1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <linux/hardirq.h> 41 #include <linux/atomic.h> 42 43 #include <asm/stacktrace.h> 44 #include <asm/processor.h> 45 #include <asm/debugreg.h> 46 #include <asm/realmode.h> 47 #include <asm/text-patching.h> 48 #include <asm/ftrace.h> 49 #include <asm/traps.h> 50 #include <asm/desc.h> 51 #include <asm/fpu/internal.h> 52 #include <asm/cpu.h> 53 #include <asm/cpu_entry_area.h> 54 #include <asm/mce.h> 55 #include <asm/fixmap.h> 56 #include <asm/mach_traps.h> 57 #include <asm/alternative.h> 58 #include <asm/fpu/xstate.h> 59 #include <asm/vm86.h> 60 #include <asm/umip.h> 61 #include <asm/insn.h> 62 #include <asm/insn-eval.h> 63 #include <asm/vdso.h> 64 65 #ifdef CONFIG_X86_64 66 #include <asm/x86_init.h> 67 #include <asm/proto.h> 68 #else 69 #include <asm/processor-flags.h> 70 #include <asm/setup.h> 71 #include <asm/proto.h> 72 #endif 73 74 DECLARE_BITMAP(system_vectors, NR_VECTORS); 75 76 static inline void cond_local_irq_enable(struct pt_regs *regs) 77 { 78 if (regs->flags & X86_EFLAGS_IF) 79 local_irq_enable(); 80 } 81 82 static inline void cond_local_irq_disable(struct pt_regs *regs) 83 { 84 if (regs->flags & X86_EFLAGS_IF) 85 local_irq_disable(); 86 } 87 88 __always_inline int is_valid_bugaddr(unsigned long addr) 89 { 90 if (addr < TASK_SIZE_MAX) 91 return 0; 92 93 /* 94 * We got #UD, if the text isn't readable we'd have gotten 95 * a different exception. 96 */ 97 return *(unsigned short *)addr == INSN_UD2; 98 } 99 100 static nokprobe_inline int 101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 102 struct pt_regs *regs, long error_code) 103 { 104 if (v8086_mode(regs)) { 105 /* 106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 107 * On nmi (interrupt 2), do_trap should not be called. 108 */ 109 if (trapnr < X86_TRAP_UD) { 110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 111 error_code, trapnr)) 112 return 0; 113 } 114 } else if (!user_mode(regs)) { 115 if (fixup_exception(regs, trapnr, error_code, 0)) 116 return 0; 117 118 tsk->thread.error_code = error_code; 119 tsk->thread.trap_nr = trapnr; 120 die(str, regs, error_code); 121 } else { 122 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 123 return 0; 124 } 125 126 /* 127 * We want error_code and trap_nr set for userspace faults and 128 * kernelspace faults which result in die(), but not 129 * kernelspace faults which are fixed up. die() gives the 130 * process no chance to handle the signal and notice the 131 * kernel fault information, so that won't result in polluting 132 * the information about previously queued, but not yet 133 * delivered, faults. See also exc_general_protection below. 134 */ 135 tsk->thread.error_code = error_code; 136 tsk->thread.trap_nr = trapnr; 137 138 return -1; 139 } 140 141 static void show_signal(struct task_struct *tsk, int signr, 142 const char *type, const char *desc, 143 struct pt_regs *regs, long error_code) 144 { 145 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 146 printk_ratelimit()) { 147 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 148 tsk->comm, task_pid_nr(tsk), type, desc, 149 regs->ip, regs->sp, error_code); 150 print_vma_addr(KERN_CONT " in ", regs->ip); 151 pr_cont("\n"); 152 } 153 } 154 155 static void 156 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 157 long error_code, int sicode, void __user *addr) 158 { 159 struct task_struct *tsk = current; 160 161 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 162 return; 163 164 show_signal(tsk, signr, "trap ", str, regs, error_code); 165 166 if (!sicode) 167 force_sig(signr); 168 else 169 force_sig_fault(signr, sicode, addr); 170 } 171 NOKPROBE_SYMBOL(do_trap); 172 173 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 174 unsigned long trapnr, int signr, int sicode, void __user *addr) 175 { 176 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 177 178 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 179 NOTIFY_STOP) { 180 cond_local_irq_enable(regs); 181 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 182 cond_local_irq_disable(regs); 183 } 184 } 185 186 /* 187 * Posix requires to provide the address of the faulting instruction for 188 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 189 * 190 * This address is usually regs->ip, but when an uprobe moved the code out 191 * of line then regs->ip points to the XOL code which would confuse 192 * anything which analyzes the fault address vs. the unmodified binary. If 193 * a trap happened in XOL code then uprobe maps regs->ip back to the 194 * original instruction address. 195 */ 196 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 197 { 198 return (void __user *)uprobe_get_trap_addr(regs); 199 } 200 201 DEFINE_IDTENTRY(exc_divide_error) 202 { 203 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 204 FPE_INTDIV, error_get_trap_addr(regs)); 205 } 206 207 DEFINE_IDTENTRY(exc_overflow) 208 { 209 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 210 } 211 212 #ifdef CONFIG_X86_F00F_BUG 213 void handle_invalid_op(struct pt_regs *regs) 214 #else 215 static inline void handle_invalid_op(struct pt_regs *regs) 216 #endif 217 { 218 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 219 ILL_ILLOPN, error_get_trap_addr(regs)); 220 } 221 222 static noinstr bool handle_bug(struct pt_regs *regs) 223 { 224 bool handled = false; 225 226 if (!is_valid_bugaddr(regs->ip)) 227 return handled; 228 229 /* 230 * All lies, just get the WARN/BUG out. 231 */ 232 instrumentation_begin(); 233 /* 234 * Since we're emulating a CALL with exceptions, restore the interrupt 235 * state to what it was at the exception site. 236 */ 237 if (regs->flags & X86_EFLAGS_IF) 238 raw_local_irq_enable(); 239 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { 240 regs->ip += LEN_UD2; 241 handled = true; 242 } 243 if (regs->flags & X86_EFLAGS_IF) 244 raw_local_irq_disable(); 245 instrumentation_end(); 246 247 return handled; 248 } 249 250 DEFINE_IDTENTRY_RAW(exc_invalid_op) 251 { 252 irqentry_state_t state; 253 254 /* 255 * We use UD2 as a short encoding for 'CALL __WARN', as such 256 * handle it before exception entry to avoid recursive WARN 257 * in case exception entry is the one triggering WARNs. 258 */ 259 if (!user_mode(regs) && handle_bug(regs)) 260 return; 261 262 state = irqentry_enter(regs); 263 instrumentation_begin(); 264 handle_invalid_op(regs); 265 instrumentation_end(); 266 irqentry_exit(regs, state); 267 } 268 269 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 270 { 271 do_error_trap(regs, 0, "coprocessor segment overrun", 272 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 273 } 274 275 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 276 { 277 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 278 0, NULL); 279 } 280 281 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 282 { 283 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 284 SIGBUS, 0, NULL); 285 } 286 287 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 288 { 289 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 290 0, NULL); 291 } 292 293 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 294 { 295 char *str = "alignment check"; 296 297 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 298 return; 299 300 if (!user_mode(regs)) 301 die("Split lock detected\n", regs, error_code); 302 303 local_irq_enable(); 304 305 if (handle_user_split_lock(regs, error_code)) 306 goto out; 307 308 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 309 error_code, BUS_ADRALN, NULL); 310 311 out: 312 local_irq_disable(); 313 } 314 315 #ifdef CONFIG_VMAP_STACK 316 __visible void __noreturn handle_stack_overflow(const char *message, 317 struct pt_regs *regs, 318 unsigned long fault_address) 319 { 320 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 321 (void *)fault_address, current->stack, 322 (char *)current->stack + THREAD_SIZE - 1); 323 die(message, regs, 0); 324 325 /* Be absolutely certain we don't return. */ 326 panic("%s", message); 327 } 328 #endif 329 330 /* 331 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 332 * 333 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 334 * SDM's warnings about double faults being unrecoverable, returning works as 335 * expected. Presumably what the SDM actually means is that the CPU may get 336 * the register state wrong on entry, so returning could be a bad idea. 337 * 338 * Various CPU engineers have promised that double faults due to an IRET fault 339 * while the stack is read-only are, in fact, recoverable. 340 * 341 * On x86_32, this is entered through a task gate, and regs are synthesized 342 * from the TSS. Returning is, in principle, okay, but changes to regs will 343 * be lost. If, for some reason, we need to return to a context with modified 344 * regs, the shim code could be adjusted to synchronize the registers. 345 * 346 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 347 * to be read before doing anything else. 348 */ 349 DEFINE_IDTENTRY_DF(exc_double_fault) 350 { 351 static const char str[] = "double fault"; 352 struct task_struct *tsk = current; 353 354 #ifdef CONFIG_VMAP_STACK 355 unsigned long address = read_cr2(); 356 #endif 357 358 #ifdef CONFIG_X86_ESPFIX64 359 extern unsigned char native_irq_return_iret[]; 360 361 /* 362 * If IRET takes a non-IST fault on the espfix64 stack, then we 363 * end up promoting it to a doublefault. In that case, take 364 * advantage of the fact that we're not using the normal (TSS.sp0) 365 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 366 * and then modify our own IRET frame so that, when we return, 367 * we land directly at the #GP(0) vector with the stack already 368 * set up according to its expectations. 369 * 370 * The net result is that our #GP handler will think that we 371 * entered from usermode with the bad user context. 372 * 373 * No need for nmi_enter() here because we don't use RCU. 374 */ 375 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 376 regs->cs == __KERNEL_CS && 377 regs->ip == (unsigned long)native_irq_return_iret) 378 { 379 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 380 unsigned long *p = (unsigned long *)regs->sp; 381 382 /* 383 * regs->sp points to the failing IRET frame on the 384 * ESPFIX64 stack. Copy it to the entry stack. This fills 385 * in gpregs->ss through gpregs->ip. 386 * 387 */ 388 gpregs->ip = p[0]; 389 gpregs->cs = p[1]; 390 gpregs->flags = p[2]; 391 gpregs->sp = p[3]; 392 gpregs->ss = p[4]; 393 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 394 395 /* 396 * Adjust our frame so that we return straight to the #GP 397 * vector with the expected RSP value. This is safe because 398 * we won't enable interrupts or schedule before we invoke 399 * general_protection, so nothing will clobber the stack 400 * frame we just set up. 401 * 402 * We will enter general_protection with kernel GSBASE, 403 * which is what the stub expects, given that the faulting 404 * RIP will be the IRET instruction. 405 */ 406 regs->ip = (unsigned long)asm_exc_general_protection; 407 regs->sp = (unsigned long)&gpregs->orig_ax; 408 409 return; 410 } 411 #endif 412 413 irqentry_nmi_enter(regs); 414 instrumentation_begin(); 415 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 416 417 tsk->thread.error_code = error_code; 418 tsk->thread.trap_nr = X86_TRAP_DF; 419 420 #ifdef CONFIG_VMAP_STACK 421 /* 422 * If we overflow the stack into a guard page, the CPU will fail 423 * to deliver #PF and will send #DF instead. Similarly, if we 424 * take any non-IST exception while too close to the bottom of 425 * the stack, the processor will get a page fault while 426 * delivering the exception and will generate a double fault. 427 * 428 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 429 * Page-Fault Exception (#PF): 430 * 431 * Processors update CR2 whenever a page fault is detected. If a 432 * second page fault occurs while an earlier page fault is being 433 * delivered, the faulting linear address of the second fault will 434 * overwrite the contents of CR2 (replacing the previous 435 * address). These updates to CR2 occur even if the page fault 436 * results in a double fault or occurs during the delivery of a 437 * double fault. 438 * 439 * The logic below has a small possibility of incorrectly diagnosing 440 * some errors as stack overflows. For example, if the IDT or GDT 441 * gets corrupted such that #GP delivery fails due to a bad descriptor 442 * causing #GP and we hit this condition while CR2 coincidentally 443 * points to the stack guard page, we'll think we overflowed the 444 * stack. Given that we're going to panic one way or another 445 * if this happens, this isn't necessarily worth fixing. 446 * 447 * If necessary, we could improve the test by only diagnosing 448 * a stack overflow if the saved RSP points within 47 bytes of 449 * the bottom of the stack: if RSP == tsk_stack + 48 and we 450 * take an exception, the stack is already aligned and there 451 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 452 * possible error code, so a stack overflow would *not* double 453 * fault. With any less space left, exception delivery could 454 * fail, and, as a practical matter, we've overflowed the 455 * stack even if the actual trigger for the double fault was 456 * something else. 457 */ 458 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) { 459 handle_stack_overflow("kernel stack overflow (double-fault)", 460 regs, address); 461 } 462 #endif 463 464 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 465 die("double fault", regs, error_code); 466 panic("Machine halted."); 467 instrumentation_end(); 468 } 469 470 DEFINE_IDTENTRY(exc_bounds) 471 { 472 if (notify_die(DIE_TRAP, "bounds", regs, 0, 473 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 474 return; 475 cond_local_irq_enable(regs); 476 477 if (!user_mode(regs)) 478 die("bounds", regs, 0); 479 480 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 481 482 cond_local_irq_disable(regs); 483 } 484 485 enum kernel_gp_hint { 486 GP_NO_HINT, 487 GP_NON_CANONICAL, 488 GP_CANONICAL 489 }; 490 491 /* 492 * When an uncaught #GP occurs, try to determine the memory address accessed by 493 * the instruction and return that address to the caller. Also, try to figure 494 * out whether any part of the access to that address was non-canonical. 495 */ 496 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 497 unsigned long *addr) 498 { 499 u8 insn_buf[MAX_INSN_SIZE]; 500 struct insn insn; 501 int ret; 502 503 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 504 MAX_INSN_SIZE)) 505 return GP_NO_HINT; 506 507 ret = insn_decode_kernel(&insn, insn_buf); 508 if (ret < 0) 509 return GP_NO_HINT; 510 511 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 512 if (*addr == -1UL) 513 return GP_NO_HINT; 514 515 #ifdef CONFIG_X86_64 516 /* 517 * Check that: 518 * - the operand is not in the kernel half 519 * - the last byte of the operand is not in the user canonical half 520 */ 521 if (*addr < ~__VIRTUAL_MASK && 522 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 523 return GP_NON_CANONICAL; 524 #endif 525 526 return GP_CANONICAL; 527 } 528 529 #define GPFSTR "general protection fault" 530 531 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 532 { 533 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 534 enum kernel_gp_hint hint = GP_NO_HINT; 535 struct task_struct *tsk; 536 unsigned long gp_addr; 537 int ret; 538 539 cond_local_irq_enable(regs); 540 541 if (static_cpu_has(X86_FEATURE_UMIP)) { 542 if (user_mode(regs) && fixup_umip_exception(regs)) 543 goto exit; 544 } 545 546 if (v8086_mode(regs)) { 547 local_irq_enable(); 548 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 549 local_irq_disable(); 550 return; 551 } 552 553 tsk = current; 554 555 if (user_mode(regs)) { 556 tsk->thread.error_code = error_code; 557 tsk->thread.trap_nr = X86_TRAP_GP; 558 559 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 560 goto exit; 561 562 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 563 force_sig(SIGSEGV); 564 goto exit; 565 } 566 567 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 568 goto exit; 569 570 tsk->thread.error_code = error_code; 571 tsk->thread.trap_nr = X86_TRAP_GP; 572 573 /* 574 * To be potentially processing a kprobe fault and to trust the result 575 * from kprobe_running(), we have to be non-preemptible. 576 */ 577 if (!preemptible() && 578 kprobe_running() && 579 kprobe_fault_handler(regs, X86_TRAP_GP)) 580 goto exit; 581 582 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); 583 if (ret == NOTIFY_STOP) 584 goto exit; 585 586 if (error_code) 587 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 588 else 589 hint = get_kernel_gp_address(regs, &gp_addr); 590 591 if (hint != GP_NO_HINT) 592 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 593 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 594 : "maybe for address", 595 gp_addr); 596 597 /* 598 * KASAN is interested only in the non-canonical case, clear it 599 * otherwise. 600 */ 601 if (hint != GP_NON_CANONICAL) 602 gp_addr = 0; 603 604 die_addr(desc, regs, error_code, gp_addr); 605 606 exit: 607 cond_local_irq_disable(regs); 608 } 609 610 static bool do_int3(struct pt_regs *regs) 611 { 612 int res; 613 614 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 615 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 616 SIGTRAP) == NOTIFY_STOP) 617 return true; 618 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 619 620 #ifdef CONFIG_KPROBES 621 if (kprobe_int3_handler(regs)) 622 return true; 623 #endif 624 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 625 626 return res == NOTIFY_STOP; 627 } 628 629 static void do_int3_user(struct pt_regs *regs) 630 { 631 if (do_int3(regs)) 632 return; 633 634 cond_local_irq_enable(regs); 635 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 636 cond_local_irq_disable(regs); 637 } 638 639 DEFINE_IDTENTRY_RAW(exc_int3) 640 { 641 /* 642 * poke_int3_handler() is completely self contained code; it does (and 643 * must) *NOT* call out to anything, lest it hits upon yet another 644 * INT3. 645 */ 646 if (poke_int3_handler(regs)) 647 return; 648 649 /* 650 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 651 * and therefore can trigger INT3, hence poke_int3_handler() must 652 * be done before. If the entry came from kernel mode, then use 653 * nmi_enter() because the INT3 could have been hit in any context 654 * including NMI. 655 */ 656 if (user_mode(regs)) { 657 irqentry_enter_from_user_mode(regs); 658 instrumentation_begin(); 659 do_int3_user(regs); 660 instrumentation_end(); 661 irqentry_exit_to_user_mode(regs); 662 } else { 663 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 664 665 instrumentation_begin(); 666 if (!do_int3(regs)) 667 die("int3", regs, 0); 668 instrumentation_end(); 669 irqentry_nmi_exit(regs, irq_state); 670 } 671 } 672 673 #ifdef CONFIG_X86_64 674 /* 675 * Help handler running on a per-cpu (IST or entry trampoline) stack 676 * to switch to the normal thread stack if the interrupted code was in 677 * user mode. The actual stack switch is done in entry_64.S 678 */ 679 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 680 { 681 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 682 if (regs != eregs) 683 *regs = *eregs; 684 return regs; 685 } 686 687 #ifdef CONFIG_AMD_MEM_ENCRYPT 688 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 689 { 690 unsigned long sp, *stack; 691 struct stack_info info; 692 struct pt_regs *regs_ret; 693 694 /* 695 * In the SYSCALL entry path the RSP value comes from user-space - don't 696 * trust it and switch to the current kernel stack 697 */ 698 if (ip_within_syscall_gap(regs)) { 699 sp = this_cpu_read(cpu_current_top_of_stack); 700 goto sync; 701 } 702 703 /* 704 * From here on the RSP value is trusted. Now check whether entry 705 * happened from a safe stack. Not safe are the entry or unknown stacks, 706 * use the fall-back stack instead in this case. 707 */ 708 sp = regs->sp; 709 stack = (unsigned long *)sp; 710 711 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 712 info.type >= STACK_TYPE_EXCEPTION_LAST) 713 sp = __this_cpu_ist_top_va(VC2); 714 715 sync: 716 /* 717 * Found a safe stack - switch to it as if the entry didn't happen via 718 * IST stack. The code below only copies pt_regs, the real switch happens 719 * in assembly code. 720 */ 721 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 722 723 regs_ret = (struct pt_regs *)sp; 724 *regs_ret = *regs; 725 726 return regs_ret; 727 } 728 #endif 729 730 struct bad_iret_stack { 731 void *error_entry_ret; 732 struct pt_regs regs; 733 }; 734 735 asmlinkage __visible noinstr 736 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 737 { 738 /* 739 * This is called from entry_64.S early in handling a fault 740 * caused by a bad iret to user mode. To handle the fault 741 * correctly, we want to move our stack frame to where it would 742 * be had we entered directly on the entry stack (rather than 743 * just below the IRET frame) and we want to pretend that the 744 * exception came from the IRET target. 745 */ 746 struct bad_iret_stack tmp, *new_stack = 747 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 748 749 /* Copy the IRET target to the temporary storage. */ 750 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); 751 752 /* Copy the remainder of the stack from the current stack. */ 753 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); 754 755 /* Update the entry stack */ 756 __memcpy(new_stack, &tmp, sizeof(tmp)); 757 758 BUG_ON(!user_mode(&new_stack->regs)); 759 return new_stack; 760 } 761 #endif 762 763 static bool is_sysenter_singlestep(struct pt_regs *regs) 764 { 765 /* 766 * We don't try for precision here. If we're anywhere in the region of 767 * code that can be single-stepped in the SYSENTER entry path, then 768 * assume that this is a useless single-step trap due to SYSENTER 769 * being invoked with TF set. (We don't know in advance exactly 770 * which instructions will be hit because BTF could plausibly 771 * be set.) 772 */ 773 #ifdef CONFIG_X86_32 774 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 775 (unsigned long)__end_SYSENTER_singlestep_region - 776 (unsigned long)__begin_SYSENTER_singlestep_region; 777 #elif defined(CONFIG_IA32_EMULATION) 778 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 779 (unsigned long)__end_entry_SYSENTER_compat - 780 (unsigned long)entry_SYSENTER_compat; 781 #else 782 return false; 783 #endif 784 } 785 786 static __always_inline unsigned long debug_read_clear_dr6(void) 787 { 788 unsigned long dr6; 789 790 /* 791 * The Intel SDM says: 792 * 793 * Certain debug exceptions may clear bits 0-3. The remaining 794 * contents of the DR6 register are never cleared by the 795 * processor. To avoid confusion in identifying debug 796 * exceptions, debug handlers should clear the register before 797 * returning to the interrupted task. 798 * 799 * Keep it simple: clear DR6 immediately. 800 */ 801 get_debugreg(dr6, 6); 802 set_debugreg(DR6_RESERVED, 6); 803 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 804 805 return dr6; 806 } 807 808 /* 809 * Our handling of the processor debug registers is non-trivial. 810 * We do not clear them on entry and exit from the kernel. Therefore 811 * it is possible to get a watchpoint trap here from inside the kernel. 812 * However, the code in ./ptrace.c has ensured that the user can 813 * only set watchpoints on userspace addresses. Therefore the in-kernel 814 * watchpoint trap can only occur in code which is reading/writing 815 * from user space. Such code must not hold kernel locks (since it 816 * can equally take a page fault), therefore it is safe to call 817 * force_sig_info even though that claims and releases locks. 818 * 819 * Code in ./signal.c ensures that the debug control register 820 * is restored before we deliver any signal, and therefore that 821 * user code runs with the correct debug control register even though 822 * we clear it here. 823 * 824 * Being careful here means that we don't have to be as careful in a 825 * lot of more complicated places (task switching can be a bit lazy 826 * about restoring all the debug state, and ptrace doesn't have to 827 * find every occurrence of the TF bit that could be saved away even 828 * by user code) 829 * 830 * May run on IST stack. 831 */ 832 833 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 834 { 835 /* 836 * Notifiers will clear bits in @dr6 to indicate the event has been 837 * consumed - hw_breakpoint_handler(), single_stop_cont(). 838 * 839 * Notifiers will set bits in @virtual_dr6 to indicate the desire 840 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 841 */ 842 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 843 return true; 844 845 return false; 846 } 847 848 static __always_inline void exc_debug_kernel(struct pt_regs *regs, 849 unsigned long dr6) 850 { 851 /* 852 * Disable breakpoints during exception handling; recursive exceptions 853 * are exceedingly 'fun'. 854 * 855 * Since this function is NOKPROBE, and that also applies to 856 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 857 * HW_BREAKPOINT_W on our stack) 858 * 859 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 860 * includes the entry stack is excluded for everything. 861 */ 862 unsigned long dr7 = local_db_save(); 863 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 864 instrumentation_begin(); 865 866 /* 867 * If something gets miswired and we end up here for a user mode 868 * #DB, we will malfunction. 869 */ 870 WARN_ON_ONCE(user_mode(regs)); 871 872 if (test_thread_flag(TIF_BLOCKSTEP)) { 873 /* 874 * The SDM says "The processor clears the BTF flag when it 875 * generates a debug exception." but PTRACE_BLOCKSTEP requested 876 * it for userspace, but we just took a kernel #DB, so re-set 877 * BTF. 878 */ 879 unsigned long debugctl; 880 881 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 882 debugctl |= DEBUGCTLMSR_BTF; 883 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 884 } 885 886 /* 887 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 888 * watchpoint at the same time then that will still be handled. 889 */ 890 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 891 dr6 &= ~DR_STEP; 892 893 /* 894 * The kernel doesn't use INT1 895 */ 896 if (!dr6) 897 goto out; 898 899 if (notify_debug(regs, &dr6)) 900 goto out; 901 902 /* 903 * The kernel doesn't use TF single-step outside of: 904 * 905 * - Kprobes, consumed through kprobe_debug_handler() 906 * - KGDB, consumed through notify_debug() 907 * 908 * So if we get here with DR_STEP set, something is wonky. 909 * 910 * A known way to trigger this is through QEMU's GDB stub, 911 * which leaks #DB into the guest and causes IST recursion. 912 */ 913 if (WARN_ON_ONCE(dr6 & DR_STEP)) 914 regs->flags &= ~X86_EFLAGS_TF; 915 out: 916 instrumentation_end(); 917 irqentry_nmi_exit(regs, irq_state); 918 919 local_db_restore(dr7); 920 } 921 922 static __always_inline void exc_debug_user(struct pt_regs *regs, 923 unsigned long dr6) 924 { 925 bool icebp; 926 927 /* 928 * If something gets miswired and we end up here for a kernel mode 929 * #DB, we will malfunction. 930 */ 931 WARN_ON_ONCE(!user_mode(regs)); 932 933 /* 934 * NB: We can't easily clear DR7 here because 935 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 936 * user memory, etc. This means that a recursive #DB is possible. If 937 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 938 * Since we're not on the IST stack right now, everything will be 939 * fine. 940 */ 941 942 irqentry_enter_from_user_mode(regs); 943 instrumentation_begin(); 944 945 /* 946 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 947 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 948 * 949 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 950 * even if it is not the result of PTRACE_SINGLESTEP. 951 */ 952 current->thread.virtual_dr6 = (dr6 & DR_STEP); 953 954 /* 955 * The SDM says "The processor clears the BTF flag when it 956 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 957 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 958 */ 959 clear_thread_flag(TIF_BLOCKSTEP); 960 961 /* 962 * If dr6 has no reason to give us about the origin of this trap, 963 * then it's very likely the result of an icebp/int01 trap. 964 * User wants a sigtrap for that. 965 */ 966 icebp = !dr6; 967 968 if (notify_debug(regs, &dr6)) 969 goto out; 970 971 /* It's safe to allow irq's after DR6 has been saved */ 972 local_irq_enable(); 973 974 if (v8086_mode(regs)) { 975 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 976 goto out_irq; 977 } 978 979 /* #DB for bus lock can only be triggered from userspace. */ 980 if (dr6 & DR_BUS_LOCK) 981 handle_bus_lock(regs); 982 983 /* Add the virtual_dr6 bits for signals. */ 984 dr6 |= current->thread.virtual_dr6; 985 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 986 send_sigtrap(regs, 0, get_si_code(dr6)); 987 988 out_irq: 989 local_irq_disable(); 990 out: 991 instrumentation_end(); 992 irqentry_exit_to_user_mode(regs); 993 } 994 995 #ifdef CONFIG_X86_64 996 /* IST stack entry */ 997 DEFINE_IDTENTRY_DEBUG(exc_debug) 998 { 999 exc_debug_kernel(regs, debug_read_clear_dr6()); 1000 } 1001 1002 /* User entry, runs on regular task stack */ 1003 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1004 { 1005 exc_debug_user(regs, debug_read_clear_dr6()); 1006 } 1007 #else 1008 /* 32 bit does not have separate entry points. */ 1009 DEFINE_IDTENTRY_RAW(exc_debug) 1010 { 1011 unsigned long dr6 = debug_read_clear_dr6(); 1012 1013 if (user_mode(regs)) 1014 exc_debug_user(regs, dr6); 1015 else 1016 exc_debug_kernel(regs, dr6); 1017 } 1018 #endif 1019 1020 /* 1021 * Note that we play around with the 'TS' bit in an attempt to get 1022 * the correct behaviour even in the presence of the asynchronous 1023 * IRQ13 behaviour 1024 */ 1025 static void math_error(struct pt_regs *regs, int trapnr) 1026 { 1027 struct task_struct *task = current; 1028 struct fpu *fpu = &task->thread.fpu; 1029 int si_code; 1030 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1031 "simd exception"; 1032 1033 cond_local_irq_enable(regs); 1034 1035 if (!user_mode(regs)) { 1036 if (fixup_exception(regs, trapnr, 0, 0)) 1037 goto exit; 1038 1039 task->thread.error_code = 0; 1040 task->thread.trap_nr = trapnr; 1041 1042 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1043 SIGFPE) != NOTIFY_STOP) 1044 die(str, regs, 0); 1045 goto exit; 1046 } 1047 1048 /* 1049 * Synchronize the FPU register state to the memory register state 1050 * if necessary. This allows the exception handler to inspect it. 1051 */ 1052 fpu_sync_fpstate(fpu); 1053 1054 task->thread.trap_nr = trapnr; 1055 task->thread.error_code = 0; 1056 1057 si_code = fpu__exception_code(fpu, trapnr); 1058 /* Retry when we get spurious exceptions: */ 1059 if (!si_code) 1060 goto exit; 1061 1062 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1063 goto exit; 1064 1065 force_sig_fault(SIGFPE, si_code, 1066 (void __user *)uprobe_get_trap_addr(regs)); 1067 exit: 1068 cond_local_irq_disable(regs); 1069 } 1070 1071 DEFINE_IDTENTRY(exc_coprocessor_error) 1072 { 1073 math_error(regs, X86_TRAP_MF); 1074 } 1075 1076 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1077 { 1078 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1079 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1080 if (!static_cpu_has(X86_FEATURE_XMM)) { 1081 __exc_general_protection(regs, 0); 1082 return; 1083 } 1084 } 1085 math_error(regs, X86_TRAP_XF); 1086 } 1087 1088 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1089 { 1090 /* 1091 * This addresses a Pentium Pro Erratum: 1092 * 1093 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1094 * Virtual Wire mode implemented through the local APIC, an 1095 * interrupt vector of 0Fh (Intel reserved encoding) may be 1096 * generated by the local APIC (Int 15). This vector may be 1097 * generated upon receipt of a spurious interrupt (an interrupt 1098 * which is removed before the system receives the INTA sequence) 1099 * instead of the programmed 8259 spurious interrupt vector. 1100 * 1101 * IMPLICATION: The spurious interrupt vector programmed in the 1102 * 8259 is normally handled by an operating system's spurious 1103 * interrupt handler. However, a vector of 0Fh is unknown to some 1104 * operating systems, which would crash if this erratum occurred. 1105 * 1106 * In theory this could be limited to 32bit, but the handler is not 1107 * hurting and who knows which other CPUs suffer from this. 1108 */ 1109 } 1110 1111 DEFINE_IDTENTRY(exc_device_not_available) 1112 { 1113 unsigned long cr0 = read_cr0(); 1114 1115 #ifdef CONFIG_MATH_EMULATION 1116 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1117 struct math_emu_info info = { }; 1118 1119 cond_local_irq_enable(regs); 1120 1121 info.regs = regs; 1122 math_emulate(&info); 1123 1124 cond_local_irq_disable(regs); 1125 return; 1126 } 1127 #endif 1128 1129 /* This should not happen. */ 1130 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1131 /* Try to fix it up and carry on. */ 1132 write_cr0(cr0 & ~X86_CR0_TS); 1133 } else { 1134 /* 1135 * Something terrible happened, and we're better off trying 1136 * to kill the task than getting stuck in a never-ending 1137 * loop of #NM faults. 1138 */ 1139 die("unexpected #NM exception", regs, 0); 1140 } 1141 } 1142 1143 #ifdef CONFIG_X86_32 1144 DEFINE_IDTENTRY_SW(iret_error) 1145 { 1146 local_irq_enable(); 1147 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1148 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1149 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1150 ILL_BADSTK, (void __user *)NULL); 1151 } 1152 local_irq_disable(); 1153 } 1154 #endif 1155 1156 void __init trap_init(void) 1157 { 1158 /* Init cpu_entry_area before IST entries are set up */ 1159 setup_cpu_entry_areas(); 1160 1161 /* Init GHCB memory pages when running as an SEV-ES guest */ 1162 sev_es_init_vc_handling(); 1163 1164 /* Initialize TSS before setting up traps so ISTs work */ 1165 cpu_init_exception_handling(); 1166 /* Setup traps as cpu_init() might #GP */ 1167 idt_setup_traps(); 1168 cpu_init(); 1169 } 1170