1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <linux/hardirq.h> 41 #include <linux/atomic.h> 42 43 #include <asm/stacktrace.h> 44 #include <asm/processor.h> 45 #include <asm/debugreg.h> 46 #include <asm/realmode.h> 47 #include <asm/text-patching.h> 48 #include <asm/ftrace.h> 49 #include <asm/traps.h> 50 #include <asm/desc.h> 51 #include <asm/fpu/api.h> 52 #include <asm/cpu.h> 53 #include <asm/cpu_entry_area.h> 54 #include <asm/mce.h> 55 #include <asm/fixmap.h> 56 #include <asm/mach_traps.h> 57 #include <asm/alternative.h> 58 #include <asm/fpu/xstate.h> 59 #include <asm/vm86.h> 60 #include <asm/umip.h> 61 #include <asm/insn.h> 62 #include <asm/insn-eval.h> 63 #include <asm/vdso.h> 64 65 #ifdef CONFIG_X86_64 66 #include <asm/x86_init.h> 67 #include <asm/proto.h> 68 #else 69 #include <asm/processor-flags.h> 70 #include <asm/setup.h> 71 #include <asm/proto.h> 72 #endif 73 74 DECLARE_BITMAP(system_vectors, NR_VECTORS); 75 76 static inline void cond_local_irq_enable(struct pt_regs *regs) 77 { 78 if (regs->flags & X86_EFLAGS_IF) 79 local_irq_enable(); 80 } 81 82 static inline void cond_local_irq_disable(struct pt_regs *regs) 83 { 84 if (regs->flags & X86_EFLAGS_IF) 85 local_irq_disable(); 86 } 87 88 __always_inline int is_valid_bugaddr(unsigned long addr) 89 { 90 if (addr < TASK_SIZE_MAX) 91 return 0; 92 93 /* 94 * We got #UD, if the text isn't readable we'd have gotten 95 * a different exception. 96 */ 97 return *(unsigned short *)addr == INSN_UD2; 98 } 99 100 static nokprobe_inline int 101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 102 struct pt_regs *regs, long error_code) 103 { 104 if (v8086_mode(regs)) { 105 /* 106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 107 * On nmi (interrupt 2), do_trap should not be called. 108 */ 109 if (trapnr < X86_TRAP_UD) { 110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 111 error_code, trapnr)) 112 return 0; 113 } 114 } else if (!user_mode(regs)) { 115 if (fixup_exception(regs, trapnr, error_code, 0)) 116 return 0; 117 118 tsk->thread.error_code = error_code; 119 tsk->thread.trap_nr = trapnr; 120 die(str, regs, error_code); 121 } else { 122 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 123 return 0; 124 } 125 126 /* 127 * We want error_code and trap_nr set for userspace faults and 128 * kernelspace faults which result in die(), but not 129 * kernelspace faults which are fixed up. die() gives the 130 * process no chance to handle the signal and notice the 131 * kernel fault information, so that won't result in polluting 132 * the information about previously queued, but not yet 133 * delivered, faults. See also exc_general_protection below. 134 */ 135 tsk->thread.error_code = error_code; 136 tsk->thread.trap_nr = trapnr; 137 138 return -1; 139 } 140 141 static void show_signal(struct task_struct *tsk, int signr, 142 const char *type, const char *desc, 143 struct pt_regs *regs, long error_code) 144 { 145 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 146 printk_ratelimit()) { 147 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 148 tsk->comm, task_pid_nr(tsk), type, desc, 149 regs->ip, regs->sp, error_code); 150 print_vma_addr(KERN_CONT " in ", regs->ip); 151 pr_cont("\n"); 152 } 153 } 154 155 static void 156 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 157 long error_code, int sicode, void __user *addr) 158 { 159 struct task_struct *tsk = current; 160 161 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 162 return; 163 164 show_signal(tsk, signr, "trap ", str, regs, error_code); 165 166 if (!sicode) 167 force_sig(signr); 168 else 169 force_sig_fault(signr, sicode, addr); 170 } 171 NOKPROBE_SYMBOL(do_trap); 172 173 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 174 unsigned long trapnr, int signr, int sicode, void __user *addr) 175 { 176 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 177 178 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 179 NOTIFY_STOP) { 180 cond_local_irq_enable(regs); 181 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 182 cond_local_irq_disable(regs); 183 } 184 } 185 186 /* 187 * Posix requires to provide the address of the faulting instruction for 188 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 189 * 190 * This address is usually regs->ip, but when an uprobe moved the code out 191 * of line then regs->ip points to the XOL code which would confuse 192 * anything which analyzes the fault address vs. the unmodified binary. If 193 * a trap happened in XOL code then uprobe maps regs->ip back to the 194 * original instruction address. 195 */ 196 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 197 { 198 return (void __user *)uprobe_get_trap_addr(regs); 199 } 200 201 DEFINE_IDTENTRY(exc_divide_error) 202 { 203 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 204 FPE_INTDIV, error_get_trap_addr(regs)); 205 } 206 207 DEFINE_IDTENTRY(exc_overflow) 208 { 209 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 210 } 211 212 #ifdef CONFIG_X86_F00F_BUG 213 void handle_invalid_op(struct pt_regs *regs) 214 #else 215 static inline void handle_invalid_op(struct pt_regs *regs) 216 #endif 217 { 218 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 219 ILL_ILLOPN, error_get_trap_addr(regs)); 220 } 221 222 static noinstr bool handle_bug(struct pt_regs *regs) 223 { 224 bool handled = false; 225 226 if (!is_valid_bugaddr(regs->ip)) 227 return handled; 228 229 /* 230 * All lies, just get the WARN/BUG out. 231 */ 232 instrumentation_begin(); 233 /* 234 * Since we're emulating a CALL with exceptions, restore the interrupt 235 * state to what it was at the exception site. 236 */ 237 if (regs->flags & X86_EFLAGS_IF) 238 raw_local_irq_enable(); 239 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { 240 regs->ip += LEN_UD2; 241 handled = true; 242 } 243 if (regs->flags & X86_EFLAGS_IF) 244 raw_local_irq_disable(); 245 instrumentation_end(); 246 247 return handled; 248 } 249 250 DEFINE_IDTENTRY_RAW(exc_invalid_op) 251 { 252 irqentry_state_t state; 253 254 /* 255 * We use UD2 as a short encoding for 'CALL __WARN', as such 256 * handle it before exception entry to avoid recursive WARN 257 * in case exception entry is the one triggering WARNs. 258 */ 259 if (!user_mode(regs) && handle_bug(regs)) 260 return; 261 262 state = irqentry_enter(regs); 263 instrumentation_begin(); 264 handle_invalid_op(regs); 265 instrumentation_end(); 266 irqentry_exit(regs, state); 267 } 268 269 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 270 { 271 do_error_trap(regs, 0, "coprocessor segment overrun", 272 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 273 } 274 275 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 276 { 277 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 278 0, NULL); 279 } 280 281 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 282 { 283 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 284 SIGBUS, 0, NULL); 285 } 286 287 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 288 { 289 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 290 0, NULL); 291 } 292 293 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 294 { 295 char *str = "alignment check"; 296 297 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 298 return; 299 300 if (!user_mode(regs)) 301 die("Split lock detected\n", regs, error_code); 302 303 local_irq_enable(); 304 305 if (handle_user_split_lock(regs, error_code)) 306 goto out; 307 308 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 309 error_code, BUS_ADRALN, NULL); 310 311 out: 312 local_irq_disable(); 313 } 314 315 #ifdef CONFIG_VMAP_STACK 316 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, 317 unsigned long fault_address, 318 struct stack_info *info) 319 { 320 const char *name = stack_type_name(info->type); 321 322 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", 323 name, (void *)fault_address, info->begin, info->end); 324 325 die("stack guard page", regs, 0); 326 327 /* Be absolutely certain we don't return. */ 328 panic("%s stack guard hit", name); 329 } 330 #endif 331 332 /* 333 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 334 * 335 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 336 * SDM's warnings about double faults being unrecoverable, returning works as 337 * expected. Presumably what the SDM actually means is that the CPU may get 338 * the register state wrong on entry, so returning could be a bad idea. 339 * 340 * Various CPU engineers have promised that double faults due to an IRET fault 341 * while the stack is read-only are, in fact, recoverable. 342 * 343 * On x86_32, this is entered through a task gate, and regs are synthesized 344 * from the TSS. Returning is, in principle, okay, but changes to regs will 345 * be lost. If, for some reason, we need to return to a context with modified 346 * regs, the shim code could be adjusted to synchronize the registers. 347 * 348 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 349 * to be read before doing anything else. 350 */ 351 DEFINE_IDTENTRY_DF(exc_double_fault) 352 { 353 static const char str[] = "double fault"; 354 struct task_struct *tsk = current; 355 356 #ifdef CONFIG_VMAP_STACK 357 unsigned long address = read_cr2(); 358 struct stack_info info; 359 #endif 360 361 #ifdef CONFIG_X86_ESPFIX64 362 extern unsigned char native_irq_return_iret[]; 363 364 /* 365 * If IRET takes a non-IST fault on the espfix64 stack, then we 366 * end up promoting it to a doublefault. In that case, take 367 * advantage of the fact that we're not using the normal (TSS.sp0) 368 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 369 * and then modify our own IRET frame so that, when we return, 370 * we land directly at the #GP(0) vector with the stack already 371 * set up according to its expectations. 372 * 373 * The net result is that our #GP handler will think that we 374 * entered from usermode with the bad user context. 375 * 376 * No need for nmi_enter() here because we don't use RCU. 377 */ 378 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 379 regs->cs == __KERNEL_CS && 380 regs->ip == (unsigned long)native_irq_return_iret) 381 { 382 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 383 unsigned long *p = (unsigned long *)regs->sp; 384 385 /* 386 * regs->sp points to the failing IRET frame on the 387 * ESPFIX64 stack. Copy it to the entry stack. This fills 388 * in gpregs->ss through gpregs->ip. 389 * 390 */ 391 gpregs->ip = p[0]; 392 gpregs->cs = p[1]; 393 gpregs->flags = p[2]; 394 gpregs->sp = p[3]; 395 gpregs->ss = p[4]; 396 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 397 398 /* 399 * Adjust our frame so that we return straight to the #GP 400 * vector with the expected RSP value. This is safe because 401 * we won't enable interrupts or schedule before we invoke 402 * general_protection, so nothing will clobber the stack 403 * frame we just set up. 404 * 405 * We will enter general_protection with kernel GSBASE, 406 * which is what the stub expects, given that the faulting 407 * RIP will be the IRET instruction. 408 */ 409 regs->ip = (unsigned long)asm_exc_general_protection; 410 regs->sp = (unsigned long)&gpregs->orig_ax; 411 412 return; 413 } 414 #endif 415 416 irqentry_nmi_enter(regs); 417 instrumentation_begin(); 418 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 419 420 tsk->thread.error_code = error_code; 421 tsk->thread.trap_nr = X86_TRAP_DF; 422 423 #ifdef CONFIG_VMAP_STACK 424 /* 425 * If we overflow the stack into a guard page, the CPU will fail 426 * to deliver #PF and will send #DF instead. Similarly, if we 427 * take any non-IST exception while too close to the bottom of 428 * the stack, the processor will get a page fault while 429 * delivering the exception and will generate a double fault. 430 * 431 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 432 * Page-Fault Exception (#PF): 433 * 434 * Processors update CR2 whenever a page fault is detected. If a 435 * second page fault occurs while an earlier page fault is being 436 * delivered, the faulting linear address of the second fault will 437 * overwrite the contents of CR2 (replacing the previous 438 * address). These updates to CR2 occur even if the page fault 439 * results in a double fault or occurs during the delivery of a 440 * double fault. 441 * 442 * The logic below has a small possibility of incorrectly diagnosing 443 * some errors as stack overflows. For example, if the IDT or GDT 444 * gets corrupted such that #GP delivery fails due to a bad descriptor 445 * causing #GP and we hit this condition while CR2 coincidentally 446 * points to the stack guard page, we'll think we overflowed the 447 * stack. Given that we're going to panic one way or another 448 * if this happens, this isn't necessarily worth fixing. 449 * 450 * If necessary, we could improve the test by only diagnosing 451 * a stack overflow if the saved RSP points within 47 bytes of 452 * the bottom of the stack: if RSP == tsk_stack + 48 and we 453 * take an exception, the stack is already aligned and there 454 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 455 * possible error code, so a stack overflow would *not* double 456 * fault. With any less space left, exception delivery could 457 * fail, and, as a practical matter, we've overflowed the 458 * stack even if the actual trigger for the double fault was 459 * something else. 460 */ 461 if (get_stack_guard_info((void *)address, &info)) 462 handle_stack_overflow(regs, address, &info); 463 #endif 464 465 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 466 die("double fault", regs, error_code); 467 panic("Machine halted."); 468 instrumentation_end(); 469 } 470 471 DEFINE_IDTENTRY(exc_bounds) 472 { 473 if (notify_die(DIE_TRAP, "bounds", regs, 0, 474 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 475 return; 476 cond_local_irq_enable(regs); 477 478 if (!user_mode(regs)) 479 die("bounds", regs, 0); 480 481 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 482 483 cond_local_irq_disable(regs); 484 } 485 486 enum kernel_gp_hint { 487 GP_NO_HINT, 488 GP_NON_CANONICAL, 489 GP_CANONICAL 490 }; 491 492 /* 493 * When an uncaught #GP occurs, try to determine the memory address accessed by 494 * the instruction and return that address to the caller. Also, try to figure 495 * out whether any part of the access to that address was non-canonical. 496 */ 497 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 498 unsigned long *addr) 499 { 500 u8 insn_buf[MAX_INSN_SIZE]; 501 struct insn insn; 502 int ret; 503 504 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 505 MAX_INSN_SIZE)) 506 return GP_NO_HINT; 507 508 ret = insn_decode_kernel(&insn, insn_buf); 509 if (ret < 0) 510 return GP_NO_HINT; 511 512 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 513 if (*addr == -1UL) 514 return GP_NO_HINT; 515 516 #ifdef CONFIG_X86_64 517 /* 518 * Check that: 519 * - the operand is not in the kernel half 520 * - the last byte of the operand is not in the user canonical half 521 */ 522 if (*addr < ~__VIRTUAL_MASK && 523 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 524 return GP_NON_CANONICAL; 525 #endif 526 527 return GP_CANONICAL; 528 } 529 530 #define GPFSTR "general protection fault" 531 532 static bool fixup_iopl_exception(struct pt_regs *regs) 533 { 534 struct thread_struct *t = ¤t->thread; 535 unsigned char byte; 536 unsigned long ip; 537 538 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) 539 return false; 540 541 if (insn_get_effective_ip(regs, &ip)) 542 return false; 543 544 if (get_user(byte, (const char __user *)ip)) 545 return false; 546 547 if (byte != 0xfa && byte != 0xfb) 548 return false; 549 550 if (!t->iopl_warn && printk_ratelimit()) { 551 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", 552 current->comm, task_pid_nr(current), ip); 553 print_vma_addr(KERN_CONT " in ", ip); 554 pr_cont("\n"); 555 t->iopl_warn = 1; 556 } 557 558 regs->ip += 1; 559 return true; 560 } 561 562 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 563 { 564 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 565 enum kernel_gp_hint hint = GP_NO_HINT; 566 struct task_struct *tsk; 567 unsigned long gp_addr; 568 int ret; 569 570 cond_local_irq_enable(regs); 571 572 if (static_cpu_has(X86_FEATURE_UMIP)) { 573 if (user_mode(regs) && fixup_umip_exception(regs)) 574 goto exit; 575 } 576 577 if (v8086_mode(regs)) { 578 local_irq_enable(); 579 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 580 local_irq_disable(); 581 return; 582 } 583 584 tsk = current; 585 586 if (user_mode(regs)) { 587 if (fixup_iopl_exception(regs)) 588 goto exit; 589 590 tsk->thread.error_code = error_code; 591 tsk->thread.trap_nr = X86_TRAP_GP; 592 593 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 594 goto exit; 595 596 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 597 force_sig(SIGSEGV); 598 goto exit; 599 } 600 601 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 602 goto exit; 603 604 tsk->thread.error_code = error_code; 605 tsk->thread.trap_nr = X86_TRAP_GP; 606 607 /* 608 * To be potentially processing a kprobe fault and to trust the result 609 * from kprobe_running(), we have to be non-preemptible. 610 */ 611 if (!preemptible() && 612 kprobe_running() && 613 kprobe_fault_handler(regs, X86_TRAP_GP)) 614 goto exit; 615 616 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); 617 if (ret == NOTIFY_STOP) 618 goto exit; 619 620 if (error_code) 621 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 622 else 623 hint = get_kernel_gp_address(regs, &gp_addr); 624 625 if (hint != GP_NO_HINT) 626 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 627 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 628 : "maybe for address", 629 gp_addr); 630 631 /* 632 * KASAN is interested only in the non-canonical case, clear it 633 * otherwise. 634 */ 635 if (hint != GP_NON_CANONICAL) 636 gp_addr = 0; 637 638 die_addr(desc, regs, error_code, gp_addr); 639 640 exit: 641 cond_local_irq_disable(regs); 642 } 643 644 static bool do_int3(struct pt_regs *regs) 645 { 646 int res; 647 648 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 649 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 650 SIGTRAP) == NOTIFY_STOP) 651 return true; 652 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 653 654 #ifdef CONFIG_KPROBES 655 if (kprobe_int3_handler(regs)) 656 return true; 657 #endif 658 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 659 660 return res == NOTIFY_STOP; 661 } 662 NOKPROBE_SYMBOL(do_int3); 663 664 static void do_int3_user(struct pt_regs *regs) 665 { 666 if (do_int3(regs)) 667 return; 668 669 cond_local_irq_enable(regs); 670 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 671 cond_local_irq_disable(regs); 672 } 673 674 DEFINE_IDTENTRY_RAW(exc_int3) 675 { 676 /* 677 * poke_int3_handler() is completely self contained code; it does (and 678 * must) *NOT* call out to anything, lest it hits upon yet another 679 * INT3. 680 */ 681 if (poke_int3_handler(regs)) 682 return; 683 684 /* 685 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 686 * and therefore can trigger INT3, hence poke_int3_handler() must 687 * be done before. If the entry came from kernel mode, then use 688 * nmi_enter() because the INT3 could have been hit in any context 689 * including NMI. 690 */ 691 if (user_mode(regs)) { 692 irqentry_enter_from_user_mode(regs); 693 instrumentation_begin(); 694 do_int3_user(regs); 695 instrumentation_end(); 696 irqentry_exit_to_user_mode(regs); 697 } else { 698 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 699 700 instrumentation_begin(); 701 if (!do_int3(regs)) 702 die("int3", regs, 0); 703 instrumentation_end(); 704 irqentry_nmi_exit(regs, irq_state); 705 } 706 } 707 708 #ifdef CONFIG_X86_64 709 /* 710 * Help handler running on a per-cpu (IST or entry trampoline) stack 711 * to switch to the normal thread stack if the interrupted code was in 712 * user mode. The actual stack switch is done in entry_64.S 713 */ 714 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 715 { 716 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 717 if (regs != eregs) 718 *regs = *eregs; 719 return regs; 720 } 721 722 #ifdef CONFIG_AMD_MEM_ENCRYPT 723 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 724 { 725 unsigned long sp, *stack; 726 struct stack_info info; 727 struct pt_regs *regs_ret; 728 729 /* 730 * In the SYSCALL entry path the RSP value comes from user-space - don't 731 * trust it and switch to the current kernel stack 732 */ 733 if (ip_within_syscall_gap(regs)) { 734 sp = this_cpu_read(cpu_current_top_of_stack); 735 goto sync; 736 } 737 738 /* 739 * From here on the RSP value is trusted. Now check whether entry 740 * happened from a safe stack. Not safe are the entry or unknown stacks, 741 * use the fall-back stack instead in this case. 742 */ 743 sp = regs->sp; 744 stack = (unsigned long *)sp; 745 746 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 747 info.type > STACK_TYPE_EXCEPTION_LAST) 748 sp = __this_cpu_ist_top_va(VC2); 749 750 sync: 751 /* 752 * Found a safe stack - switch to it as if the entry didn't happen via 753 * IST stack. The code below only copies pt_regs, the real switch happens 754 * in assembly code. 755 */ 756 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 757 758 regs_ret = (struct pt_regs *)sp; 759 *regs_ret = *regs; 760 761 return regs_ret; 762 } 763 #endif 764 765 struct bad_iret_stack { 766 void *error_entry_ret; 767 struct pt_regs regs; 768 }; 769 770 asmlinkage __visible noinstr 771 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 772 { 773 /* 774 * This is called from entry_64.S early in handling a fault 775 * caused by a bad iret to user mode. To handle the fault 776 * correctly, we want to move our stack frame to where it would 777 * be had we entered directly on the entry stack (rather than 778 * just below the IRET frame) and we want to pretend that the 779 * exception came from the IRET target. 780 */ 781 struct bad_iret_stack tmp, *new_stack = 782 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 783 784 /* Copy the IRET target to the temporary storage. */ 785 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); 786 787 /* Copy the remainder of the stack from the current stack. */ 788 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); 789 790 /* Update the entry stack */ 791 __memcpy(new_stack, &tmp, sizeof(tmp)); 792 793 BUG_ON(!user_mode(&new_stack->regs)); 794 return new_stack; 795 } 796 #endif 797 798 static bool is_sysenter_singlestep(struct pt_regs *regs) 799 { 800 /* 801 * We don't try for precision here. If we're anywhere in the region of 802 * code that can be single-stepped in the SYSENTER entry path, then 803 * assume that this is a useless single-step trap due to SYSENTER 804 * being invoked with TF set. (We don't know in advance exactly 805 * which instructions will be hit because BTF could plausibly 806 * be set.) 807 */ 808 #ifdef CONFIG_X86_32 809 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 810 (unsigned long)__end_SYSENTER_singlestep_region - 811 (unsigned long)__begin_SYSENTER_singlestep_region; 812 #elif defined(CONFIG_IA32_EMULATION) 813 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 814 (unsigned long)__end_entry_SYSENTER_compat - 815 (unsigned long)entry_SYSENTER_compat; 816 #else 817 return false; 818 #endif 819 } 820 821 static __always_inline unsigned long debug_read_clear_dr6(void) 822 { 823 unsigned long dr6; 824 825 /* 826 * The Intel SDM says: 827 * 828 * Certain debug exceptions may clear bits 0-3. The remaining 829 * contents of the DR6 register are never cleared by the 830 * processor. To avoid confusion in identifying debug 831 * exceptions, debug handlers should clear the register before 832 * returning to the interrupted task. 833 * 834 * Keep it simple: clear DR6 immediately. 835 */ 836 get_debugreg(dr6, 6); 837 set_debugreg(DR6_RESERVED, 6); 838 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 839 840 return dr6; 841 } 842 843 /* 844 * Our handling of the processor debug registers is non-trivial. 845 * We do not clear them on entry and exit from the kernel. Therefore 846 * it is possible to get a watchpoint trap here from inside the kernel. 847 * However, the code in ./ptrace.c has ensured that the user can 848 * only set watchpoints on userspace addresses. Therefore the in-kernel 849 * watchpoint trap can only occur in code which is reading/writing 850 * from user space. Such code must not hold kernel locks (since it 851 * can equally take a page fault), therefore it is safe to call 852 * force_sig_info even though that claims and releases locks. 853 * 854 * Code in ./signal.c ensures that the debug control register 855 * is restored before we deliver any signal, and therefore that 856 * user code runs with the correct debug control register even though 857 * we clear it here. 858 * 859 * Being careful here means that we don't have to be as careful in a 860 * lot of more complicated places (task switching can be a bit lazy 861 * about restoring all the debug state, and ptrace doesn't have to 862 * find every occurrence of the TF bit that could be saved away even 863 * by user code) 864 * 865 * May run on IST stack. 866 */ 867 868 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 869 { 870 /* 871 * Notifiers will clear bits in @dr6 to indicate the event has been 872 * consumed - hw_breakpoint_handler(), single_stop_cont(). 873 * 874 * Notifiers will set bits in @virtual_dr6 to indicate the desire 875 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 876 */ 877 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 878 return true; 879 880 return false; 881 } 882 883 static __always_inline void exc_debug_kernel(struct pt_regs *regs, 884 unsigned long dr6) 885 { 886 /* 887 * Disable breakpoints during exception handling; recursive exceptions 888 * are exceedingly 'fun'. 889 * 890 * Since this function is NOKPROBE, and that also applies to 891 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 892 * HW_BREAKPOINT_W on our stack) 893 * 894 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 895 * includes the entry stack is excluded for everything. 896 */ 897 unsigned long dr7 = local_db_save(); 898 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 899 instrumentation_begin(); 900 901 /* 902 * If something gets miswired and we end up here for a user mode 903 * #DB, we will malfunction. 904 */ 905 WARN_ON_ONCE(user_mode(regs)); 906 907 if (test_thread_flag(TIF_BLOCKSTEP)) { 908 /* 909 * The SDM says "The processor clears the BTF flag when it 910 * generates a debug exception." but PTRACE_BLOCKSTEP requested 911 * it for userspace, but we just took a kernel #DB, so re-set 912 * BTF. 913 */ 914 unsigned long debugctl; 915 916 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 917 debugctl |= DEBUGCTLMSR_BTF; 918 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 919 } 920 921 /* 922 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 923 * watchpoint at the same time then that will still be handled. 924 */ 925 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 926 dr6 &= ~DR_STEP; 927 928 /* 929 * The kernel doesn't use INT1 930 */ 931 if (!dr6) 932 goto out; 933 934 if (notify_debug(regs, &dr6)) 935 goto out; 936 937 /* 938 * The kernel doesn't use TF single-step outside of: 939 * 940 * - Kprobes, consumed through kprobe_debug_handler() 941 * - KGDB, consumed through notify_debug() 942 * 943 * So if we get here with DR_STEP set, something is wonky. 944 * 945 * A known way to trigger this is through QEMU's GDB stub, 946 * which leaks #DB into the guest and causes IST recursion. 947 */ 948 if (WARN_ON_ONCE(dr6 & DR_STEP)) 949 regs->flags &= ~X86_EFLAGS_TF; 950 out: 951 instrumentation_end(); 952 irqentry_nmi_exit(regs, irq_state); 953 954 local_db_restore(dr7); 955 } 956 957 static __always_inline void exc_debug_user(struct pt_regs *regs, 958 unsigned long dr6) 959 { 960 bool icebp; 961 962 /* 963 * If something gets miswired and we end up here for a kernel mode 964 * #DB, we will malfunction. 965 */ 966 WARN_ON_ONCE(!user_mode(regs)); 967 968 /* 969 * NB: We can't easily clear DR7 here because 970 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 971 * user memory, etc. This means that a recursive #DB is possible. If 972 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 973 * Since we're not on the IST stack right now, everything will be 974 * fine. 975 */ 976 977 irqentry_enter_from_user_mode(regs); 978 instrumentation_begin(); 979 980 /* 981 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 982 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 983 * 984 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 985 * even if it is not the result of PTRACE_SINGLESTEP. 986 */ 987 current->thread.virtual_dr6 = (dr6 & DR_STEP); 988 989 /* 990 * The SDM says "The processor clears the BTF flag when it 991 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 992 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 993 */ 994 clear_thread_flag(TIF_BLOCKSTEP); 995 996 /* 997 * If dr6 has no reason to give us about the origin of this trap, 998 * then it's very likely the result of an icebp/int01 trap. 999 * User wants a sigtrap for that. 1000 */ 1001 icebp = !dr6; 1002 1003 if (notify_debug(regs, &dr6)) 1004 goto out; 1005 1006 /* It's safe to allow irq's after DR6 has been saved */ 1007 local_irq_enable(); 1008 1009 if (v8086_mode(regs)) { 1010 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 1011 goto out_irq; 1012 } 1013 1014 /* #DB for bus lock can only be triggered from userspace. */ 1015 if (dr6 & DR_BUS_LOCK) 1016 handle_bus_lock(regs); 1017 1018 /* Add the virtual_dr6 bits for signals. */ 1019 dr6 |= current->thread.virtual_dr6; 1020 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 1021 send_sigtrap(regs, 0, get_si_code(dr6)); 1022 1023 out_irq: 1024 local_irq_disable(); 1025 out: 1026 instrumentation_end(); 1027 irqentry_exit_to_user_mode(regs); 1028 } 1029 1030 #ifdef CONFIG_X86_64 1031 /* IST stack entry */ 1032 DEFINE_IDTENTRY_DEBUG(exc_debug) 1033 { 1034 exc_debug_kernel(regs, debug_read_clear_dr6()); 1035 } 1036 1037 /* User entry, runs on regular task stack */ 1038 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1039 { 1040 exc_debug_user(regs, debug_read_clear_dr6()); 1041 } 1042 #else 1043 /* 32 bit does not have separate entry points. */ 1044 DEFINE_IDTENTRY_RAW(exc_debug) 1045 { 1046 unsigned long dr6 = debug_read_clear_dr6(); 1047 1048 if (user_mode(regs)) 1049 exc_debug_user(regs, dr6); 1050 else 1051 exc_debug_kernel(regs, dr6); 1052 } 1053 #endif 1054 1055 /* 1056 * Note that we play around with the 'TS' bit in an attempt to get 1057 * the correct behaviour even in the presence of the asynchronous 1058 * IRQ13 behaviour 1059 */ 1060 static void math_error(struct pt_regs *regs, int trapnr) 1061 { 1062 struct task_struct *task = current; 1063 struct fpu *fpu = &task->thread.fpu; 1064 int si_code; 1065 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1066 "simd exception"; 1067 1068 cond_local_irq_enable(regs); 1069 1070 if (!user_mode(regs)) { 1071 if (fixup_exception(regs, trapnr, 0, 0)) 1072 goto exit; 1073 1074 task->thread.error_code = 0; 1075 task->thread.trap_nr = trapnr; 1076 1077 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1078 SIGFPE) != NOTIFY_STOP) 1079 die(str, regs, 0); 1080 goto exit; 1081 } 1082 1083 /* 1084 * Synchronize the FPU register state to the memory register state 1085 * if necessary. This allows the exception handler to inspect it. 1086 */ 1087 fpu_sync_fpstate(fpu); 1088 1089 task->thread.trap_nr = trapnr; 1090 task->thread.error_code = 0; 1091 1092 si_code = fpu__exception_code(fpu, trapnr); 1093 /* Retry when we get spurious exceptions: */ 1094 if (!si_code) 1095 goto exit; 1096 1097 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1098 goto exit; 1099 1100 force_sig_fault(SIGFPE, si_code, 1101 (void __user *)uprobe_get_trap_addr(regs)); 1102 exit: 1103 cond_local_irq_disable(regs); 1104 } 1105 1106 DEFINE_IDTENTRY(exc_coprocessor_error) 1107 { 1108 math_error(regs, X86_TRAP_MF); 1109 } 1110 1111 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1112 { 1113 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1114 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1115 if (!static_cpu_has(X86_FEATURE_XMM)) { 1116 __exc_general_protection(regs, 0); 1117 return; 1118 } 1119 } 1120 math_error(regs, X86_TRAP_XF); 1121 } 1122 1123 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1124 { 1125 /* 1126 * This addresses a Pentium Pro Erratum: 1127 * 1128 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1129 * Virtual Wire mode implemented through the local APIC, an 1130 * interrupt vector of 0Fh (Intel reserved encoding) may be 1131 * generated by the local APIC (Int 15). This vector may be 1132 * generated upon receipt of a spurious interrupt (an interrupt 1133 * which is removed before the system receives the INTA sequence) 1134 * instead of the programmed 8259 spurious interrupt vector. 1135 * 1136 * IMPLICATION: The spurious interrupt vector programmed in the 1137 * 8259 is normally handled by an operating system's spurious 1138 * interrupt handler. However, a vector of 0Fh is unknown to some 1139 * operating systems, which would crash if this erratum occurred. 1140 * 1141 * In theory this could be limited to 32bit, but the handler is not 1142 * hurting and who knows which other CPUs suffer from this. 1143 */ 1144 } 1145 1146 static bool handle_xfd_event(struct pt_regs *regs) 1147 { 1148 u64 xfd_err; 1149 int err; 1150 1151 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) 1152 return false; 1153 1154 rdmsrl(MSR_IA32_XFD_ERR, xfd_err); 1155 if (!xfd_err) 1156 return false; 1157 1158 wrmsrl(MSR_IA32_XFD_ERR, 0); 1159 1160 /* Die if that happens in kernel space */ 1161 if (WARN_ON(!user_mode(regs))) 1162 return false; 1163 1164 local_irq_enable(); 1165 1166 err = xfd_enable_feature(xfd_err); 1167 1168 switch (err) { 1169 case -EPERM: 1170 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); 1171 break; 1172 case -EFAULT: 1173 force_sig(SIGSEGV); 1174 break; 1175 } 1176 1177 local_irq_disable(); 1178 return true; 1179 } 1180 1181 DEFINE_IDTENTRY(exc_device_not_available) 1182 { 1183 unsigned long cr0 = read_cr0(); 1184 1185 if (handle_xfd_event(regs)) 1186 return; 1187 1188 #ifdef CONFIG_MATH_EMULATION 1189 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1190 struct math_emu_info info = { }; 1191 1192 cond_local_irq_enable(regs); 1193 1194 info.regs = regs; 1195 math_emulate(&info); 1196 1197 cond_local_irq_disable(regs); 1198 return; 1199 } 1200 #endif 1201 1202 /* This should not happen. */ 1203 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1204 /* Try to fix it up and carry on. */ 1205 write_cr0(cr0 & ~X86_CR0_TS); 1206 } else { 1207 /* 1208 * Something terrible happened, and we're better off trying 1209 * to kill the task than getting stuck in a never-ending 1210 * loop of #NM faults. 1211 */ 1212 die("unexpected #NM exception", regs, 0); 1213 } 1214 } 1215 1216 #ifdef CONFIG_X86_32 1217 DEFINE_IDTENTRY_SW(iret_error) 1218 { 1219 local_irq_enable(); 1220 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1221 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1222 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1223 ILL_BADSTK, (void __user *)NULL); 1224 } 1225 local_irq_disable(); 1226 } 1227 #endif 1228 1229 void __init trap_init(void) 1230 { 1231 /* Init cpu_entry_area before IST entries are set up */ 1232 setup_cpu_entry_areas(); 1233 1234 /* Init GHCB memory pages when running as an SEV-ES guest */ 1235 sev_es_init_vc_handling(); 1236 1237 /* Initialize TSS before setting up traps so ISTs work */ 1238 cpu_init_exception_handling(); 1239 /* Setup traps as cpu_init() might #GP */ 1240 idt_setup_traps(); 1241 cpu_init(); 1242 } 1243