1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/kmsan.h> 19 #include <linux/spinlock.h> 20 #include <linux/kprobes.h> 21 #include <linux/uaccess.h> 22 #include <linux/kdebug.h> 23 #include <linux/kgdb.h> 24 #include <linux/kernel.h> 25 #include <linux/export.h> 26 #include <linux/ptrace.h> 27 #include <linux/uprobes.h> 28 #include <linux/string.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/kexec.h> 32 #include <linux/sched.h> 33 #include <linux/sched/task_stack.h> 34 #include <linux/timer.h> 35 #include <linux/init.h> 36 #include <linux/bug.h> 37 #include <linux/nmi.h> 38 #include <linux/mm.h> 39 #include <linux/smp.h> 40 #include <linux/io.h> 41 #include <linux/hardirq.h> 42 #include <linux/atomic.h> 43 #include <linux/iommu.h> 44 #include <linux/ubsan.h> 45 46 #include <asm/stacktrace.h> 47 #include <asm/processor.h> 48 #include <asm/debugreg.h> 49 #include <asm/realmode.h> 50 #include <asm/text-patching.h> 51 #include <asm/ftrace.h> 52 #include <asm/traps.h> 53 #include <asm/desc.h> 54 #include <asm/fpu/api.h> 55 #include <asm/cpu.h> 56 #include <asm/cpu_entry_area.h> 57 #include <asm/mce.h> 58 #include <asm/fixmap.h> 59 #include <asm/mach_traps.h> 60 #include <asm/alternative.h> 61 #include <asm/fpu/xstate.h> 62 #include <asm/vm86.h> 63 #include <asm/umip.h> 64 #include <asm/insn.h> 65 #include <asm/insn-eval.h> 66 #include <asm/vdso.h> 67 #include <asm/tdx.h> 68 #include <asm/cfi.h> 69 70 #ifdef CONFIG_X86_64 71 #include <asm/x86_init.h> 72 #else 73 #include <asm/processor-flags.h> 74 #include <asm/setup.h> 75 #endif 76 77 #include <asm/proto.h> 78 79 DECLARE_BITMAP(system_vectors, NR_VECTORS); 80 81 __always_inline int is_valid_bugaddr(unsigned long addr) 82 { 83 if (addr < TASK_SIZE_MAX) 84 return 0; 85 86 /* 87 * We got #UD, if the text isn't readable we'd have gotten 88 * a different exception. 89 */ 90 return *(unsigned short *)addr == INSN_UD2; 91 } 92 93 /* 94 * Check for UD1 or UD2, accounting for Address Size Override Prefixes. 95 * If it's a UD1, get the ModRM byte to pass along to UBSan. 96 */ 97 __always_inline int decode_bug(unsigned long addr, u32 *imm) 98 { 99 u8 v; 100 101 if (addr < TASK_SIZE_MAX) 102 return BUG_NONE; 103 104 v = *(u8 *)(addr++); 105 if (v == INSN_ASOP) 106 v = *(u8 *)(addr++); 107 if (v != OPCODE_ESCAPE) 108 return BUG_NONE; 109 110 v = *(u8 *)(addr++); 111 if (v == SECOND_BYTE_OPCODE_UD2) 112 return BUG_UD2; 113 114 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1) 115 return BUG_NONE; 116 117 /* Retrieve the immediate (type value) for the UBSAN UD1 */ 118 v = *(u8 *)(addr++); 119 if (X86_MODRM_RM(v) == 4) 120 addr++; 121 122 *imm = 0; 123 if (X86_MODRM_MOD(v) == 1) 124 *imm = *(u8 *)addr; 125 else if (X86_MODRM_MOD(v) == 2) 126 *imm = *(u32 *)addr; 127 else 128 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v)); 129 130 return BUG_UD1; 131 } 132 133 134 static nokprobe_inline int 135 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 136 struct pt_regs *regs, long error_code) 137 { 138 if (v8086_mode(regs)) { 139 /* 140 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 141 * On nmi (interrupt 2), do_trap should not be called. 142 */ 143 if (trapnr < X86_TRAP_UD) { 144 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 145 error_code, trapnr)) 146 return 0; 147 } 148 } else if (!user_mode(regs)) { 149 if (fixup_exception(regs, trapnr, error_code, 0)) 150 return 0; 151 152 tsk->thread.error_code = error_code; 153 tsk->thread.trap_nr = trapnr; 154 die(str, regs, error_code); 155 } else { 156 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 157 return 0; 158 } 159 160 /* 161 * We want error_code and trap_nr set for userspace faults and 162 * kernelspace faults which result in die(), but not 163 * kernelspace faults which are fixed up. die() gives the 164 * process no chance to handle the signal and notice the 165 * kernel fault information, so that won't result in polluting 166 * the information about previously queued, but not yet 167 * delivered, faults. See also exc_general_protection below. 168 */ 169 tsk->thread.error_code = error_code; 170 tsk->thread.trap_nr = trapnr; 171 172 return -1; 173 } 174 175 static void show_signal(struct task_struct *tsk, int signr, 176 const char *type, const char *desc, 177 struct pt_regs *regs, long error_code) 178 { 179 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 180 printk_ratelimit()) { 181 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 182 tsk->comm, task_pid_nr(tsk), type, desc, 183 regs->ip, regs->sp, error_code); 184 print_vma_addr(KERN_CONT " in ", regs->ip); 185 pr_cont("\n"); 186 } 187 } 188 189 static void 190 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 191 long error_code, int sicode, void __user *addr) 192 { 193 struct task_struct *tsk = current; 194 195 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 196 return; 197 198 show_signal(tsk, signr, "trap ", str, regs, error_code); 199 200 if (!sicode) 201 force_sig(signr); 202 else 203 force_sig_fault(signr, sicode, addr); 204 } 205 NOKPROBE_SYMBOL(do_trap); 206 207 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 208 unsigned long trapnr, int signr, int sicode, void __user *addr) 209 { 210 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 211 212 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 213 NOTIFY_STOP) { 214 cond_local_irq_enable(regs); 215 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 216 cond_local_irq_disable(regs); 217 } 218 } 219 220 /* 221 * Posix requires to provide the address of the faulting instruction for 222 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 223 * 224 * This address is usually regs->ip, but when an uprobe moved the code out 225 * of line then regs->ip points to the XOL code which would confuse 226 * anything which analyzes the fault address vs. the unmodified binary. If 227 * a trap happened in XOL code then uprobe maps regs->ip back to the 228 * original instruction address. 229 */ 230 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 231 { 232 return (void __user *)uprobe_get_trap_addr(regs); 233 } 234 235 DEFINE_IDTENTRY(exc_divide_error) 236 { 237 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 238 FPE_INTDIV, error_get_trap_addr(regs)); 239 } 240 241 DEFINE_IDTENTRY(exc_overflow) 242 { 243 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 244 } 245 246 #ifdef CONFIG_X86_F00F_BUG 247 void handle_invalid_op(struct pt_regs *regs) 248 #else 249 static inline void handle_invalid_op(struct pt_regs *regs) 250 #endif 251 { 252 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 253 ILL_ILLOPN, error_get_trap_addr(regs)); 254 } 255 256 static noinstr bool handle_bug(struct pt_regs *regs) 257 { 258 bool handled = false; 259 int ud_type; 260 u32 imm; 261 262 ud_type = decode_bug(regs->ip, &imm); 263 if (ud_type == BUG_NONE) 264 return handled; 265 266 /* 267 * All lies, just get the WARN/BUG out. 268 */ 269 instrumentation_begin(); 270 /* 271 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug() 272 * is a rare case that uses @regs without passing them to 273 * irqentry_enter(). 274 */ 275 kmsan_unpoison_entry_regs(regs); 276 /* 277 * Since we're emulating a CALL with exceptions, restore the interrupt 278 * state to what it was at the exception site. 279 */ 280 if (regs->flags & X86_EFLAGS_IF) 281 raw_local_irq_enable(); 282 if (ud_type == BUG_UD2) { 283 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN || 284 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) { 285 regs->ip += LEN_UD2; 286 handled = true; 287 } 288 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) { 289 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip); 290 } 291 if (regs->flags & X86_EFLAGS_IF) 292 raw_local_irq_disable(); 293 instrumentation_end(); 294 295 return handled; 296 } 297 298 DEFINE_IDTENTRY_RAW(exc_invalid_op) 299 { 300 irqentry_state_t state; 301 302 /* 303 * We use UD2 as a short encoding for 'CALL __WARN', as such 304 * handle it before exception entry to avoid recursive WARN 305 * in case exception entry is the one triggering WARNs. 306 */ 307 if (!user_mode(regs) && handle_bug(regs)) 308 return; 309 310 state = irqentry_enter(regs); 311 instrumentation_begin(); 312 handle_invalid_op(regs); 313 instrumentation_end(); 314 irqentry_exit(regs, state); 315 } 316 317 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 318 { 319 do_error_trap(regs, 0, "coprocessor segment overrun", 320 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 321 } 322 323 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 324 { 325 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 326 0, NULL); 327 } 328 329 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 330 { 331 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 332 SIGBUS, 0, NULL); 333 } 334 335 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 336 { 337 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 338 0, NULL); 339 } 340 341 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 342 { 343 char *str = "alignment check"; 344 345 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 346 return; 347 348 if (!user_mode(regs)) 349 die("Split lock detected\n", regs, error_code); 350 351 local_irq_enable(); 352 353 if (handle_user_split_lock(regs, error_code)) 354 goto out; 355 356 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 357 error_code, BUS_ADRALN, NULL); 358 359 out: 360 local_irq_disable(); 361 } 362 363 #ifdef CONFIG_VMAP_STACK 364 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, 365 unsigned long fault_address, 366 struct stack_info *info) 367 { 368 const char *name = stack_type_name(info->type); 369 370 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", 371 name, (void *)fault_address, info->begin, info->end); 372 373 die("stack guard page", regs, 0); 374 375 /* Be absolutely certain we don't return. */ 376 panic("%s stack guard hit", name); 377 } 378 #endif 379 380 /* 381 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 382 * 383 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 384 * SDM's warnings about double faults being unrecoverable, returning works as 385 * expected. Presumably what the SDM actually means is that the CPU may get 386 * the register state wrong on entry, so returning could be a bad idea. 387 * 388 * Various CPU engineers have promised that double faults due to an IRET fault 389 * while the stack is read-only are, in fact, recoverable. 390 * 391 * On x86_32, this is entered through a task gate, and regs are synthesized 392 * from the TSS. Returning is, in principle, okay, but changes to regs will 393 * be lost. If, for some reason, we need to return to a context with modified 394 * regs, the shim code could be adjusted to synchronize the registers. 395 * 396 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 397 * to be read before doing anything else. 398 */ 399 DEFINE_IDTENTRY_DF(exc_double_fault) 400 { 401 static const char str[] = "double fault"; 402 struct task_struct *tsk = current; 403 404 #ifdef CONFIG_VMAP_STACK 405 unsigned long address = read_cr2(); 406 struct stack_info info; 407 #endif 408 409 #ifdef CONFIG_X86_ESPFIX64 410 extern unsigned char native_irq_return_iret[]; 411 412 /* 413 * If IRET takes a non-IST fault on the espfix64 stack, then we 414 * end up promoting it to a doublefault. In that case, take 415 * advantage of the fact that we're not using the normal (TSS.sp0) 416 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 417 * and then modify our own IRET frame so that, when we return, 418 * we land directly at the #GP(0) vector with the stack already 419 * set up according to its expectations. 420 * 421 * The net result is that our #GP handler will think that we 422 * entered from usermode with the bad user context. 423 * 424 * No need for nmi_enter() here because we don't use RCU. 425 */ 426 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 427 regs->cs == __KERNEL_CS && 428 regs->ip == (unsigned long)native_irq_return_iret) 429 { 430 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 431 unsigned long *p = (unsigned long *)regs->sp; 432 433 /* 434 * regs->sp points to the failing IRET frame on the 435 * ESPFIX64 stack. Copy it to the entry stack. This fills 436 * in gpregs->ss through gpregs->ip. 437 * 438 */ 439 gpregs->ip = p[0]; 440 gpregs->cs = p[1]; 441 gpregs->flags = p[2]; 442 gpregs->sp = p[3]; 443 gpregs->ss = p[4]; 444 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 445 446 /* 447 * Adjust our frame so that we return straight to the #GP 448 * vector with the expected RSP value. This is safe because 449 * we won't enable interrupts or schedule before we invoke 450 * general_protection, so nothing will clobber the stack 451 * frame we just set up. 452 * 453 * We will enter general_protection with kernel GSBASE, 454 * which is what the stub expects, given that the faulting 455 * RIP will be the IRET instruction. 456 */ 457 regs->ip = (unsigned long)asm_exc_general_protection; 458 regs->sp = (unsigned long)&gpregs->orig_ax; 459 460 return; 461 } 462 #endif 463 464 irqentry_nmi_enter(regs); 465 instrumentation_begin(); 466 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 467 468 tsk->thread.error_code = error_code; 469 tsk->thread.trap_nr = X86_TRAP_DF; 470 471 #ifdef CONFIG_VMAP_STACK 472 /* 473 * If we overflow the stack into a guard page, the CPU will fail 474 * to deliver #PF and will send #DF instead. Similarly, if we 475 * take any non-IST exception while too close to the bottom of 476 * the stack, the processor will get a page fault while 477 * delivering the exception and will generate a double fault. 478 * 479 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 480 * Page-Fault Exception (#PF): 481 * 482 * Processors update CR2 whenever a page fault is detected. If a 483 * second page fault occurs while an earlier page fault is being 484 * delivered, the faulting linear address of the second fault will 485 * overwrite the contents of CR2 (replacing the previous 486 * address). These updates to CR2 occur even if the page fault 487 * results in a double fault or occurs during the delivery of a 488 * double fault. 489 * 490 * The logic below has a small possibility of incorrectly diagnosing 491 * some errors as stack overflows. For example, if the IDT or GDT 492 * gets corrupted such that #GP delivery fails due to a bad descriptor 493 * causing #GP and we hit this condition while CR2 coincidentally 494 * points to the stack guard page, we'll think we overflowed the 495 * stack. Given that we're going to panic one way or another 496 * if this happens, this isn't necessarily worth fixing. 497 * 498 * If necessary, we could improve the test by only diagnosing 499 * a stack overflow if the saved RSP points within 47 bytes of 500 * the bottom of the stack: if RSP == tsk_stack + 48 and we 501 * take an exception, the stack is already aligned and there 502 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 503 * possible error code, so a stack overflow would *not* double 504 * fault. With any less space left, exception delivery could 505 * fail, and, as a practical matter, we've overflowed the 506 * stack even if the actual trigger for the double fault was 507 * something else. 508 */ 509 if (get_stack_guard_info((void *)address, &info)) 510 handle_stack_overflow(regs, address, &info); 511 #endif 512 513 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 514 die("double fault", regs, error_code); 515 panic("Machine halted."); 516 instrumentation_end(); 517 } 518 519 DEFINE_IDTENTRY(exc_bounds) 520 { 521 if (notify_die(DIE_TRAP, "bounds", regs, 0, 522 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 523 return; 524 cond_local_irq_enable(regs); 525 526 if (!user_mode(regs)) 527 die("bounds", regs, 0); 528 529 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 530 531 cond_local_irq_disable(regs); 532 } 533 534 enum kernel_gp_hint { 535 GP_NO_HINT, 536 GP_NON_CANONICAL, 537 GP_CANONICAL 538 }; 539 540 /* 541 * When an uncaught #GP occurs, try to determine the memory address accessed by 542 * the instruction and return that address to the caller. Also, try to figure 543 * out whether any part of the access to that address was non-canonical. 544 */ 545 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 546 unsigned long *addr) 547 { 548 u8 insn_buf[MAX_INSN_SIZE]; 549 struct insn insn; 550 int ret; 551 552 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 553 MAX_INSN_SIZE)) 554 return GP_NO_HINT; 555 556 ret = insn_decode_kernel(&insn, insn_buf); 557 if (ret < 0) 558 return GP_NO_HINT; 559 560 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 561 if (*addr == -1UL) 562 return GP_NO_HINT; 563 564 #ifdef CONFIG_X86_64 565 /* 566 * Check that: 567 * - the operand is not in the kernel half 568 * - the last byte of the operand is not in the user canonical half 569 */ 570 if (*addr < ~__VIRTUAL_MASK && 571 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 572 return GP_NON_CANONICAL; 573 #endif 574 575 return GP_CANONICAL; 576 } 577 578 #define GPFSTR "general protection fault" 579 580 static bool fixup_iopl_exception(struct pt_regs *regs) 581 { 582 struct thread_struct *t = ¤t->thread; 583 unsigned char byte; 584 unsigned long ip; 585 586 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) 587 return false; 588 589 if (insn_get_effective_ip(regs, &ip)) 590 return false; 591 592 if (get_user(byte, (const char __user *)ip)) 593 return false; 594 595 if (byte != 0xfa && byte != 0xfb) 596 return false; 597 598 if (!t->iopl_warn && printk_ratelimit()) { 599 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", 600 current->comm, task_pid_nr(current), ip); 601 print_vma_addr(KERN_CONT " in ", ip); 602 pr_cont("\n"); 603 t->iopl_warn = 1; 604 } 605 606 regs->ip += 1; 607 return true; 608 } 609 610 /* 611 * The unprivileged ENQCMD instruction generates #GPs if the 612 * IA32_PASID MSR has not been populated. If possible, populate 613 * the MSR from a PASID previously allocated to the mm. 614 */ 615 static bool try_fixup_enqcmd_gp(void) 616 { 617 #ifdef CONFIG_IOMMU_SVA 618 u32 pasid; 619 620 /* 621 * MSR_IA32_PASID is managed using XSAVE. Directly 622 * writing to the MSR is only possible when fpregs 623 * are valid and the fpstate is not. This is 624 * guaranteed when handling a userspace exception 625 * in *before* interrupts are re-enabled. 626 */ 627 lockdep_assert_irqs_disabled(); 628 629 /* 630 * Hardware without ENQCMD will not generate 631 * #GPs that can be fixed up here. 632 */ 633 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) 634 return false; 635 636 /* 637 * If the mm has not been allocated a 638 * PASID, the #GP can not be fixed up. 639 */ 640 if (!mm_valid_pasid(current->mm)) 641 return false; 642 643 pasid = current->mm->pasid; 644 645 /* 646 * Did this thread already have its PASID activated? 647 * If so, the #GP must be from something else. 648 */ 649 if (current->pasid_activated) 650 return false; 651 652 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID); 653 current->pasid_activated = 1; 654 655 return true; 656 #else 657 return false; 658 #endif 659 } 660 661 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, 662 unsigned long error_code, const char *str, 663 unsigned long address) 664 { 665 if (fixup_exception(regs, trapnr, error_code, address)) 666 return true; 667 668 current->thread.error_code = error_code; 669 current->thread.trap_nr = trapnr; 670 671 /* 672 * To be potentially processing a kprobe fault and to trust the result 673 * from kprobe_running(), we have to be non-preemptible. 674 */ 675 if (!preemptible() && kprobe_running() && 676 kprobe_fault_handler(regs, trapnr)) 677 return true; 678 679 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP; 680 } 681 682 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, 683 unsigned long error_code, const char *str) 684 { 685 current->thread.error_code = error_code; 686 current->thread.trap_nr = trapnr; 687 show_signal(current, SIGSEGV, "", str, regs, error_code); 688 force_sig(SIGSEGV); 689 } 690 691 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 692 { 693 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 694 enum kernel_gp_hint hint = GP_NO_HINT; 695 unsigned long gp_addr; 696 697 if (user_mode(regs) && try_fixup_enqcmd_gp()) 698 return; 699 700 cond_local_irq_enable(regs); 701 702 if (static_cpu_has(X86_FEATURE_UMIP)) { 703 if (user_mode(regs) && fixup_umip_exception(regs)) 704 goto exit; 705 } 706 707 if (v8086_mode(regs)) { 708 local_irq_enable(); 709 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 710 local_irq_disable(); 711 return; 712 } 713 714 if (user_mode(regs)) { 715 if (fixup_iopl_exception(regs)) 716 goto exit; 717 718 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 719 goto exit; 720 721 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc); 722 goto exit; 723 } 724 725 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0)) 726 goto exit; 727 728 if (error_code) 729 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 730 else 731 hint = get_kernel_gp_address(regs, &gp_addr); 732 733 if (hint != GP_NO_HINT) 734 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 735 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 736 : "maybe for address", 737 gp_addr); 738 739 /* 740 * KASAN is interested only in the non-canonical case, clear it 741 * otherwise. 742 */ 743 if (hint != GP_NON_CANONICAL) 744 gp_addr = 0; 745 746 die_addr(desc, regs, error_code, gp_addr); 747 748 exit: 749 cond_local_irq_disable(regs); 750 } 751 752 static bool do_int3(struct pt_regs *regs) 753 { 754 int res; 755 756 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 757 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 758 SIGTRAP) == NOTIFY_STOP) 759 return true; 760 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 761 762 #ifdef CONFIG_KPROBES 763 if (kprobe_int3_handler(regs)) 764 return true; 765 #endif 766 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 767 768 return res == NOTIFY_STOP; 769 } 770 NOKPROBE_SYMBOL(do_int3); 771 772 static void do_int3_user(struct pt_regs *regs) 773 { 774 if (do_int3(regs)) 775 return; 776 777 cond_local_irq_enable(regs); 778 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 779 cond_local_irq_disable(regs); 780 } 781 782 DEFINE_IDTENTRY_RAW(exc_int3) 783 { 784 /* 785 * poke_int3_handler() is completely self contained code; it does (and 786 * must) *NOT* call out to anything, lest it hits upon yet another 787 * INT3. 788 */ 789 if (poke_int3_handler(regs)) 790 return; 791 792 /* 793 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 794 * and therefore can trigger INT3, hence poke_int3_handler() must 795 * be done before. If the entry came from kernel mode, then use 796 * nmi_enter() because the INT3 could have been hit in any context 797 * including NMI. 798 */ 799 if (user_mode(regs)) { 800 irqentry_enter_from_user_mode(regs); 801 instrumentation_begin(); 802 do_int3_user(regs); 803 instrumentation_end(); 804 irqentry_exit_to_user_mode(regs); 805 } else { 806 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 807 808 instrumentation_begin(); 809 if (!do_int3(regs)) 810 die("int3", regs, 0); 811 instrumentation_end(); 812 irqentry_nmi_exit(regs, irq_state); 813 } 814 } 815 816 #ifdef CONFIG_X86_64 817 /* 818 * Help handler running on a per-cpu (IST or entry trampoline) stack 819 * to switch to the normal thread stack if the interrupted code was in 820 * user mode. The actual stack switch is done in entry_64.S 821 */ 822 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 823 { 824 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1; 825 if (regs != eregs) 826 *regs = *eregs; 827 return regs; 828 } 829 830 #ifdef CONFIG_AMD_MEM_ENCRYPT 831 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 832 { 833 unsigned long sp, *stack; 834 struct stack_info info; 835 struct pt_regs *regs_ret; 836 837 /* 838 * In the SYSCALL entry path the RSP value comes from user-space - don't 839 * trust it and switch to the current kernel stack 840 */ 841 if (ip_within_syscall_gap(regs)) { 842 sp = this_cpu_read(pcpu_hot.top_of_stack); 843 goto sync; 844 } 845 846 /* 847 * From here on the RSP value is trusted. Now check whether entry 848 * happened from a safe stack. Not safe are the entry or unknown stacks, 849 * use the fall-back stack instead in this case. 850 */ 851 sp = regs->sp; 852 stack = (unsigned long *)sp; 853 854 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 855 info.type > STACK_TYPE_EXCEPTION_LAST) 856 sp = __this_cpu_ist_top_va(VC2); 857 858 sync: 859 /* 860 * Found a safe stack - switch to it as if the entry didn't happen via 861 * IST stack. The code below only copies pt_regs, the real switch happens 862 * in assembly code. 863 */ 864 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 865 866 regs_ret = (struct pt_regs *)sp; 867 *regs_ret = *regs; 868 869 return regs_ret; 870 } 871 #endif 872 873 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) 874 { 875 struct pt_regs tmp, *new_stack; 876 877 /* 878 * This is called from entry_64.S early in handling a fault 879 * caused by a bad iret to user mode. To handle the fault 880 * correctly, we want to move our stack frame to where it would 881 * be had we entered directly on the entry stack (rather than 882 * just below the IRET frame) and we want to pretend that the 883 * exception came from the IRET target. 884 */ 885 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 886 887 /* Copy the IRET target to the temporary storage. */ 888 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); 889 890 /* Copy the remainder of the stack from the current stack. */ 891 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); 892 893 /* Update the entry stack */ 894 __memcpy(new_stack, &tmp, sizeof(tmp)); 895 896 BUG_ON(!user_mode(new_stack)); 897 return new_stack; 898 } 899 #endif 900 901 static bool is_sysenter_singlestep(struct pt_regs *regs) 902 { 903 /* 904 * We don't try for precision here. If we're anywhere in the region of 905 * code that can be single-stepped in the SYSENTER entry path, then 906 * assume that this is a useless single-step trap due to SYSENTER 907 * being invoked with TF set. (We don't know in advance exactly 908 * which instructions will be hit because BTF could plausibly 909 * be set.) 910 */ 911 #ifdef CONFIG_X86_32 912 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 913 (unsigned long)__end_SYSENTER_singlestep_region - 914 (unsigned long)__begin_SYSENTER_singlestep_region; 915 #elif defined(CONFIG_IA32_EMULATION) 916 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 917 (unsigned long)__end_entry_SYSENTER_compat - 918 (unsigned long)entry_SYSENTER_compat; 919 #else 920 return false; 921 #endif 922 } 923 924 static __always_inline unsigned long debug_read_clear_dr6(void) 925 { 926 unsigned long dr6; 927 928 /* 929 * The Intel SDM says: 930 * 931 * Certain debug exceptions may clear bits 0-3. The remaining 932 * contents of the DR6 register are never cleared by the 933 * processor. To avoid confusion in identifying debug 934 * exceptions, debug handlers should clear the register before 935 * returning to the interrupted task. 936 * 937 * Keep it simple: clear DR6 immediately. 938 */ 939 get_debugreg(dr6, 6); 940 set_debugreg(DR6_RESERVED, 6); 941 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 942 943 return dr6; 944 } 945 946 /* 947 * Our handling of the processor debug registers is non-trivial. 948 * We do not clear them on entry and exit from the kernel. Therefore 949 * it is possible to get a watchpoint trap here from inside the kernel. 950 * However, the code in ./ptrace.c has ensured that the user can 951 * only set watchpoints on userspace addresses. Therefore the in-kernel 952 * watchpoint trap can only occur in code which is reading/writing 953 * from user space. Such code must not hold kernel locks (since it 954 * can equally take a page fault), therefore it is safe to call 955 * force_sig_info even though that claims and releases locks. 956 * 957 * Code in ./signal.c ensures that the debug control register 958 * is restored before we deliver any signal, and therefore that 959 * user code runs with the correct debug control register even though 960 * we clear it here. 961 * 962 * Being careful here means that we don't have to be as careful in a 963 * lot of more complicated places (task switching can be a bit lazy 964 * about restoring all the debug state, and ptrace doesn't have to 965 * find every occurrence of the TF bit that could be saved away even 966 * by user code) 967 * 968 * May run on IST stack. 969 */ 970 971 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 972 { 973 /* 974 * Notifiers will clear bits in @dr6 to indicate the event has been 975 * consumed - hw_breakpoint_handler(), single_stop_cont(). 976 * 977 * Notifiers will set bits in @virtual_dr6 to indicate the desire 978 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 979 */ 980 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 981 return true; 982 983 return false; 984 } 985 986 static __always_inline void exc_debug_kernel(struct pt_regs *regs, 987 unsigned long dr6) 988 { 989 /* 990 * Disable breakpoints during exception handling; recursive exceptions 991 * are exceedingly 'fun'. 992 * 993 * Since this function is NOKPROBE, and that also applies to 994 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 995 * HW_BREAKPOINT_W on our stack) 996 * 997 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 998 * includes the entry stack is excluded for everything. 999 */ 1000 unsigned long dr7 = local_db_save(); 1001 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 1002 instrumentation_begin(); 1003 1004 /* 1005 * If something gets miswired and we end up here for a user mode 1006 * #DB, we will malfunction. 1007 */ 1008 WARN_ON_ONCE(user_mode(regs)); 1009 1010 if (test_thread_flag(TIF_BLOCKSTEP)) { 1011 /* 1012 * The SDM says "The processor clears the BTF flag when it 1013 * generates a debug exception." but PTRACE_BLOCKSTEP requested 1014 * it for userspace, but we just took a kernel #DB, so re-set 1015 * BTF. 1016 */ 1017 unsigned long debugctl; 1018 1019 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1020 debugctl |= DEBUGCTLMSR_BTF; 1021 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1022 } 1023 1024 /* 1025 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 1026 * watchpoint at the same time then that will still be handled. 1027 */ 1028 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 1029 dr6 &= ~DR_STEP; 1030 1031 /* 1032 * The kernel doesn't use INT1 1033 */ 1034 if (!dr6) 1035 goto out; 1036 1037 if (notify_debug(regs, &dr6)) 1038 goto out; 1039 1040 /* 1041 * The kernel doesn't use TF single-step outside of: 1042 * 1043 * - Kprobes, consumed through kprobe_debug_handler() 1044 * - KGDB, consumed through notify_debug() 1045 * 1046 * So if we get here with DR_STEP set, something is wonky. 1047 * 1048 * A known way to trigger this is through QEMU's GDB stub, 1049 * which leaks #DB into the guest and causes IST recursion. 1050 */ 1051 if (WARN_ON_ONCE(dr6 & DR_STEP)) 1052 regs->flags &= ~X86_EFLAGS_TF; 1053 out: 1054 instrumentation_end(); 1055 irqentry_nmi_exit(regs, irq_state); 1056 1057 local_db_restore(dr7); 1058 } 1059 1060 static __always_inline void exc_debug_user(struct pt_regs *regs, 1061 unsigned long dr6) 1062 { 1063 bool icebp; 1064 1065 /* 1066 * If something gets miswired and we end up here for a kernel mode 1067 * #DB, we will malfunction. 1068 */ 1069 WARN_ON_ONCE(!user_mode(regs)); 1070 1071 /* 1072 * NB: We can't easily clear DR7 here because 1073 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 1074 * user memory, etc. This means that a recursive #DB is possible. If 1075 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 1076 * Since we're not on the IST stack right now, everything will be 1077 * fine. 1078 */ 1079 1080 irqentry_enter_from_user_mode(regs); 1081 instrumentation_begin(); 1082 1083 /* 1084 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 1085 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 1086 * 1087 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 1088 * even if it is not the result of PTRACE_SINGLESTEP. 1089 */ 1090 current->thread.virtual_dr6 = (dr6 & DR_STEP); 1091 1092 /* 1093 * The SDM says "The processor clears the BTF flag when it 1094 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 1095 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 1096 */ 1097 clear_thread_flag(TIF_BLOCKSTEP); 1098 1099 /* 1100 * If dr6 has no reason to give us about the origin of this trap, 1101 * then it's very likely the result of an icebp/int01 trap. 1102 * User wants a sigtrap for that. 1103 */ 1104 icebp = !dr6; 1105 1106 if (notify_debug(regs, &dr6)) 1107 goto out; 1108 1109 /* It's safe to allow irq's after DR6 has been saved */ 1110 local_irq_enable(); 1111 1112 if (v8086_mode(regs)) { 1113 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 1114 goto out_irq; 1115 } 1116 1117 /* #DB for bus lock can only be triggered from userspace. */ 1118 if (dr6 & DR_BUS_LOCK) 1119 handle_bus_lock(regs); 1120 1121 /* Add the virtual_dr6 bits for signals. */ 1122 dr6 |= current->thread.virtual_dr6; 1123 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 1124 send_sigtrap(regs, 0, get_si_code(dr6)); 1125 1126 out_irq: 1127 local_irq_disable(); 1128 out: 1129 instrumentation_end(); 1130 irqentry_exit_to_user_mode(regs); 1131 } 1132 1133 #ifdef CONFIG_X86_64 1134 /* IST stack entry */ 1135 DEFINE_IDTENTRY_DEBUG(exc_debug) 1136 { 1137 exc_debug_kernel(regs, debug_read_clear_dr6()); 1138 } 1139 1140 /* User entry, runs on regular task stack */ 1141 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1142 { 1143 exc_debug_user(regs, debug_read_clear_dr6()); 1144 } 1145 #else 1146 /* 32 bit does not have separate entry points. */ 1147 DEFINE_IDTENTRY_RAW(exc_debug) 1148 { 1149 unsigned long dr6 = debug_read_clear_dr6(); 1150 1151 if (user_mode(regs)) 1152 exc_debug_user(regs, dr6); 1153 else 1154 exc_debug_kernel(regs, dr6); 1155 } 1156 #endif 1157 1158 /* 1159 * Note that we play around with the 'TS' bit in an attempt to get 1160 * the correct behaviour even in the presence of the asynchronous 1161 * IRQ13 behaviour 1162 */ 1163 static void math_error(struct pt_regs *regs, int trapnr) 1164 { 1165 struct task_struct *task = current; 1166 struct fpu *fpu = &task->thread.fpu; 1167 int si_code; 1168 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1169 "simd exception"; 1170 1171 cond_local_irq_enable(regs); 1172 1173 if (!user_mode(regs)) { 1174 if (fixup_exception(regs, trapnr, 0, 0)) 1175 goto exit; 1176 1177 task->thread.error_code = 0; 1178 task->thread.trap_nr = trapnr; 1179 1180 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1181 SIGFPE) != NOTIFY_STOP) 1182 die(str, regs, 0); 1183 goto exit; 1184 } 1185 1186 /* 1187 * Synchronize the FPU register state to the memory register state 1188 * if necessary. This allows the exception handler to inspect it. 1189 */ 1190 fpu_sync_fpstate(fpu); 1191 1192 task->thread.trap_nr = trapnr; 1193 task->thread.error_code = 0; 1194 1195 si_code = fpu__exception_code(fpu, trapnr); 1196 /* Retry when we get spurious exceptions: */ 1197 if (!si_code) 1198 goto exit; 1199 1200 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1201 goto exit; 1202 1203 force_sig_fault(SIGFPE, si_code, 1204 (void __user *)uprobe_get_trap_addr(regs)); 1205 exit: 1206 cond_local_irq_disable(regs); 1207 } 1208 1209 DEFINE_IDTENTRY(exc_coprocessor_error) 1210 { 1211 math_error(regs, X86_TRAP_MF); 1212 } 1213 1214 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1215 { 1216 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1217 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1218 if (!static_cpu_has(X86_FEATURE_XMM)) { 1219 __exc_general_protection(regs, 0); 1220 return; 1221 } 1222 } 1223 math_error(regs, X86_TRAP_XF); 1224 } 1225 1226 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1227 { 1228 /* 1229 * This addresses a Pentium Pro Erratum: 1230 * 1231 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1232 * Virtual Wire mode implemented through the local APIC, an 1233 * interrupt vector of 0Fh (Intel reserved encoding) may be 1234 * generated by the local APIC (Int 15). This vector may be 1235 * generated upon receipt of a spurious interrupt (an interrupt 1236 * which is removed before the system receives the INTA sequence) 1237 * instead of the programmed 8259 spurious interrupt vector. 1238 * 1239 * IMPLICATION: The spurious interrupt vector programmed in the 1240 * 8259 is normally handled by an operating system's spurious 1241 * interrupt handler. However, a vector of 0Fh is unknown to some 1242 * operating systems, which would crash if this erratum occurred. 1243 * 1244 * In theory this could be limited to 32bit, but the handler is not 1245 * hurting and who knows which other CPUs suffer from this. 1246 */ 1247 } 1248 1249 static bool handle_xfd_event(struct pt_regs *regs) 1250 { 1251 u64 xfd_err; 1252 int err; 1253 1254 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) 1255 return false; 1256 1257 rdmsrl(MSR_IA32_XFD_ERR, xfd_err); 1258 if (!xfd_err) 1259 return false; 1260 1261 wrmsrl(MSR_IA32_XFD_ERR, 0); 1262 1263 /* Die if that happens in kernel space */ 1264 if (WARN_ON(!user_mode(regs))) 1265 return false; 1266 1267 local_irq_enable(); 1268 1269 err = xfd_enable_feature(xfd_err); 1270 1271 switch (err) { 1272 case -EPERM: 1273 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); 1274 break; 1275 case -EFAULT: 1276 force_sig(SIGSEGV); 1277 break; 1278 } 1279 1280 local_irq_disable(); 1281 return true; 1282 } 1283 1284 DEFINE_IDTENTRY(exc_device_not_available) 1285 { 1286 unsigned long cr0 = read_cr0(); 1287 1288 if (handle_xfd_event(regs)) 1289 return; 1290 1291 #ifdef CONFIG_MATH_EMULATION 1292 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1293 struct math_emu_info info = { }; 1294 1295 cond_local_irq_enable(regs); 1296 1297 info.regs = regs; 1298 math_emulate(&info); 1299 1300 cond_local_irq_disable(regs); 1301 return; 1302 } 1303 #endif 1304 1305 /* This should not happen. */ 1306 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1307 /* Try to fix it up and carry on. */ 1308 write_cr0(cr0 & ~X86_CR0_TS); 1309 } else { 1310 /* 1311 * Something terrible happened, and we're better off trying 1312 * to kill the task than getting stuck in a never-ending 1313 * loop of #NM faults. 1314 */ 1315 die("unexpected #NM exception", regs, 0); 1316 } 1317 } 1318 1319 #ifdef CONFIG_INTEL_TDX_GUEST 1320 1321 #define VE_FAULT_STR "VE fault" 1322 1323 static void ve_raise_fault(struct pt_regs *regs, long error_code, 1324 unsigned long address) 1325 { 1326 if (user_mode(regs)) { 1327 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); 1328 return; 1329 } 1330 1331 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, 1332 VE_FAULT_STR, address)) { 1333 return; 1334 } 1335 1336 die_addr(VE_FAULT_STR, regs, error_code, address); 1337 } 1338 1339 /* 1340 * Virtualization Exceptions (#VE) are delivered to TDX guests due to 1341 * specific guest actions which may happen in either user space or the 1342 * kernel: 1343 * 1344 * * Specific instructions (WBINVD, for example) 1345 * * Specific MSR accesses 1346 * * Specific CPUID leaf accesses 1347 * * Access to specific guest physical addresses 1348 * 1349 * In the settings that Linux will run in, virtualization exceptions are 1350 * never generated on accesses to normal, TD-private memory that has been 1351 * accepted (by BIOS or with tdx_enc_status_changed()). 1352 * 1353 * Syscall entry code has a critical window where the kernel stack is not 1354 * yet set up. Any exception in this window leads to hard to debug issues 1355 * and can be exploited for privilege escalation. Exceptions in the NMI 1356 * entry code also cause issues. Returning from the exception handler with 1357 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. 1358 * 1359 * For these reasons, the kernel avoids #VEs during the syscall gap and 1360 * the NMI entry code. Entry code paths do not access TD-shared memory, 1361 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves 1362 * that might generate #VE. VMM can remove memory from TD at any point, 1363 * but access to unaccepted (or missing) private memory leads to VM 1364 * termination, not to #VE. 1365 * 1366 * Similarly to page faults and breakpoints, #VEs are allowed in NMI 1367 * handlers once the kernel is ready to deal with nested NMIs. 1368 * 1369 * During #VE delivery, all interrupts, including NMIs, are blocked until 1370 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads 1371 * the VE info. 1372 * 1373 * If a guest kernel action which would normally cause a #VE occurs in 1374 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault 1375 * exception) is delivered to the guest which will result in an oops. 1376 * 1377 * The entry code has been audited carefully for following these expectations. 1378 * Changes in the entry code have to be audited for correctness vs. this 1379 * aspect. Similarly to #PF, #VE in these places will expose kernel to 1380 * privilege escalation or may lead to random crashes. 1381 */ 1382 DEFINE_IDTENTRY(exc_virtualization_exception) 1383 { 1384 struct ve_info ve; 1385 1386 /* 1387 * NMIs/Machine-checks/Interrupts will be in a disabled state 1388 * till TDGETVEINFO TDCALL is executed. This ensures that VE 1389 * info cannot be overwritten by a nested #VE. 1390 */ 1391 tdx_get_ve_info(&ve); 1392 1393 cond_local_irq_enable(regs); 1394 1395 /* 1396 * If tdx_handle_virt_exception() could not process 1397 * it successfully, treat it as #GP(0) and handle it. 1398 */ 1399 if (!tdx_handle_virt_exception(regs, &ve)) 1400 ve_raise_fault(regs, 0, ve.gla); 1401 1402 cond_local_irq_disable(regs); 1403 } 1404 1405 #endif 1406 1407 #ifdef CONFIG_X86_32 1408 DEFINE_IDTENTRY_SW(iret_error) 1409 { 1410 local_irq_enable(); 1411 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1412 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1413 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1414 ILL_BADSTK, (void __user *)NULL); 1415 } 1416 local_irq_disable(); 1417 } 1418 #endif 1419 1420 void __init trap_init(void) 1421 { 1422 /* Init cpu_entry_area before IST entries are set up */ 1423 setup_cpu_entry_areas(); 1424 1425 /* Init GHCB memory pages when running as an SEV-ES guest */ 1426 sev_es_init_vc_handling(); 1427 1428 /* Initialize TSS before setting up traps so ISTs work */ 1429 cpu_init_exception_handling(); 1430 /* Setup traps as cpu_init() might #GP */ 1431 idt_setup_traps(); 1432 cpu_init(); 1433 } 1434