memory address accessed by 482 * the instruction and return that address to the caller. Also, try to figure 483 * out whether any part of the access to that address was non-canonical. 484 */ 485 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 486 unsigned long *addr) 487 { 488 u8 insn_buf[MAX_INSN_SIZE]; 489 struct insn insn; 490 491 if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) 492 return GP_NO_HINT; 493 494 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); 495 insn_get_modrm(&insn); 496 insn_get_sib(&insn); 497 498 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 499 if (*addr == -1UL) 500 return GP_NO_HINT; 501 502 #ifdef CONFIG_X86_64 503 /* 504 * Check that: 505 * - the operand is not in the kernel half 506 * - the last byte of the operand is not in the user canonical half 507 */ 508 if (*addr < ~__VIRTUAL_MASK && 509 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 510 return GP_NON_CANONICAL; 511 #endif 512 513 return GP_CANONICAL; 514 } 515 516 #define GPFSTR "general protection fault" 517 518 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 519 { 520 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 521 enum kernel_gp_hint hint = GP_NO_HINT; 522 struct task_struct *tsk; 523 unsigned long gp_addr; 524 int ret; 525 526 cond_local_irq_enable(regs); 527 528 if (static_cpu_has(X86_FEATURE_UMIP)) { 529 if (user_mode(regs) && fixup_umip_exception(regs)) 530 goto exit; 531 } 532 533 if (v8086_mode(regs)) { 534 local_irq_enable(); 535 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 536 local_irq_disable(); 537 return; 538 } 539 540 tsk = current; 541 542 if (user_mode(regs)) { 543 tsk->thread.error_code = error_code; 544 tsk->thread.trap_nr = X86_TRAP_GP; 545 546 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 547 force_sig(SIGSEGV); 548 goto exit; 549 } 550 551 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 552 goto exit; 553 554 tsk->thread.error_code = error_code; 555 tsk->thread.trap_nr = X86_TRAP_GP; 556 557 /* 558 * To be potentially processing a kprobe fault and to trust the result 559 * from kprobe_running(), we have to be non-preemptible. 560 */ 561 if (!preemptible() && 562 kprobe_running() && 563 kprobe_fault_handler(regs, X86_TRAP_GP)) 564 goto exit; 565 566 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); 567 if (ret == NOTIFY_STOP) 568 goto exit; 569 570 if (error_code) 571 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 572 else 573 hint = get_kernel_gp_address(regs, &gp_addr); 574 575 if (hint != GP_NO_HINT) 576 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 577 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 578 : "maybe for address", 579 gp_addr); 580 581 /* 582 * KASAN is interested only in the non-canonical case, clear it 583 * otherwise. 584 */ 585 if (hint != GP_NON_CANONICAL) 586 gp_addr = 0; 587 588 die_addr(desc, regs, error_code, gp_addr); 589 590 exit: 591 cond_local_irq_disable(regs); 592 } 593 594 static bool do_int3(struct pt_regs *regs) 595 { 596 int res; 597 598 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 599 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 600 SIGTRAP) == NOTIFY_STOP) 601 return true; 602 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 603 604 #ifdef CONFIG_KPROBES 605 if (kprobe_int3_handler(regs)) 606 return true; 607 #endif 608 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 609 610 return res == NOTIFY_STOP; 611 } 612 613 static void do_int3_user(struct pt_regs *regs) 614 { 615 if (do_int3(regs)) 616 return; 617 618 cond_local_irq_enable(regs); 619 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 620 cond_local_irq_disable(regs); 621 } 622 623 DEFINE_IDTENTRY_RAW(exc_int3) 624 { 625 /* 626 * poke_int3_handler() is completely self contained code; it does (and 627 * must) *NOT* call out to anything, lest it hits upon yet another 628 * INT3. 629 */ 630 if (poke_int3_handler(regs)) 631 return; 632 633 /* 634 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore 635 * can trigger INT3, hence poke_int3_handler() must be done 636 * before. If the entry came from kernel mode, then use nmi_enter() 637 * because the INT3 could have been hit in any context including 638 * NMI. 639 */ 640 if (user_mode(regs)) { 641 idtentry_enter_user(regs); 642 instrumentation_begin(); 643 do_int3_user(regs); 644 instrumentation_end(); 645 idtentry_exit_user(regs); 646 } else { 647 nmi_enter(); 648 instrumentation_begin(); 649 trace_hardirqs_off_finish(); 650 if (!do_int3(regs)) 651 die("int3", regs, 0); 652 if (regs->flags & X86_EFLAGS_IF) 653 trace_hardirqs_on_prepare(); 654 instrumentation_end(); 655 nmi_exit(); 656 } 657 } 658 659 #ifdef CONFIG_X86_64 660 /* 661 * Help handler running on a per-cpu (IST or entry trampoline) stack 662 * to switch to the normal thread stack if the interrupted code was in 663 * user mode. The actual stack switch is done in entry_64.S 664 */ 665 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 666 { 667 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 668 if (regs != eregs) 669 *regs = *eregs; 670 return regs; 671 } 672 673 struct bad_iret_stack { 674 void *error_entry_ret; 675 struct pt_regs regs; 676 }; 677 678 asmlinkage __visible noinstr 679 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 680 { 681 /* 682 * This is called from entry_64.S early in handling a fault 683 * caused by a bad iret to user mode. To handle the fault 684 * correctly, we want to move our stack frame to where it would 685 * be had we entered directly on the entry stack (rather than 686 * just below the IRET frame) and we want to pretend that the 687 * exception came from the IRET target. 688 */ 689 struct bad_iret_stack tmp, *new_stack = 690 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 691 692 /* Copy the IRET target to the temporary storage. */ 693 memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); 694 695 /* Copy the remainder of the stack from the current stack. */ 696 memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); 697 698 /* Update the entry stack */ 699 memcpy(new_stack, &tmp, sizeof(tmp)); 700 701 BUG_ON(!user_mode(&new_stack->regs)); 702 return new_stack; 703 } 704 #endif 705 706 static bool is_sysenter_singlestep(struct pt_regs *regs) 707 { 708 /* 709 * We don't try for precision here. If we're anywhere in the region of 710 * code that can be single-stepped in the SYSENTER entry path, then 711 * assume that this is a useless single-step trap due to SYSENTER 712 * being invoked with TF set. (We don't know in advance exactly 713 * which instructions will be hit because BTF could plausibly 714 * be set.) 715 */ 716 #ifdef CONFIG_X86_32 717 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 718 (unsigned long)__end_SYSENTER_singlestep_region - 719 (unsigned long)__begin_SYSENTER_singlestep_region; 720 #elif defined(CONFIG_IA32_EMULATION) 721 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 722 (unsigned long)__end_entry_SYSENTER_compat - 723 (unsigned long)entry_SYSENTER_compat; 724 #else 725 return false; 726 #endif 727 } 728 729 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7) 730 { 731 /* 732 * Disable breakpoints during exception handling; recursive exceptions 733 * are exceedingly 'fun'. 734 * 735 * Since this function is NOKPROBE, and that also applies to 736 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 737 * HW_BREAKPOINT_W on our stack) 738 * 739 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 740 * includes the entry stack is excluded for everything. 741 */ 742 *dr7 = local_db_save(); 743 744 /* 745 * The Intel SDM says: 746 * 747 * Certain debug exceptions may clear bits 0-3. The remaining 748 * contents of the DR6 register are never cleared by the 749 * processor. To avoid confusion in identifying debug 750 * exceptions, debug handlers should clear the register before 751 * returning to the interrupted task. 752 * 753 * Keep it simple: clear DR6 immediately. 754 */ 755 get_debugreg(*dr6, 6); 756 set_debugreg(0, 6); 757 /* Filter out all the reserved bits which are preset to 1 */ 758 *dr6 &= ~DR6_RESERVED; 759 } 760 761 static __always_inline void debug_exit(unsigned long dr7) 762 { 763 local_db_restore(dr7); 764 } 765 766 /* 767 * Our handling of the processor debug registers is non-trivial. 768 * We do not clear them on entry and exit from the kernel. Therefore 769 * it is possible to get a watchpoint trap here from inside the kernel. 770 * However, the code in ./ptrace.c has ensured that the user can 771 * only set watchpoints on userspace addresses. Therefore the in-kernel 772 * watchpoint trap can only occur in code which is reading/writing 773 * from user space. Such code must not hold kernel locks (since it 774 * can equally take a page fault), therefore it is safe to call 775 * force_sig_info even though that claims and releases locks. 776 * 777 * Code in ./signal.c ensures that the debug control register 778 * is restored before we deliver any signal, and therefore that 779 * user code runs with the correct debug control register even though 780 * we clear it here. 781 * 782 * Being careful here means that we don't have to be as careful in a 783 * lot of more complicated places (task switching can be a bit lazy 784 * about restoring all the debug state, and ptrace doesn't have to 785 * find every occurrence of the TF bit that could be saved away even 786 * by user code) 787 * 788 * May run on IST stack. 789 */ 790 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user) 791 { 792 struct task_struct *tsk = current; 793 bool user_icebp; 794 int si_code; 795 796 /* 797 * The SDM says "The processor clears the BTF flag when it 798 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 799 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 800 */ 801 clear_thread_flag(TIF_BLOCKSTEP); 802 803 /* 804 * If DR6 is zero, no point in trying to handle it. The kernel is 805 * not using INT1. 806 */ 807 if (!user && !dr6) 808 return; 809 810 /* 811 * If dr6 has no reason to give us about the origin of this trap, 812 * then it's very likely the result of an icebp/int01 trap. 813 * User wants a sigtrap for that. 814 */ 815 user_icebp = user && !dr6; 816 817 /* Store the virtualized DR6 value */ 818 tsk->thread.debugreg6 = dr6; 819 820 #ifdef CONFIG_KPROBES 821 if (kprobe_debug_handler(regs)) { 822 return; 823 } 824 #endif 825 826 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0, 827 SIGTRAP) == NOTIFY_STOP) { 828 return; 829 } 830 831 /* It's safe to allow irq's after DR6 has been saved */ 832 cond_local_irq_enable(regs); 833 834 if (v8086_mode(regs)) { 835 handle_vm86_trap((struct kernel_vm86_regs *) regs, 0, 836 X86_TRAP_DB); 837 goto out; 838 } 839 840 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 841 /* 842 * Historical junk that used to handle SYSENTER single-stepping. 843 * This should be unreachable now. If we survive for a while 844 * without anyone hitting this warning, we'll turn this into 845 * an oops. 846 */ 847 tsk->thread.debugreg6 &= ~DR_STEP; 848 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 849 regs->flags &= ~X86_EFLAGS_TF; 850 } 851 852 si_code = get_si_code(tsk->thread.debugreg6); 853 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 854 send_sigtrap(regs, 0, si_code); 855 856 out: 857 cond_local_irq_disable(regs); 858 } 859 860 static __always_inline void exc_debug_kernel(struct pt_regs *regs, 861 unsigned long dr6) 862 { 863 nmi_enter(); 864 instrumentation_begin(); 865 trace_hardirqs_off_finish(); 866 867 /* 868 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 869 * watchpoint at the same time then that will still be handled. 870 */ 871 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 872 dr6 &= ~DR_STEP; 873 874 handle_debug(regs, dr6, false); 875 876 if (regs->flags & X86_EFLAGS_IF) 877 trace_hardirqs_on_prepare(); 878 instrumentation_end(); 879 nmi_exit(); 880 } 881 882 static __always_inline void exc_debug_user(struct pt_regs *regs, 883 unsigned long dr6) 884 { 885 idtentry_enter_user(regs); 886 instrumentation_begin(); 887 888 handle_debug(regs, dr6, true); 889 instrumentation_end(); 890 idtentry_exit_user(regs); 891 } 892 893 #ifdef CONFIG_X86_64 894 /* IST stack entry */ 895 DEFINE_IDTENTRY_DEBUG(exc_debug) 896 { 897 unsigned long dr6, dr7; 898 899 debug_enter(&dr6, &dr7); 900 exc_debug_kernel(regs, dr6); 901 debug_exit(dr7); 902 } 903 904 /* User entry, runs on regular task stack */ 905 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 906 { 907 unsigned long dr6, dr7; 908 909 debug_enter(&dr6, &dr7); 910 exc_debug_user(regs, dr6); 911 debug_exit(dr7); 912 } 913 #else 914 /* 32 bit does not have separate entry points. */ 915 DEFINE_IDTENTRY_DEBUG(exc_debug) 916 { 917 unsigned long dr6, dr7; 918 919 debug_enter(&dr6, &dr7); 920 921 if (user_mode(regs)) 922 exc_debug_user(regs, dr6); 923 else 924 exc_debug_kernel(regs, dr6); 925 926 debug_exit(dr7); 927 } 928 #endif 929 930 /* 931 * Note that we play around with the 'TS' bit in an attempt to get 932 * the correct behaviour even in the presence of the asynchronous 933 * IRQ13 behaviour 934 */ 935 static void math_error(struct pt_regs *regs, int trapnr) 936 { 937 struct task_struct *task = current; 938 struct fpu *fpu = &task->thread.fpu; 939 int si_code; 940 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 941 "simd exception"; 942 943 cond_local_irq_enable(regs); 944 945 if (!user_mode(regs)) { 946 if (fixup_exception(regs, trapnr, 0, 0)) 947 goto exit; 948 949 task->thread.error_code = 0; 950 task->thread.trap_nr = trapnr; 951 952 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 953 SIGFPE) != NOTIFY_STOP) 954 die(str, regs, 0); 955 goto exit; 956 } 957 958 /* 959 * Save the info for the exception handler and clear the error. 960 */ 961 fpu__save(fpu); 962 963 task->thread.trap_nr = trapnr; 964 task->thread.error_code = 0; 965 966 si_code = fpu__exception_code(fpu, trapnr); 967 /* Retry when we get spurious exceptions: */ 968 if (!si_code) 969 goto exit; 970 971 force_sig_fault(SIGFPE, si_code, 972 (void __user *)uprobe_get_trap_addr(regs)); 973 exit: 974 cond_local_irq_disable(regs); 975 } 976 977 DEFINE_IDTENTRY(exc_coprocessor_error) 978 { 979 math_error(regs, X86_TRAP_MF); 980 } 981 982 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 983 { 984 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 985 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 986 if (!static_cpu_has(X86_FEATURE_XMM)) { 987 __exc_general_protection(regs, 0); 988 return; 989 } 990 } 991 math_error(regs, X86_TRAP_XF); 992 } 993 994 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 995 { 996 /* 997 * This addresses a Pentium Pro Erratum: 998 * 999 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1000 * Virtual Wire mode implemented through the local APIC, an 1001 * interrupt vector of 0Fh (Intel reserved encoding) may be 1002 * generated by the local APIC (Int 15). This vector may be 1003 * generated upon receipt of a spurious interrupt (an interrupt 1004 * which is removed before the system receives the INTA sequence) 1005 * instead of the programmed 8259 spurious interrupt vector. 1006 * 1007 * IMPLICATION: The spurious interrupt vector programmed in the 1008 * 8259 is normally handled by an operating system's spurious 1009 * interrupt handler. However, a vector of 0Fh is unknown to some 1010 * operating systems, which would crash if this erratum occurred. 1011 * 1012 * In theory this could be limited to 32bit, but the handler is not 1013 * hurting and who knows which other CPUs suffer from this. 1014 */ 1015 } 1016 1017 DEFINE_IDTENTRY(exc_device_not_available) 1018 { 1019 unsigned long cr0 = read_cr0(); 1020 1021 #ifdef CONFIG_MATH_EMULATION 1022 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1023 struct math_emu_info info = { }; 1024 1025 cond_local_irq_enable(regs); 1026 1027 info.regs = regs; 1028 math_emulate(&info); 1029 1030 cond_local_irq_disable(regs); 1031 return; 1032 } 1033 #endif 1034 1035 /* This should not happen. */ 1036 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1037 /* Try to fix it up and carry on. */ 1038 write_cr0(cr0 & ~X86_CR0_TS); 1039 } else { 1040 /* 1041 * Something terrible happened, and we're better off trying 1042 * to kill the task than getting stuck in a never-ending 1043 * loop of #NM faults. 1044 */ 1045 die("unexpected #NM exception", regs, 0); 1046 } 1047 } 1048 1049 #ifdef CONFIG_X86_32 1050 DEFINE_IDTENTRY_SW(iret_error) 1051 { 1052 local_irq_enable(); 1053 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1054 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1055 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1056 ILL_BADSTK, (void __user *)NULL); 1057 } 1058 local_irq_disable(); 1059 } 1060 #endif 1061 1062 void __init trap_init(void) 1063 { 1064 /* Init cpu_entry_area before IST entries are set up */ 1065 setup_cpu_entry_areas(); 1066 1067 idt_setup_traps(); 1068 1069 /* 1070 * Should be a barrier for any external CPU state: 1071 */ 1072 cpu_init(); 1073 1074 idt_setup_ist_traps(); 1075 } 1076