xref: /openbmc/linux/arch/x86/kernel/traps.c (revision d15cb3da)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/realmode.h>
47 #include <asm/text-patching.h>
48 #include <asm/ftrace.h>
49 #include <asm/traps.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/api.h>
52 #include <asm/cpu.h>
53 #include <asm/cpu_entry_area.h>
54 #include <asm/mce.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
59 #include <asm/vm86.h>
60 #include <asm/umip.h>
61 #include <asm/insn.h>
62 #include <asm/insn-eval.h>
63 #include <asm/vdso.h>
64 
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/proto.h>
68 #else
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
72 #endif
73 
74 DECLARE_BITMAP(system_vectors, NR_VECTORS);
75 
76 static inline void cond_local_irq_enable(struct pt_regs *regs)
77 {
78 	if (regs->flags & X86_EFLAGS_IF)
79 		local_irq_enable();
80 }
81 
82 static inline void cond_local_irq_disable(struct pt_regs *regs)
83 {
84 	if (regs->flags & X86_EFLAGS_IF)
85 		local_irq_disable();
86 }
87 
88 __always_inline int is_valid_bugaddr(unsigned long addr)
89 {
90 	if (addr < TASK_SIZE_MAX)
91 		return 0;
92 
93 	/*
94 	 * We got #UD, if the text isn't readable we'd have gotten
95 	 * a different exception.
96 	 */
97 	return *(unsigned short *)addr == INSN_UD2;
98 }
99 
100 static nokprobe_inline int
101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
102 		  struct pt_regs *regs,	long error_code)
103 {
104 	if (v8086_mode(regs)) {
105 		/*
106 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
107 		 * On nmi (interrupt 2), do_trap should not be called.
108 		 */
109 		if (trapnr < X86_TRAP_UD) {
110 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
111 						error_code, trapnr))
112 				return 0;
113 		}
114 	} else if (!user_mode(regs)) {
115 		if (fixup_exception(regs, trapnr, error_code, 0))
116 			return 0;
117 
118 		tsk->thread.error_code = error_code;
119 		tsk->thread.trap_nr = trapnr;
120 		die(str, regs, error_code);
121 	} else {
122 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
123 			return 0;
124 	}
125 
126 	/*
127 	 * We want error_code and trap_nr set for userspace faults and
128 	 * kernelspace faults which result in die(), but not
129 	 * kernelspace faults which are fixed up.  die() gives the
130 	 * process no chance to handle the signal and notice the
131 	 * kernel fault information, so that won't result in polluting
132 	 * the information about previously queued, but not yet
133 	 * delivered, faults.  See also exc_general_protection below.
134 	 */
135 	tsk->thread.error_code = error_code;
136 	tsk->thread.trap_nr = trapnr;
137 
138 	return -1;
139 }
140 
141 static void show_signal(struct task_struct *tsk, int signr,
142 			const char *type, const char *desc,
143 			struct pt_regs *regs, long error_code)
144 {
145 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
146 	    printk_ratelimit()) {
147 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
148 			tsk->comm, task_pid_nr(tsk), type, desc,
149 			regs->ip, regs->sp, error_code);
150 		print_vma_addr(KERN_CONT " in ", regs->ip);
151 		pr_cont("\n");
152 	}
153 }
154 
155 static void
156 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
157 	long error_code, int sicode, void __user *addr)
158 {
159 	struct task_struct *tsk = current;
160 
161 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
162 		return;
163 
164 	show_signal(tsk, signr, "trap ", str, regs, error_code);
165 
166 	if (!sicode)
167 		force_sig(signr);
168 	else
169 		force_sig_fault(signr, sicode, addr);
170 }
171 NOKPROBE_SYMBOL(do_trap);
172 
173 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
174 	unsigned long trapnr, int signr, int sicode, void __user *addr)
175 {
176 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
177 
178 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
179 			NOTIFY_STOP) {
180 		cond_local_irq_enable(regs);
181 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
182 		cond_local_irq_disable(regs);
183 	}
184 }
185 
186 /*
187  * Posix requires to provide the address of the faulting instruction for
188  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
189  *
190  * This address is usually regs->ip, but when an uprobe moved the code out
191  * of line then regs->ip points to the XOL code which would confuse
192  * anything which analyzes the fault address vs. the unmodified binary. If
193  * a trap happened in XOL code then uprobe maps regs->ip back to the
194  * original instruction address.
195  */
196 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
197 {
198 	return (void __user *)uprobe_get_trap_addr(regs);
199 }
200 
201 DEFINE_IDTENTRY(exc_divide_error)
202 {
203 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
204 		      FPE_INTDIV, error_get_trap_addr(regs));
205 }
206 
207 DEFINE_IDTENTRY(exc_overflow)
208 {
209 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
210 }
211 
212 #ifdef CONFIG_X86_F00F_BUG
213 void handle_invalid_op(struct pt_regs *regs)
214 #else
215 static inline void handle_invalid_op(struct pt_regs *regs)
216 #endif
217 {
218 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
219 		      ILL_ILLOPN, error_get_trap_addr(regs));
220 }
221 
222 static noinstr bool handle_bug(struct pt_regs *regs)
223 {
224 	bool handled = false;
225 
226 	if (!is_valid_bugaddr(regs->ip))
227 		return handled;
228 
229 	/*
230 	 * All lies, just get the WARN/BUG out.
231 	 */
232 	instrumentation_begin();
233 	/*
234 	 * Since we're emulating a CALL with exceptions, restore the interrupt
235 	 * state to what it was at the exception site.
236 	 */
237 	if (regs->flags & X86_EFLAGS_IF)
238 		raw_local_irq_enable();
239 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
240 		regs->ip += LEN_UD2;
241 		handled = true;
242 	}
243 	if (regs->flags & X86_EFLAGS_IF)
244 		raw_local_irq_disable();
245 	instrumentation_end();
246 
247 	return handled;
248 }
249 
250 DEFINE_IDTENTRY_RAW(exc_invalid_op)
251 {
252 	irqentry_state_t state;
253 
254 	/*
255 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
256 	 * handle it before exception entry to avoid recursive WARN
257 	 * in case exception entry is the one triggering WARNs.
258 	 */
259 	if (!user_mode(regs) && handle_bug(regs))
260 		return;
261 
262 	state = irqentry_enter(regs);
263 	instrumentation_begin();
264 	handle_invalid_op(regs);
265 	instrumentation_end();
266 	irqentry_exit(regs, state);
267 }
268 
269 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
270 {
271 	do_error_trap(regs, 0, "coprocessor segment overrun",
272 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
273 }
274 
275 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
276 {
277 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
278 		      0, NULL);
279 }
280 
281 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
282 {
283 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
284 		      SIGBUS, 0, NULL);
285 }
286 
287 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
288 {
289 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
290 		      0, NULL);
291 }
292 
293 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
294 {
295 	char *str = "alignment check";
296 
297 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
298 		return;
299 
300 	if (!user_mode(regs))
301 		die("Split lock detected\n", regs, error_code);
302 
303 	local_irq_enable();
304 
305 	if (handle_user_split_lock(regs, error_code))
306 		goto out;
307 
308 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
309 		error_code, BUS_ADRALN, NULL);
310 
311 out:
312 	local_irq_disable();
313 }
314 
315 #ifdef CONFIG_VMAP_STACK
316 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
317 						unsigned long fault_address,
318 						struct stack_info *info)
319 {
320 	const char *name = stack_type_name(info->type);
321 
322 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
323 	       name, (void *)fault_address, info->begin, info->end);
324 
325 	die("stack guard page", regs, 0);
326 
327 	/* Be absolutely certain we don't return. */
328 	panic("%s stack guard hit", name);
329 }
330 #endif
331 
332 /*
333  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
334  *
335  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
336  * SDM's warnings about double faults being unrecoverable, returning works as
337  * expected.  Presumably what the SDM actually means is that the CPU may get
338  * the register state wrong on entry, so returning could be a bad idea.
339  *
340  * Various CPU engineers have promised that double faults due to an IRET fault
341  * while the stack is read-only are, in fact, recoverable.
342  *
343  * On x86_32, this is entered through a task gate, and regs are synthesized
344  * from the TSS.  Returning is, in principle, okay, but changes to regs will
345  * be lost.  If, for some reason, we need to return to a context with modified
346  * regs, the shim code could be adjusted to synchronize the registers.
347  *
348  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
349  * to be read before doing anything else.
350  */
351 DEFINE_IDTENTRY_DF(exc_double_fault)
352 {
353 	static const char str[] = "double fault";
354 	struct task_struct *tsk = current;
355 
356 #ifdef CONFIG_VMAP_STACK
357 	unsigned long address = read_cr2();
358 	struct stack_info info;
359 #endif
360 
361 #ifdef CONFIG_X86_ESPFIX64
362 	extern unsigned char native_irq_return_iret[];
363 
364 	/*
365 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
366 	 * end up promoting it to a doublefault.  In that case, take
367 	 * advantage of the fact that we're not using the normal (TSS.sp0)
368 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
369 	 * and then modify our own IRET frame so that, when we return,
370 	 * we land directly at the #GP(0) vector with the stack already
371 	 * set up according to its expectations.
372 	 *
373 	 * The net result is that our #GP handler will think that we
374 	 * entered from usermode with the bad user context.
375 	 *
376 	 * No need for nmi_enter() here because we don't use RCU.
377 	 */
378 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
379 		regs->cs == __KERNEL_CS &&
380 		regs->ip == (unsigned long)native_irq_return_iret)
381 	{
382 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
383 		unsigned long *p = (unsigned long *)regs->sp;
384 
385 		/*
386 		 * regs->sp points to the failing IRET frame on the
387 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
388 		 * in gpregs->ss through gpregs->ip.
389 		 *
390 		 */
391 		gpregs->ip	= p[0];
392 		gpregs->cs	= p[1];
393 		gpregs->flags	= p[2];
394 		gpregs->sp	= p[3];
395 		gpregs->ss	= p[4];
396 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
397 
398 		/*
399 		 * Adjust our frame so that we return straight to the #GP
400 		 * vector with the expected RSP value.  This is safe because
401 		 * we won't enable interrupts or schedule before we invoke
402 		 * general_protection, so nothing will clobber the stack
403 		 * frame we just set up.
404 		 *
405 		 * We will enter general_protection with kernel GSBASE,
406 		 * which is what the stub expects, given that the faulting
407 		 * RIP will be the IRET instruction.
408 		 */
409 		regs->ip = (unsigned long)asm_exc_general_protection;
410 		regs->sp = (unsigned long)&gpregs->orig_ax;
411 
412 		return;
413 	}
414 #endif
415 
416 	irqentry_nmi_enter(regs);
417 	instrumentation_begin();
418 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
419 
420 	tsk->thread.error_code = error_code;
421 	tsk->thread.trap_nr = X86_TRAP_DF;
422 
423 #ifdef CONFIG_VMAP_STACK
424 	/*
425 	 * If we overflow the stack into a guard page, the CPU will fail
426 	 * to deliver #PF and will send #DF instead.  Similarly, if we
427 	 * take any non-IST exception while too close to the bottom of
428 	 * the stack, the processor will get a page fault while
429 	 * delivering the exception and will generate a double fault.
430 	 *
431 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
432 	 * Page-Fault Exception (#PF):
433 	 *
434 	 *   Processors update CR2 whenever a page fault is detected. If a
435 	 *   second page fault occurs while an earlier page fault is being
436 	 *   delivered, the faulting linear address of the second fault will
437 	 *   overwrite the contents of CR2 (replacing the previous
438 	 *   address). These updates to CR2 occur even if the page fault
439 	 *   results in a double fault or occurs during the delivery of a
440 	 *   double fault.
441 	 *
442 	 * The logic below has a small possibility of incorrectly diagnosing
443 	 * some errors as stack overflows.  For example, if the IDT or GDT
444 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
445 	 * causing #GP and we hit this condition while CR2 coincidentally
446 	 * points to the stack guard page, we'll think we overflowed the
447 	 * stack.  Given that we're going to panic one way or another
448 	 * if this happens, this isn't necessarily worth fixing.
449 	 *
450 	 * If necessary, we could improve the test by only diagnosing
451 	 * a stack overflow if the saved RSP points within 47 bytes of
452 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
453 	 * take an exception, the stack is already aligned and there
454 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
455 	 * possible error code, so a stack overflow would *not* double
456 	 * fault.  With any less space left, exception delivery could
457 	 * fail, and, as a practical matter, we've overflowed the
458 	 * stack even if the actual trigger for the double fault was
459 	 * something else.
460 	 */
461 	if (get_stack_guard_info((void *)address, &info))
462 		handle_stack_overflow(regs, address, &info);
463 #endif
464 
465 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
466 	die("double fault", regs, error_code);
467 	panic("Machine halted.");
468 	instrumentation_end();
469 }
470 
471 DEFINE_IDTENTRY(exc_bounds)
472 {
473 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
474 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
475 		return;
476 	cond_local_irq_enable(regs);
477 
478 	if (!user_mode(regs))
479 		die("bounds", regs, 0);
480 
481 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
482 
483 	cond_local_irq_disable(regs);
484 }
485 
486 enum kernel_gp_hint {
487 	GP_NO_HINT,
488 	GP_NON_CANONICAL,
489 	GP_CANONICAL
490 };
491 
492 /*
493  * When an uncaught #GP occurs, try to determine the memory address accessed by
494  * the instruction and return that address to the caller. Also, try to figure
495  * out whether any part of the access to that address was non-canonical.
496  */
497 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
498 						 unsigned long *addr)
499 {
500 	u8 insn_buf[MAX_INSN_SIZE];
501 	struct insn insn;
502 	int ret;
503 
504 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
505 			MAX_INSN_SIZE))
506 		return GP_NO_HINT;
507 
508 	ret = insn_decode_kernel(&insn, insn_buf);
509 	if (ret < 0)
510 		return GP_NO_HINT;
511 
512 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
513 	if (*addr == -1UL)
514 		return GP_NO_HINT;
515 
516 #ifdef CONFIG_X86_64
517 	/*
518 	 * Check that:
519 	 *  - the operand is not in the kernel half
520 	 *  - the last byte of the operand is not in the user canonical half
521 	 */
522 	if (*addr < ~__VIRTUAL_MASK &&
523 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
524 		return GP_NON_CANONICAL;
525 #endif
526 
527 	return GP_CANONICAL;
528 }
529 
530 #define GPFSTR "general protection fault"
531 
532 static bool fixup_iopl_exception(struct pt_regs *regs)
533 {
534 	struct thread_struct *t = &current->thread;
535 	unsigned char byte;
536 	unsigned long ip;
537 
538 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
539 		return false;
540 
541 	if (insn_get_effective_ip(regs, &ip))
542 		return false;
543 
544 	if (get_user(byte, (const char __user *)ip))
545 		return false;
546 
547 	if (byte != 0xfa && byte != 0xfb)
548 		return false;
549 
550 	if (!t->iopl_warn && printk_ratelimit()) {
551 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
552 		       current->comm, task_pid_nr(current), ip);
553 		print_vma_addr(KERN_CONT " in ", ip);
554 		pr_cont("\n");
555 		t->iopl_warn = 1;
556 	}
557 
558 	regs->ip += 1;
559 	return true;
560 }
561 
562 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
563 {
564 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
565 	enum kernel_gp_hint hint = GP_NO_HINT;
566 	struct task_struct *tsk;
567 	unsigned long gp_addr;
568 	int ret;
569 
570 	cond_local_irq_enable(regs);
571 
572 	if (static_cpu_has(X86_FEATURE_UMIP)) {
573 		if (user_mode(regs) && fixup_umip_exception(regs))
574 			goto exit;
575 	}
576 
577 	if (v8086_mode(regs)) {
578 		local_irq_enable();
579 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
580 		local_irq_disable();
581 		return;
582 	}
583 
584 	tsk = current;
585 
586 	if (user_mode(regs)) {
587 		if (fixup_iopl_exception(regs))
588 			goto exit;
589 
590 		tsk->thread.error_code = error_code;
591 		tsk->thread.trap_nr = X86_TRAP_GP;
592 
593 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
594 			goto exit;
595 
596 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
597 		force_sig(SIGSEGV);
598 		goto exit;
599 	}
600 
601 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
602 		goto exit;
603 
604 	tsk->thread.error_code = error_code;
605 	tsk->thread.trap_nr = X86_TRAP_GP;
606 
607 	/*
608 	 * To be potentially processing a kprobe fault and to trust the result
609 	 * from kprobe_running(), we have to be non-preemptible.
610 	 */
611 	if (!preemptible() &&
612 	    kprobe_running() &&
613 	    kprobe_fault_handler(regs, X86_TRAP_GP))
614 		goto exit;
615 
616 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
617 	if (ret == NOTIFY_STOP)
618 		goto exit;
619 
620 	if (error_code)
621 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
622 	else
623 		hint = get_kernel_gp_address(regs, &gp_addr);
624 
625 	if (hint != GP_NO_HINT)
626 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
627 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
628 						    : "maybe for address",
629 			 gp_addr);
630 
631 	/*
632 	 * KASAN is interested only in the non-canonical case, clear it
633 	 * otherwise.
634 	 */
635 	if (hint != GP_NON_CANONICAL)
636 		gp_addr = 0;
637 
638 	die_addr(desc, regs, error_code, gp_addr);
639 
640 exit:
641 	cond_local_irq_disable(regs);
642 }
643 
644 static bool do_int3(struct pt_regs *regs)
645 {
646 	int res;
647 
648 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
649 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
650 			 SIGTRAP) == NOTIFY_STOP)
651 		return true;
652 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
653 
654 #ifdef CONFIG_KPROBES
655 	if (kprobe_int3_handler(regs))
656 		return true;
657 #endif
658 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
659 
660 	return res == NOTIFY_STOP;
661 }
662 NOKPROBE_SYMBOL(do_int3);
663 
664 static void do_int3_user(struct pt_regs *regs)
665 {
666 	if (do_int3(regs))
667 		return;
668 
669 	cond_local_irq_enable(regs);
670 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
671 	cond_local_irq_disable(regs);
672 }
673 
674 DEFINE_IDTENTRY_RAW(exc_int3)
675 {
676 	/*
677 	 * poke_int3_handler() is completely self contained code; it does (and
678 	 * must) *NOT* call out to anything, lest it hits upon yet another
679 	 * INT3.
680 	 */
681 	if (poke_int3_handler(regs))
682 		return;
683 
684 	/*
685 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
686 	 * and therefore can trigger INT3, hence poke_int3_handler() must
687 	 * be done before. If the entry came from kernel mode, then use
688 	 * nmi_enter() because the INT3 could have been hit in any context
689 	 * including NMI.
690 	 */
691 	if (user_mode(regs)) {
692 		irqentry_enter_from_user_mode(regs);
693 		instrumentation_begin();
694 		do_int3_user(regs);
695 		instrumentation_end();
696 		irqentry_exit_to_user_mode(regs);
697 	} else {
698 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
699 
700 		instrumentation_begin();
701 		if (!do_int3(regs))
702 			die("int3", regs, 0);
703 		instrumentation_end();
704 		irqentry_nmi_exit(regs, irq_state);
705 	}
706 }
707 
708 #ifdef CONFIG_X86_64
709 /*
710  * Help handler running on a per-cpu (IST or entry trampoline) stack
711  * to switch to the normal thread stack if the interrupted code was in
712  * user mode. The actual stack switch is done in entry_64.S
713  */
714 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
715 {
716 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
717 	if (regs != eregs)
718 		*regs = *eregs;
719 	return regs;
720 }
721 
722 #ifdef CONFIG_AMD_MEM_ENCRYPT
723 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
724 {
725 	unsigned long sp, *stack;
726 	struct stack_info info;
727 	struct pt_regs *regs_ret;
728 
729 	/*
730 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
731 	 * trust it and switch to the current kernel stack
732 	 */
733 	if (ip_within_syscall_gap(regs)) {
734 		sp = this_cpu_read(cpu_current_top_of_stack);
735 		goto sync;
736 	}
737 
738 	/*
739 	 * From here on the RSP value is trusted. Now check whether entry
740 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
741 	 * use the fall-back stack instead in this case.
742 	 */
743 	sp    = regs->sp;
744 	stack = (unsigned long *)sp;
745 
746 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
747 	    info.type > STACK_TYPE_EXCEPTION_LAST)
748 		sp = __this_cpu_ist_top_va(VC2);
749 
750 sync:
751 	/*
752 	 * Found a safe stack - switch to it as if the entry didn't happen via
753 	 * IST stack. The code below only copies pt_regs, the real switch happens
754 	 * in assembly code.
755 	 */
756 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
757 
758 	regs_ret = (struct pt_regs *)sp;
759 	*regs_ret = *regs;
760 
761 	return regs_ret;
762 }
763 #endif
764 
765 struct bad_iret_stack {
766 	void *error_entry_ret;
767 	struct pt_regs regs;
768 };
769 
770 asmlinkage __visible noinstr
771 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
772 {
773 	/*
774 	 * This is called from entry_64.S early in handling a fault
775 	 * caused by a bad iret to user mode.  To handle the fault
776 	 * correctly, we want to move our stack frame to where it would
777 	 * be had we entered directly on the entry stack (rather than
778 	 * just below the IRET frame) and we want to pretend that the
779 	 * exception came from the IRET target.
780 	 */
781 	struct bad_iret_stack tmp, *new_stack =
782 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
783 
784 	/* Copy the IRET target to the temporary storage. */
785 	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
786 
787 	/* Copy the remainder of the stack from the current stack. */
788 	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
789 
790 	/* Update the entry stack */
791 	__memcpy(new_stack, &tmp, sizeof(tmp));
792 
793 	BUG_ON(!user_mode(&new_stack->regs));
794 	return new_stack;
795 }
796 #endif
797 
798 static bool is_sysenter_singlestep(struct pt_regs *regs)
799 {
800 	/*
801 	 * We don't try for precision here.  If we're anywhere in the region of
802 	 * code that can be single-stepped in the SYSENTER entry path, then
803 	 * assume that this is a useless single-step trap due to SYSENTER
804 	 * being invoked with TF set.  (We don't know in advance exactly
805 	 * which instructions will be hit because BTF could plausibly
806 	 * be set.)
807 	 */
808 #ifdef CONFIG_X86_32
809 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
810 		(unsigned long)__end_SYSENTER_singlestep_region -
811 		(unsigned long)__begin_SYSENTER_singlestep_region;
812 #elif defined(CONFIG_IA32_EMULATION)
813 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
814 		(unsigned long)__end_entry_SYSENTER_compat -
815 		(unsigned long)entry_SYSENTER_compat;
816 #else
817 	return false;
818 #endif
819 }
820 
821 static __always_inline unsigned long debug_read_clear_dr6(void)
822 {
823 	unsigned long dr6;
824 
825 	/*
826 	 * The Intel SDM says:
827 	 *
828 	 *   Certain debug exceptions may clear bits 0-3. The remaining
829 	 *   contents of the DR6 register are never cleared by the
830 	 *   processor. To avoid confusion in identifying debug
831 	 *   exceptions, debug handlers should clear the register before
832 	 *   returning to the interrupted task.
833 	 *
834 	 * Keep it simple: clear DR6 immediately.
835 	 */
836 	get_debugreg(dr6, 6);
837 	set_debugreg(DR6_RESERVED, 6);
838 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
839 
840 	return dr6;
841 }
842 
843 /*
844  * Our handling of the processor debug registers is non-trivial.
845  * We do not clear them on entry and exit from the kernel. Therefore
846  * it is possible to get a watchpoint trap here from inside the kernel.
847  * However, the code in ./ptrace.c has ensured that the user can
848  * only set watchpoints on userspace addresses. Therefore the in-kernel
849  * watchpoint trap can only occur in code which is reading/writing
850  * from user space. Such code must not hold kernel locks (since it
851  * can equally take a page fault), therefore it is safe to call
852  * force_sig_info even though that claims and releases locks.
853  *
854  * Code in ./signal.c ensures that the debug control register
855  * is restored before we deliver any signal, and therefore that
856  * user code runs with the correct debug control register even though
857  * we clear it here.
858  *
859  * Being careful here means that we don't have to be as careful in a
860  * lot of more complicated places (task switching can be a bit lazy
861  * about restoring all the debug state, and ptrace doesn't have to
862  * find every occurrence of the TF bit that could be saved away even
863  * by user code)
864  *
865  * May run on IST stack.
866  */
867 
868 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
869 {
870 	/*
871 	 * Notifiers will clear bits in @dr6 to indicate the event has been
872 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
873 	 *
874 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
875 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
876 	 */
877 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
878 		return true;
879 
880 	return false;
881 }
882 
883 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
884 					     unsigned long dr6)
885 {
886 	/*
887 	 * Disable breakpoints during exception handling; recursive exceptions
888 	 * are exceedingly 'fun'.
889 	 *
890 	 * Since this function is NOKPROBE, and that also applies to
891 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
892 	 * HW_BREAKPOINT_W on our stack)
893 	 *
894 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
895 	 * includes the entry stack is excluded for everything.
896 	 */
897 	unsigned long dr7 = local_db_save();
898 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
899 	instrumentation_begin();
900 
901 	/*
902 	 * If something gets miswired and we end up here for a user mode
903 	 * #DB, we will malfunction.
904 	 */
905 	WARN_ON_ONCE(user_mode(regs));
906 
907 	if (test_thread_flag(TIF_BLOCKSTEP)) {
908 		/*
909 		 * The SDM says "The processor clears the BTF flag when it
910 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
911 		 * it for userspace, but we just took a kernel #DB, so re-set
912 		 * BTF.
913 		 */
914 		unsigned long debugctl;
915 
916 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
917 		debugctl |= DEBUGCTLMSR_BTF;
918 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
919 	}
920 
921 	/*
922 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
923 	 * watchpoint at the same time then that will still be handled.
924 	 */
925 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
926 		dr6 &= ~DR_STEP;
927 
928 	/*
929 	 * The kernel doesn't use INT1
930 	 */
931 	if (!dr6)
932 		goto out;
933 
934 	if (notify_debug(regs, &dr6))
935 		goto out;
936 
937 	/*
938 	 * The kernel doesn't use TF single-step outside of:
939 	 *
940 	 *  - Kprobes, consumed through kprobe_debug_handler()
941 	 *  - KGDB, consumed through notify_debug()
942 	 *
943 	 * So if we get here with DR_STEP set, something is wonky.
944 	 *
945 	 * A known way to trigger this is through QEMU's GDB stub,
946 	 * which leaks #DB into the guest and causes IST recursion.
947 	 */
948 	if (WARN_ON_ONCE(dr6 & DR_STEP))
949 		regs->flags &= ~X86_EFLAGS_TF;
950 out:
951 	instrumentation_end();
952 	irqentry_nmi_exit(regs, irq_state);
953 
954 	local_db_restore(dr7);
955 }
956 
957 static __always_inline void exc_debug_user(struct pt_regs *regs,
958 					   unsigned long dr6)
959 {
960 	bool icebp;
961 
962 	/*
963 	 * If something gets miswired and we end up here for a kernel mode
964 	 * #DB, we will malfunction.
965 	 */
966 	WARN_ON_ONCE(!user_mode(regs));
967 
968 	/*
969 	 * NB: We can't easily clear DR7 here because
970 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
971 	 * user memory, etc.  This means that a recursive #DB is possible.  If
972 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
973 	 * Since we're not on the IST stack right now, everything will be
974 	 * fine.
975 	 */
976 
977 	irqentry_enter_from_user_mode(regs);
978 	instrumentation_begin();
979 
980 	/*
981 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
982 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
983 	 *
984 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
985 	 * even if it is not the result of PTRACE_SINGLESTEP.
986 	 */
987 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
988 
989 	/*
990 	 * The SDM says "The processor clears the BTF flag when it
991 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
992 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
993 	 */
994 	clear_thread_flag(TIF_BLOCKSTEP);
995 
996 	/*
997 	 * If dr6 has no reason to give us about the origin of this trap,
998 	 * then it's very likely the result of an icebp/int01 trap.
999 	 * User wants a sigtrap for that.
1000 	 */
1001 	icebp = !dr6;
1002 
1003 	if (notify_debug(regs, &dr6))
1004 		goto out;
1005 
1006 	/* It's safe to allow irq's after DR6 has been saved */
1007 	local_irq_enable();
1008 
1009 	if (v8086_mode(regs)) {
1010 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1011 		goto out_irq;
1012 	}
1013 
1014 	/* #DB for bus lock can only be triggered from userspace. */
1015 	if (dr6 & DR_BUS_LOCK)
1016 		handle_bus_lock(regs);
1017 
1018 	/* Add the virtual_dr6 bits for signals. */
1019 	dr6 |= current->thread.virtual_dr6;
1020 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1021 		send_sigtrap(regs, 0, get_si_code(dr6));
1022 
1023 out_irq:
1024 	local_irq_disable();
1025 out:
1026 	instrumentation_end();
1027 	irqentry_exit_to_user_mode(regs);
1028 }
1029 
1030 #ifdef CONFIG_X86_64
1031 /* IST stack entry */
1032 DEFINE_IDTENTRY_DEBUG(exc_debug)
1033 {
1034 	exc_debug_kernel(regs, debug_read_clear_dr6());
1035 }
1036 
1037 /* User entry, runs on regular task stack */
1038 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1039 {
1040 	exc_debug_user(regs, debug_read_clear_dr6());
1041 }
1042 #else
1043 /* 32 bit does not have separate entry points. */
1044 DEFINE_IDTENTRY_RAW(exc_debug)
1045 {
1046 	unsigned long dr6 = debug_read_clear_dr6();
1047 
1048 	if (user_mode(regs))
1049 		exc_debug_user(regs, dr6);
1050 	else
1051 		exc_debug_kernel(regs, dr6);
1052 }
1053 #endif
1054 
1055 /*
1056  * Note that we play around with the 'TS' bit in an attempt to get
1057  * the correct behaviour even in the presence of the asynchronous
1058  * IRQ13 behaviour
1059  */
1060 static void math_error(struct pt_regs *regs, int trapnr)
1061 {
1062 	struct task_struct *task = current;
1063 	struct fpu *fpu = &task->thread.fpu;
1064 	int si_code;
1065 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1066 						"simd exception";
1067 
1068 	cond_local_irq_enable(regs);
1069 
1070 	if (!user_mode(regs)) {
1071 		if (fixup_exception(regs, trapnr, 0, 0))
1072 			goto exit;
1073 
1074 		task->thread.error_code = 0;
1075 		task->thread.trap_nr = trapnr;
1076 
1077 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1078 			       SIGFPE) != NOTIFY_STOP)
1079 			die(str, regs, 0);
1080 		goto exit;
1081 	}
1082 
1083 	/*
1084 	 * Synchronize the FPU register state to the memory register state
1085 	 * if necessary. This allows the exception handler to inspect it.
1086 	 */
1087 	fpu_sync_fpstate(fpu);
1088 
1089 	task->thread.trap_nr	= trapnr;
1090 	task->thread.error_code = 0;
1091 
1092 	si_code = fpu__exception_code(fpu, trapnr);
1093 	/* Retry when we get spurious exceptions: */
1094 	if (!si_code)
1095 		goto exit;
1096 
1097 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1098 		goto exit;
1099 
1100 	force_sig_fault(SIGFPE, si_code,
1101 			(void __user *)uprobe_get_trap_addr(regs));
1102 exit:
1103 	cond_local_irq_disable(regs);
1104 }
1105 
1106 DEFINE_IDTENTRY(exc_coprocessor_error)
1107 {
1108 	math_error(regs, X86_TRAP_MF);
1109 }
1110 
1111 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1112 {
1113 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1114 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1115 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1116 			__exc_general_protection(regs, 0);
1117 			return;
1118 		}
1119 	}
1120 	math_error(regs, X86_TRAP_XF);
1121 }
1122 
1123 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1124 {
1125 	/*
1126 	 * This addresses a Pentium Pro Erratum:
1127 	 *
1128 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1129 	 * Virtual Wire mode implemented through the local APIC, an
1130 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1131 	 * generated by the local APIC (Int 15).  This vector may be
1132 	 * generated upon receipt of a spurious interrupt (an interrupt
1133 	 * which is removed before the system receives the INTA sequence)
1134 	 * instead of the programmed 8259 spurious interrupt vector.
1135 	 *
1136 	 * IMPLICATION: The spurious interrupt vector programmed in the
1137 	 * 8259 is normally handled by an operating system's spurious
1138 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1139 	 * operating systems, which would crash if this erratum occurred.
1140 	 *
1141 	 * In theory this could be limited to 32bit, but the handler is not
1142 	 * hurting and who knows which other CPUs suffer from this.
1143 	 */
1144 }
1145 
1146 static bool handle_xfd_event(struct pt_regs *regs)
1147 {
1148 	u64 xfd_err;
1149 	int err;
1150 
1151 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1152 		return false;
1153 
1154 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1155 	if (!xfd_err)
1156 		return false;
1157 
1158 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1159 
1160 	/* Die if that happens in kernel space */
1161 	if (WARN_ON(!user_mode(regs)))
1162 		return false;
1163 
1164 	local_irq_enable();
1165 
1166 	err = xfd_enable_feature(xfd_err);
1167 
1168 	switch (err) {
1169 	case -EPERM:
1170 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1171 		break;
1172 	case -EFAULT:
1173 		force_sig(SIGSEGV);
1174 		break;
1175 	}
1176 
1177 	local_irq_disable();
1178 	return true;
1179 }
1180 
1181 DEFINE_IDTENTRY(exc_device_not_available)
1182 {
1183 	unsigned long cr0 = read_cr0();
1184 
1185 	if (handle_xfd_event(regs))
1186 		return;
1187 
1188 #ifdef CONFIG_MATH_EMULATION
1189 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1190 		struct math_emu_info info = { };
1191 
1192 		cond_local_irq_enable(regs);
1193 
1194 		info.regs = regs;
1195 		math_emulate(&info);
1196 
1197 		cond_local_irq_disable(regs);
1198 		return;
1199 	}
1200 #endif
1201 
1202 	/* This should not happen. */
1203 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1204 		/* Try to fix it up and carry on. */
1205 		write_cr0(cr0 & ~X86_CR0_TS);
1206 	} else {
1207 		/*
1208 		 * Something terrible happened, and we're better off trying
1209 		 * to kill the task than getting stuck in a never-ending
1210 		 * loop of #NM faults.
1211 		 */
1212 		die("unexpected #NM exception", regs, 0);
1213 	}
1214 }
1215 
1216 #ifdef CONFIG_X86_32
1217 DEFINE_IDTENTRY_SW(iret_error)
1218 {
1219 	local_irq_enable();
1220 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1221 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1222 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1223 			ILL_BADSTK, (void __user *)NULL);
1224 	}
1225 	local_irq_disable();
1226 }
1227 #endif
1228 
1229 void __init trap_init(void)
1230 {
1231 	/* Init cpu_entry_area before IST entries are set up */
1232 	setup_cpu_entry_areas();
1233 
1234 	/* Init GHCB memory pages when running as an SEV-ES guest */
1235 	sev_es_init_vc_handling();
1236 
1237 	/* Initialize TSS before setting up traps so ISTs work */
1238 	cpu_init_exception_handling();
1239 	/* Setup traps as cpu_init() might #GP */
1240 	idt_setup_traps();
1241 	cpu_init();
1242 }
1243