xref: /openbmc/linux/arch/x86/kernel/traps.c (revision d0bd7f2a)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
39 
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
44 
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
48 
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/ftrace.h>
55 #include <asm/traps.h>
56 #include <asm/desc.h>
57 #include <asm/i387.h>
58 #include <asm/fpu-internal.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/mpx.h>
64 
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
69 
70 /* No need to be aligned, but done to keep all IDTs defined the same way. */
71 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
72 #else
73 #include <asm/processor-flags.h>
74 #include <asm/setup.h>
75 
76 asmlinkage int system_call(void);
77 #endif
78 
79 /* Must be page-aligned because the real IDT is used in a fixmap. */
80 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
81 
82 DECLARE_BITMAP(used_vectors, NR_VECTORS);
83 EXPORT_SYMBOL_GPL(used_vectors);
84 
85 static inline void conditional_sti(struct pt_regs *regs)
86 {
87 	if (regs->flags & X86_EFLAGS_IF)
88 		local_irq_enable();
89 }
90 
91 static inline void preempt_conditional_sti(struct pt_regs *regs)
92 {
93 	preempt_count_inc();
94 	if (regs->flags & X86_EFLAGS_IF)
95 		local_irq_enable();
96 }
97 
98 static inline void conditional_cli(struct pt_regs *regs)
99 {
100 	if (regs->flags & X86_EFLAGS_IF)
101 		local_irq_disable();
102 }
103 
104 static inline void preempt_conditional_cli(struct pt_regs *regs)
105 {
106 	if (regs->flags & X86_EFLAGS_IF)
107 		local_irq_disable();
108 	preempt_count_dec();
109 }
110 
111 enum ctx_state ist_enter(struct pt_regs *regs)
112 {
113 	enum ctx_state prev_state;
114 
115 	if (user_mode(regs)) {
116 		/* Other than that, we're just an exception. */
117 		prev_state = exception_enter();
118 	} else {
119 		/*
120 		 * We might have interrupted pretty much anything.  In
121 		 * fact, if we're a machine check, we can even interrupt
122 		 * NMI processing.  We don't want in_nmi() to return true,
123 		 * but we need to notify RCU.
124 		 */
125 		rcu_nmi_enter();
126 		prev_state = CONTEXT_KERNEL;  /* the value is irrelevant. */
127 	}
128 
129 	/*
130 	 * We are atomic because we're on the IST stack (or we're on x86_32,
131 	 * in which case we still shouldn't schedule).
132 	 *
133 	 * This must be after exception_enter(), because exception_enter()
134 	 * won't do anything if in_interrupt() returns true.
135 	 */
136 	preempt_count_add(HARDIRQ_OFFSET);
137 
138 	/* This code is a bit fragile.  Test it. */
139 	rcu_lockdep_assert(rcu_is_watching(), "ist_enter didn't work");
140 
141 	return prev_state;
142 }
143 
144 void ist_exit(struct pt_regs *regs, enum ctx_state prev_state)
145 {
146 	/* Must be before exception_exit. */
147 	preempt_count_sub(HARDIRQ_OFFSET);
148 
149 	if (user_mode(regs))
150 		return exception_exit(prev_state);
151 	else
152 		rcu_nmi_exit();
153 }
154 
155 /**
156  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
157  * @regs:	regs passed to the IST exception handler
158  *
159  * IST exception handlers normally cannot schedule.  As a special
160  * exception, if the exception interrupted userspace code (i.e.
161  * user_mode(regs) would return true) and the exception was not
162  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
163  * begins a non-atomic section within an ist_enter()/ist_exit() region.
164  * Callers are responsible for enabling interrupts themselves inside
165  * the non-atomic section, and callers must call is_end_non_atomic()
166  * before ist_exit().
167  */
168 void ist_begin_non_atomic(struct pt_regs *regs)
169 {
170 	BUG_ON(!user_mode(regs));
171 
172 	/*
173 	 * Sanity check: we need to be on the normal thread stack.  This
174 	 * will catch asm bugs and any attempt to use ist_preempt_enable
175 	 * from double_fault.
176 	 */
177 	BUG_ON((unsigned long)(current_top_of_stack() -
178 			       current_stack_pointer()) >= THREAD_SIZE);
179 
180 	preempt_count_sub(HARDIRQ_OFFSET);
181 }
182 
183 /**
184  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
185  *
186  * Ends a non-atomic section started with ist_begin_non_atomic().
187  */
188 void ist_end_non_atomic(void)
189 {
190 	preempt_count_add(HARDIRQ_OFFSET);
191 }
192 
193 static nokprobe_inline int
194 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
195 		  struct pt_regs *regs,	long error_code)
196 {
197 	if (v8086_mode(regs)) {
198 		/*
199 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
200 		 * On nmi (interrupt 2), do_trap should not be called.
201 		 */
202 		if (trapnr < X86_TRAP_UD) {
203 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
204 						error_code, trapnr))
205 				return 0;
206 		}
207 		return -1;
208 	}
209 
210 	if (!user_mode(regs)) {
211 		if (!fixup_exception(regs)) {
212 			tsk->thread.error_code = error_code;
213 			tsk->thread.trap_nr = trapnr;
214 			die(str, regs, error_code);
215 		}
216 		return 0;
217 	}
218 
219 	return -1;
220 }
221 
222 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
223 				siginfo_t *info)
224 {
225 	unsigned long siaddr;
226 	int sicode;
227 
228 	switch (trapnr) {
229 	default:
230 		return SEND_SIG_PRIV;
231 
232 	case X86_TRAP_DE:
233 		sicode = FPE_INTDIV;
234 		siaddr = uprobe_get_trap_addr(regs);
235 		break;
236 	case X86_TRAP_UD:
237 		sicode = ILL_ILLOPN;
238 		siaddr = uprobe_get_trap_addr(regs);
239 		break;
240 	case X86_TRAP_AC:
241 		sicode = BUS_ADRALN;
242 		siaddr = 0;
243 		break;
244 	}
245 
246 	info->si_signo = signr;
247 	info->si_errno = 0;
248 	info->si_code = sicode;
249 	info->si_addr = (void __user *)siaddr;
250 	return info;
251 }
252 
253 static void
254 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
255 	long error_code, siginfo_t *info)
256 {
257 	struct task_struct *tsk = current;
258 
259 
260 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
261 		return;
262 	/*
263 	 * We want error_code and trap_nr set for userspace faults and
264 	 * kernelspace faults which result in die(), but not
265 	 * kernelspace faults which are fixed up.  die() gives the
266 	 * process no chance to handle the signal and notice the
267 	 * kernel fault information, so that won't result in polluting
268 	 * the information about previously queued, but not yet
269 	 * delivered, faults.  See also do_general_protection below.
270 	 */
271 	tsk->thread.error_code = error_code;
272 	tsk->thread.trap_nr = trapnr;
273 
274 #ifdef CONFIG_X86_64
275 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
276 	    printk_ratelimit()) {
277 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
278 			tsk->comm, tsk->pid, str,
279 			regs->ip, regs->sp, error_code);
280 		print_vma_addr(" in ", regs->ip);
281 		pr_cont("\n");
282 	}
283 #endif
284 
285 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
286 }
287 NOKPROBE_SYMBOL(do_trap);
288 
289 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
290 			  unsigned long trapnr, int signr)
291 {
292 	enum ctx_state prev_state = exception_enter();
293 	siginfo_t info;
294 
295 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
296 			NOTIFY_STOP) {
297 		conditional_sti(regs);
298 		do_trap(trapnr, signr, str, regs, error_code,
299 			fill_trap_info(regs, signr, trapnr, &info));
300 	}
301 
302 	exception_exit(prev_state);
303 }
304 
305 #define DO_ERROR(trapnr, signr, str, name)				\
306 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
307 {									\
308 	do_error_trap(regs, error_code, str, trapnr, signr);		\
309 }
310 
311 DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
312 DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
313 DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
314 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
315 DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
316 DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
317 DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
318 DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
319 
320 #ifdef CONFIG_X86_64
321 /* Runs on IST stack */
322 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
323 {
324 	static const char str[] = "double fault";
325 	struct task_struct *tsk = current;
326 
327 #ifdef CONFIG_X86_ESPFIX64
328 	extern unsigned char native_irq_return_iret[];
329 
330 	/*
331 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
332 	 * end up promoting it to a doublefault.  In that case, modify
333 	 * the stack to make it look like we just entered the #GP
334 	 * handler from user space, similar to bad_iret.
335 	 *
336 	 * No need for ist_enter here because we don't use RCU.
337 	 */
338 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
339 		regs->cs == __KERNEL_CS &&
340 		regs->ip == (unsigned long)native_irq_return_iret)
341 	{
342 		struct pt_regs *normal_regs = task_pt_regs(current);
343 
344 		/* Fake a #GP(0) from userspace. */
345 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
346 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
347 		regs->ip = (unsigned long)general_protection;
348 		regs->sp = (unsigned long)&normal_regs->orig_ax;
349 
350 		return;
351 	}
352 #endif
353 
354 	ist_enter(regs);  /* Discard prev_state because we won't return. */
355 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
356 
357 	tsk->thread.error_code = error_code;
358 	tsk->thread.trap_nr = X86_TRAP_DF;
359 
360 #ifdef CONFIG_DOUBLEFAULT
361 	df_debug(regs, error_code);
362 #endif
363 	/*
364 	 * This is always a kernel trap and never fixable (and thus must
365 	 * never return).
366 	 */
367 	for (;;)
368 		die(str, regs, error_code);
369 }
370 #endif
371 
372 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
373 {
374 	struct task_struct *tsk = current;
375 	struct xsave_struct *xsave_buf;
376 	enum ctx_state prev_state;
377 	struct bndcsr *bndcsr;
378 	siginfo_t *info;
379 
380 	prev_state = exception_enter();
381 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
382 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
383 		goto exit;
384 	conditional_sti(regs);
385 
386 	if (!user_mode(regs))
387 		die("bounds", regs, error_code);
388 
389 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
390 		/* The exception is not from Intel MPX */
391 		goto exit_trap;
392 	}
393 
394 	/*
395 	 * We need to look at BNDSTATUS to resolve this exception.
396 	 * It is not directly accessible, though, so we need to
397 	 * do an xsave and then pull it out of the xsave buffer.
398 	 */
399 	fpu_save_init(&tsk->thread.fpu);
400 	xsave_buf = &(tsk->thread.fpu.state->xsave);
401 	bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
402 	if (!bndcsr)
403 		goto exit_trap;
404 
405 	/*
406 	 * The error code field of the BNDSTATUS register communicates status
407 	 * information of a bound range exception #BR or operation involving
408 	 * bound directory.
409 	 */
410 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
411 	case 2:	/* Bound directory has invalid entry. */
412 		if (mpx_handle_bd_fault(xsave_buf))
413 			goto exit_trap;
414 		break; /* Success, it was handled */
415 	case 1: /* Bound violation. */
416 		info = mpx_generate_siginfo(regs, xsave_buf);
417 		if (IS_ERR(info)) {
418 			/*
419 			 * We failed to decode the MPX instruction.  Act as if
420 			 * the exception was not caused by MPX.
421 			 */
422 			goto exit_trap;
423 		}
424 		/*
425 		 * Success, we decoded the instruction and retrieved
426 		 * an 'info' containing the address being accessed
427 		 * which caused the exception.  This information
428 		 * allows and application to possibly handle the
429 		 * #BR exception itself.
430 		 */
431 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
432 		kfree(info);
433 		break;
434 	case 0: /* No exception caused by Intel MPX operations. */
435 		goto exit_trap;
436 	default:
437 		die("bounds", regs, error_code);
438 	}
439 
440 exit:
441 	exception_exit(prev_state);
442 	return;
443 exit_trap:
444 	/*
445 	 * This path out is for all the cases where we could not
446 	 * handle the exception in some way (like allocating a
447 	 * table or telling userspace about it.  We will also end
448 	 * up here if the kernel has MPX turned off at compile
449 	 * time..
450 	 */
451 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
452 	exception_exit(prev_state);
453 }
454 
455 dotraplinkage void
456 do_general_protection(struct pt_regs *regs, long error_code)
457 {
458 	struct task_struct *tsk;
459 	enum ctx_state prev_state;
460 
461 	prev_state = exception_enter();
462 	conditional_sti(regs);
463 
464 	if (v8086_mode(regs)) {
465 		local_irq_enable();
466 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
467 		goto exit;
468 	}
469 
470 	tsk = current;
471 	if (!user_mode(regs)) {
472 		if (fixup_exception(regs))
473 			goto exit;
474 
475 		tsk->thread.error_code = error_code;
476 		tsk->thread.trap_nr = X86_TRAP_GP;
477 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
478 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
479 			die("general protection fault", regs, error_code);
480 		goto exit;
481 	}
482 
483 	tsk->thread.error_code = error_code;
484 	tsk->thread.trap_nr = X86_TRAP_GP;
485 
486 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
487 			printk_ratelimit()) {
488 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
489 			tsk->comm, task_pid_nr(tsk),
490 			regs->ip, regs->sp, error_code);
491 		print_vma_addr(" in ", regs->ip);
492 		pr_cont("\n");
493 	}
494 
495 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
496 exit:
497 	exception_exit(prev_state);
498 }
499 NOKPROBE_SYMBOL(do_general_protection);
500 
501 /* May run on IST stack. */
502 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
503 {
504 	enum ctx_state prev_state;
505 
506 #ifdef CONFIG_DYNAMIC_FTRACE
507 	/*
508 	 * ftrace must be first, everything else may cause a recursive crash.
509 	 * See note by declaration of modifying_ftrace_code in ftrace.c
510 	 */
511 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
512 	    ftrace_int3_handler(regs))
513 		return;
514 #endif
515 	if (poke_int3_handler(regs))
516 		return;
517 
518 	prev_state = ist_enter(regs);
519 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
520 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
521 				SIGTRAP) == NOTIFY_STOP)
522 		goto exit;
523 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
524 
525 #ifdef CONFIG_KPROBES
526 	if (kprobe_int3_handler(regs))
527 		goto exit;
528 #endif
529 
530 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
531 			SIGTRAP) == NOTIFY_STOP)
532 		goto exit;
533 
534 	/*
535 	 * Let others (NMI) know that the debug stack is in use
536 	 * as we may switch to the interrupt stack.
537 	 */
538 	debug_stack_usage_inc();
539 	preempt_conditional_sti(regs);
540 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
541 	preempt_conditional_cli(regs);
542 	debug_stack_usage_dec();
543 exit:
544 	ist_exit(regs, prev_state);
545 }
546 NOKPROBE_SYMBOL(do_int3);
547 
548 #ifdef CONFIG_X86_64
549 /*
550  * Help handler running on IST stack to switch off the IST stack if the
551  * interrupted code was in user mode. The actual stack switch is done in
552  * entry_64.S
553  */
554 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
555 {
556 	struct pt_regs *regs = task_pt_regs(current);
557 	*regs = *eregs;
558 	return regs;
559 }
560 NOKPROBE_SYMBOL(sync_regs);
561 
562 struct bad_iret_stack {
563 	void *error_entry_ret;
564 	struct pt_regs regs;
565 };
566 
567 asmlinkage __visible notrace
568 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
569 {
570 	/*
571 	 * This is called from entry_64.S early in handling a fault
572 	 * caused by a bad iret to user mode.  To handle the fault
573 	 * correctly, we want move our stack frame to task_pt_regs
574 	 * and we want to pretend that the exception came from the
575 	 * iret target.
576 	 */
577 	struct bad_iret_stack *new_stack =
578 		container_of(task_pt_regs(current),
579 			     struct bad_iret_stack, regs);
580 
581 	/* Copy the IRET target to the new stack. */
582 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
583 
584 	/* Copy the remainder of the stack from the current stack. */
585 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
586 
587 	BUG_ON(!user_mode(&new_stack->regs));
588 	return new_stack;
589 }
590 NOKPROBE_SYMBOL(fixup_bad_iret);
591 #endif
592 
593 /*
594  * Our handling of the processor debug registers is non-trivial.
595  * We do not clear them on entry and exit from the kernel. Therefore
596  * it is possible to get a watchpoint trap here from inside the kernel.
597  * However, the code in ./ptrace.c has ensured that the user can
598  * only set watchpoints on userspace addresses. Therefore the in-kernel
599  * watchpoint trap can only occur in code which is reading/writing
600  * from user space. Such code must not hold kernel locks (since it
601  * can equally take a page fault), therefore it is safe to call
602  * force_sig_info even though that claims and releases locks.
603  *
604  * Code in ./signal.c ensures that the debug control register
605  * is restored before we deliver any signal, and therefore that
606  * user code runs with the correct debug control register even though
607  * we clear it here.
608  *
609  * Being careful here means that we don't have to be as careful in a
610  * lot of more complicated places (task switching can be a bit lazy
611  * about restoring all the debug state, and ptrace doesn't have to
612  * find every occurrence of the TF bit that could be saved away even
613  * by user code)
614  *
615  * May run on IST stack.
616  */
617 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
618 {
619 	struct task_struct *tsk = current;
620 	enum ctx_state prev_state;
621 	int user_icebp = 0;
622 	unsigned long dr6;
623 	int si_code;
624 
625 	prev_state = ist_enter(regs);
626 
627 	get_debugreg(dr6, 6);
628 
629 	/* Filter out all the reserved bits which are preset to 1 */
630 	dr6 &= ~DR6_RESERVED;
631 
632 	/*
633 	 * If dr6 has no reason to give us about the origin of this trap,
634 	 * then it's very likely the result of an icebp/int01 trap.
635 	 * User wants a sigtrap for that.
636 	 */
637 	if (!dr6 && user_mode(regs))
638 		user_icebp = 1;
639 
640 	/* Catch kmemcheck conditions first of all! */
641 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
642 		goto exit;
643 
644 	/* DR6 may or may not be cleared by the CPU */
645 	set_debugreg(0, 6);
646 
647 	/*
648 	 * The processor cleared BTF, so don't mark that we need it set.
649 	 */
650 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
651 
652 	/* Store the virtualized DR6 value */
653 	tsk->thread.debugreg6 = dr6;
654 
655 #ifdef CONFIG_KPROBES
656 	if (kprobe_debug_handler(regs))
657 		goto exit;
658 #endif
659 
660 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
661 							SIGTRAP) == NOTIFY_STOP)
662 		goto exit;
663 
664 	/*
665 	 * Let others (NMI) know that the debug stack is in use
666 	 * as we may switch to the interrupt stack.
667 	 */
668 	debug_stack_usage_inc();
669 
670 	/* It's safe to allow irq's after DR6 has been saved */
671 	preempt_conditional_sti(regs);
672 
673 	if (v8086_mode(regs)) {
674 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
675 					X86_TRAP_DB);
676 		preempt_conditional_cli(regs);
677 		debug_stack_usage_dec();
678 		goto exit;
679 	}
680 
681 	/*
682 	 * Single-stepping through system calls: ignore any exceptions in
683 	 * kernel space, but re-enable TF when returning to user mode.
684 	 *
685 	 * We already checked v86 mode above, so we can check for kernel mode
686 	 * by just checking the CPL of CS.
687 	 */
688 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
689 		tsk->thread.debugreg6 &= ~DR_STEP;
690 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
691 		regs->flags &= ~X86_EFLAGS_TF;
692 	}
693 	si_code = get_si_code(tsk->thread.debugreg6);
694 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
695 		send_sigtrap(tsk, regs, error_code, si_code);
696 	preempt_conditional_cli(regs);
697 	debug_stack_usage_dec();
698 
699 exit:
700 	ist_exit(regs, prev_state);
701 }
702 NOKPROBE_SYMBOL(do_debug);
703 
704 /*
705  * Note that we play around with the 'TS' bit in an attempt to get
706  * the correct behaviour even in the presence of the asynchronous
707  * IRQ13 behaviour
708  */
709 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
710 {
711 	struct task_struct *task = current;
712 	siginfo_t info;
713 	unsigned short err;
714 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
715 						"simd exception";
716 
717 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
718 		return;
719 	conditional_sti(regs);
720 
721 	if (!user_mode(regs))
722 	{
723 		if (!fixup_exception(regs)) {
724 			task->thread.error_code = error_code;
725 			task->thread.trap_nr = trapnr;
726 			die(str, regs, error_code);
727 		}
728 		return;
729 	}
730 
731 	/*
732 	 * Save the info for the exception handler and clear the error.
733 	 */
734 	unlazy_fpu(task);
735 	task->thread.trap_nr = trapnr;
736 	task->thread.error_code = error_code;
737 	info.si_signo = SIGFPE;
738 	info.si_errno = 0;
739 	info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
740 	if (trapnr == X86_TRAP_MF) {
741 		unsigned short cwd, swd;
742 		/*
743 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
744 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
745 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
746 		 * fault bit.  We should only be taking one exception at a time,
747 		 * so if this combination doesn't produce any single exception,
748 		 * then we have a bad program that isn't synchronizing its FPU usage
749 		 * and it will suffer the consequences since we won't be able to
750 		 * fully reproduce the context of the exception
751 		 */
752 		cwd = get_fpu_cwd(task);
753 		swd = get_fpu_swd(task);
754 
755 		err = swd & ~cwd;
756 	} else {
757 		/*
758 		 * The SIMD FPU exceptions are handled a little differently, as there
759 		 * is only a single status/control register.  Thus, to determine which
760 		 * unmasked exception was caught we must mask the exception mask bits
761 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
762 		 */
763 		unsigned short mxcsr = get_fpu_mxcsr(task);
764 		err = ~(mxcsr >> 7) & mxcsr;
765 	}
766 
767 	if (err & 0x001) {	/* Invalid op */
768 		/*
769 		 * swd & 0x240 == 0x040: Stack Underflow
770 		 * swd & 0x240 == 0x240: Stack Overflow
771 		 * User must clear the SF bit (0x40) if set
772 		 */
773 		info.si_code = FPE_FLTINV;
774 	} else if (err & 0x004) { /* Divide by Zero */
775 		info.si_code = FPE_FLTDIV;
776 	} else if (err & 0x008) { /* Overflow */
777 		info.si_code = FPE_FLTOVF;
778 	} else if (err & 0x012) { /* Denormal, Underflow */
779 		info.si_code = FPE_FLTUND;
780 	} else if (err & 0x020) { /* Precision */
781 		info.si_code = FPE_FLTRES;
782 	} else {
783 		/*
784 		 * If we're using IRQ 13, or supposedly even some trap
785 		 * X86_TRAP_MF implementations, it's possible
786 		 * we get a spurious trap, which is not an error.
787 		 */
788 		return;
789 	}
790 	force_sig_info(SIGFPE, &info, task);
791 }
792 
793 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
794 {
795 	enum ctx_state prev_state;
796 
797 	prev_state = exception_enter();
798 	math_error(regs, error_code, X86_TRAP_MF);
799 	exception_exit(prev_state);
800 }
801 
802 dotraplinkage void
803 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
804 {
805 	enum ctx_state prev_state;
806 
807 	prev_state = exception_enter();
808 	math_error(regs, error_code, X86_TRAP_XF);
809 	exception_exit(prev_state);
810 }
811 
812 dotraplinkage void
813 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
814 {
815 	conditional_sti(regs);
816 #if 0
817 	/* No need to warn about this any longer. */
818 	pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
819 #endif
820 }
821 
822 asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void)
823 {
824 }
825 
826 asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void)
827 {
828 }
829 
830 /*
831  * 'math_state_restore()' saves the current math information in the
832  * old math state array, and gets the new ones from the current task
833  *
834  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
835  * Don't touch unless you *really* know how it works.
836  *
837  * Must be called with kernel preemption disabled (eg with local
838  * local interrupts as in the case of do_device_not_available).
839  */
840 void math_state_restore(void)
841 {
842 	struct task_struct *tsk = current;
843 
844 	if (!tsk_used_math(tsk)) {
845 		local_irq_enable();
846 		/*
847 		 * does a slab alloc which can sleep
848 		 */
849 		if (init_fpu(tsk)) {
850 			/*
851 			 * ran out of memory!
852 			 */
853 			do_group_exit(SIGKILL);
854 			return;
855 		}
856 		local_irq_disable();
857 	}
858 
859 	/* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
860 	kernel_fpu_disable();
861 	__thread_fpu_begin(tsk);
862 	if (unlikely(restore_fpu_checking(tsk))) {
863 		fpu_reset_state(tsk);
864 		force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
865 	} else {
866 		tsk->thread.fpu_counter++;
867 	}
868 	kernel_fpu_enable();
869 }
870 EXPORT_SYMBOL_GPL(math_state_restore);
871 
872 dotraplinkage void
873 do_device_not_available(struct pt_regs *regs, long error_code)
874 {
875 	enum ctx_state prev_state;
876 
877 	prev_state = exception_enter();
878 	BUG_ON(use_eager_fpu());
879 
880 #ifdef CONFIG_MATH_EMULATION
881 	if (read_cr0() & X86_CR0_EM) {
882 		struct math_emu_info info = { };
883 
884 		conditional_sti(regs);
885 
886 		info.regs = regs;
887 		math_emulate(&info);
888 		exception_exit(prev_state);
889 		return;
890 	}
891 #endif
892 	math_state_restore(); /* interrupts still off */
893 #ifdef CONFIG_X86_32
894 	conditional_sti(regs);
895 #endif
896 	exception_exit(prev_state);
897 }
898 NOKPROBE_SYMBOL(do_device_not_available);
899 
900 #ifdef CONFIG_X86_32
901 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
902 {
903 	siginfo_t info;
904 	enum ctx_state prev_state;
905 
906 	prev_state = exception_enter();
907 	local_irq_enable();
908 
909 	info.si_signo = SIGILL;
910 	info.si_errno = 0;
911 	info.si_code = ILL_BADSTK;
912 	info.si_addr = NULL;
913 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
914 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
915 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
916 			&info);
917 	}
918 	exception_exit(prev_state);
919 }
920 #endif
921 
922 /* Set of traps needed for early debugging. */
923 void __init early_trap_init(void)
924 {
925 	/*
926 	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
927 	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
928 	 * CPU runs at ring 0 so it is impossible to hit an invalid
929 	 * stack.  Using the original stack works well enough at this
930 	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
931 	 * trap_init().
932 	 *
933 	 * We don't need to set trace_idt_table like set_intr_gate(),
934 	 * since we don't have trace_debug and it will be reset to
935 	 * 'debug' in trap_init() by set_intr_gate_ist().
936 	 */
937 	set_intr_gate_notrace(X86_TRAP_DB, debug);
938 	/* int3 can be called from all */
939 	set_system_intr_gate(X86_TRAP_BP, &int3);
940 #ifdef CONFIG_X86_32
941 	set_intr_gate(X86_TRAP_PF, page_fault);
942 #endif
943 	load_idt(&idt_descr);
944 }
945 
946 void __init early_trap_pf_init(void)
947 {
948 #ifdef CONFIG_X86_64
949 	set_intr_gate(X86_TRAP_PF, page_fault);
950 #endif
951 }
952 
953 void __init trap_init(void)
954 {
955 	int i;
956 
957 #ifdef CONFIG_EISA
958 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
959 
960 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
961 		EISA_bus = 1;
962 	early_iounmap(p, 4);
963 #endif
964 
965 	set_intr_gate(X86_TRAP_DE, divide_error);
966 	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
967 	/* int4 can be called from all */
968 	set_system_intr_gate(X86_TRAP_OF, &overflow);
969 	set_intr_gate(X86_TRAP_BR, bounds);
970 	set_intr_gate(X86_TRAP_UD, invalid_op);
971 	set_intr_gate(X86_TRAP_NM, device_not_available);
972 #ifdef CONFIG_X86_32
973 	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
974 #else
975 	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
976 #endif
977 	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
978 	set_intr_gate(X86_TRAP_TS, invalid_TSS);
979 	set_intr_gate(X86_TRAP_NP, segment_not_present);
980 	set_intr_gate(X86_TRAP_SS, stack_segment);
981 	set_intr_gate(X86_TRAP_GP, general_protection);
982 	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
983 	set_intr_gate(X86_TRAP_MF, coprocessor_error);
984 	set_intr_gate(X86_TRAP_AC, alignment_check);
985 #ifdef CONFIG_X86_MCE
986 	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
987 #endif
988 	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
989 
990 	/* Reserve all the builtin and the syscall vector: */
991 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
992 		set_bit(i, used_vectors);
993 
994 #ifdef CONFIG_IA32_EMULATION
995 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
996 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
997 #endif
998 
999 #ifdef CONFIG_X86_32
1000 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
1001 	set_bit(SYSCALL_VECTOR, used_vectors);
1002 #endif
1003 
1004 	/*
1005 	 * Set the IDT descriptor to a fixed read-only location, so that the
1006 	 * "sidt" instruction will not leak the location of the kernel, and
1007 	 * to defend the IDT against arbitrary memory write vulnerabilities.
1008 	 * It will be reloaded in cpu_init() */
1009 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
1010 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
1011 
1012 	/*
1013 	 * Should be a barrier for any external CPU state:
1014 	 */
1015 	cpu_init();
1016 
1017 	/*
1018 	 * X86_TRAP_DB and X86_TRAP_BP have been set
1019 	 * in early_trap_init(). However, ITS works only after
1020 	 * cpu_init() loads TSS. See comments in early_trap_init().
1021 	 */
1022 	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1023 	/* int3 can be called from all */
1024 	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1025 
1026 	x86_init.irqs.trap_init();
1027 
1028 #ifdef CONFIG_X86_64
1029 	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1030 	set_nmi_gate(X86_TRAP_DB, &debug);
1031 	set_nmi_gate(X86_TRAP_BP, &int3);
1032 #endif
1033 }
1034